
 .bookmarks . 6
 1.1 Development Cycle . 6

 Creating and Deleting Indexes . 6
 Diagnostic Tools . 6

 Django and MongoDB . 6
 Getting Started . 6

 International Documentation . 7
 Monitoring . 7

 Older Downloads . 7
 PyMongo and mod_wsgi . 7

 Python Tutorial . 7
 Recommended Production Architectures . 7

 v0.8 Details . 8
 Building SpiderMonkey . 8

 Documentation . 8
 Dot Notation . 9

Dot Notation .
 Getting the Software . 9

 Language Support . 9
 Mongo Administration Guide . 9

 Working with Mongo Objects and Classes in Ruby . 9
 MongoDB Language Support . 9

 Community Info . 10
 Internals . 10

 TreeNavigation . 10
 Old Pages . 10

 Storing Data . 10
 Indexes in Mongo . 11

 HowTo . 11
 Searching and Retrieving . 11

 Locking . 11
 Mongo Developers' Guide . 11

 Locking in Mongo . 11
 Mongo Database Administration . 11

 Mongo Concepts and Terminology . 12
 MongoDB - A Developer's Tour . 12

 Updates . 12
 Structuring Data for Mongo . 12

 Design Overview . 12
 Document-Oriented Datastore . 12

 Why so many "Connection Accepted" messages logged? .
 Why are my datafiles so large? . 13

 Storing Files . 13
 Introduction - How Mongo Works . 13

 Optimizing Mongo Performance . 13
 Mongo Usage Basics . 13

 Server-Side Processing . 13
 Home . 13

 Quickstart . 14
 Quickstart OS X . 14

 Quickstart Unix . 16
 Quickstart Windows . 17

 Downloads . 18
 1.0 Changelist . 20

 1.2.x Release Notes . 20
 1.4 Release Notes . 20
 1.6 Release Notes . 21

 CentOS and Fedora Packages . 22
 Ubuntu and Debian packages . 23

 Version Numbers . 24
 Drivers . 24

 C Language Center . 25
 C Tutorial . 26

 C Sharp Language Center . 32
 Driver Syntax Table . 33

 Javascript Language Center . 33
 node.JS . 33

 JVM Languages . 34
 Python Language Center . 34

 PHP Language Center . 34
 Installing the PHP Driver . 35

 PHP Libraries, Frameworks, and Tools . 35
 PHP - Storing Files and Big Data . 37

 Troubleshooting the PHP Driver . 37
 Ruby Language Center . 37

 Ruby Tutorial . 38
 Replica Pairs in Ruby . 43
 Replica Sets in Ruby . 44

 GridFS in Ruby . 46
 Rails - Getting Started . 49

 Rails 3 - Getting Started . 50
 MongoDB Data Modeling and Rails . 53

 Object Mappers for Ruby and MongoDB . 56
 Using Mongoid . 58

 Ruby External Resources . 60
 Frequently Asked Questions - Ruby . 61

 Java Language Center . 64
 Java Driver Concurrency . 64

 Java - Saving Objects Using DBObject . 65
 Java Tutorial . 65

 Java Types . 70
 C++ Language Center . 72
 C++ BSON Library . 72

 C++ Tutorial . 73
 Connecting . 78

 Perl Language Center . 78
 Contributing to the Perl Driver . 79

 Perl Tutorial . 80
 Online API Documentation . 80

 Writing Drivers and Tools . 80
 Overview - Writing Drivers and Tools . 81

 bsonspec.org . 81
 Mongo Driver Requirements . 81

 Spec, Notes and Suggestions for Mongo Drivers . 85
 Feature Checklist for Mongo Drivers . 85

 Conventions for Mongo Drivers . 86
 Driver Testing Tools . 86
 Mongo Wire Protocol . 86

 BSON . 91
 Mongo Extended JSON . 93

 GridFS Specification . 95
 Implementing Authentication in a Driver . 97

 Notes on Pooling for Mongo Drivers . 98
 Driver and Integration Center . 101

 Connecting Drivers to Replica Sets . 101
 Error Handling in Mongo Drivers . 101

 Developer Zone . 102
 cookbook.mongodb.org . 103

 Tutorial . 103
 Manual . 109

 Connections . 110
 Databases . 111

 Commands . 111
 Mongo Metadata . 119

 Collections . 120
 Capped Collections . 120

 Using a Large Number of Collections . 121
 Data Types and Conventions . 122

 Internationalized Strings . 122
 Object IDs . 122

 Database References . 123
 GridFS . 125

 When to use GridFS . 126
 Indexes . 126

 Using Multikeys to Simulate a Large Number of Indexes . 129
 Geospatial Indexing . 130

 Indexing as a Background Operation . 133
 Multikeys . 134

 Indexing Advice and FAQ . 135
 Inserting . 138

 Legal Key Names . 140
 Schema Design . 140

 Trees in MongoDB . 142
 Optimization . 144

 Optimizing Object IDs . 147
 Optimizing Storage of Small Objects . 147

 Query Optimizer . 148
 Querying . 148

 Mongo Query Language . 150
 Retrieving a Subset of Fields . 150

 Advanced Queries . 151
 Dot Notation (Reaching into Objects) . 158

 Full Text Search in Mongo . 161
 min and max Query Specifiers . 162

 OR operations in query expressions . 162
 Queries and Cursors . 163

 Server-side Code Execution . 165
 Sorting and Natural Order . 168

 Aggregation . 168
 Removing . 172

 Updating . 172
 Atomic Operations . 177

 findandmodify Command . 178
 Updating Data in Mongo . 180

 MapReduce . 181
 Data Processing Manual . 184
 mongo - The Interactive Shell . 185

 Overview - The MongoDB Interactive Shell . 186
 dbshell Reference . 188

 Developer FAQ . 190
 Do I Have to Worry About SQL Injection . 192

 How does concurrency work . 192
 SQL to Mongo Mapping Chart . 194

 What is the Compare Order for BSON Types . 196
 Admin Zone . 197

 Production Notes . 197
 Replication . 198

 Verifying Propagation of Writes with getLastError . 199
 Replica Sets . 199

 About the local database . 200
 Data Center Awareness . 200

 Reconfiguring a replica set when members are down . 201
 Reconfiguring when Members are Up . 202

 Replica Set Design Concepts . 202
 Replica Sets Troubleshooting . 202

 Replica Set Tutorial . 202
 Replica Set Configuration . 206
 Upgrading to Replica Sets . 208

 Replica Set Admin UI . 210
 Replica Set Commands . 211

 Replica Set FAQ . 213
 Connecting to Replica Sets from Clients . 213

 Replica Sets Limits . 213
 Resyncing a Very Stale Replica Set Member . 214

 Replica Set Internals . 214
 Master Slave . 217

 One Slave Two Masters . 220
 Replica Pairs . 221

 Master Master Replication . 223
 Replication Oplog Length . 224

 Halted Replication . 225
 Sharding . 226

 Sharding Introduction . 227
 Configuring Sharding . 231

 A Sample Configuration Session . 233
 Upgrading from a Non-Sharded System . 235

 Sharding Administration . 236
 Sharding and Failover . 237

 Sharding Limits . 238
 Sharding Internals . 238

 Moving Chunks . 239
 Sharding Config Schema . 239

 Sharding Design . 241
 Sharding Use Cases . 242

 Shard Ownership . 242
 Splitting Chunks . 243

 Sharding FAQ . 244
 Hosting Center . 245

 Amazon EC2 . 245
 Joyent . 246

 Monitoring and Diagnostics . 246
 Checking Server Memory Usage . 248

 Database Profiler . 248
 Munin configuration examples . 250

 Http Interface . 253

 mongostat . 256
 mongosniff . 256

 Backups . 257
 How to do Snapshotted Queries in the Mongo Database . 257

 Import Export Tools . 258
 Durability and Repair . 262

 Security and Authentication . 264
 Admin UIs . 265

 Starting and Stopping Mongo . 269
 Logging . 271

 Command Line Parameters . 271
 File Based Configuration . 273

 GridFS Tools . 274
 DBA Operations from the Shell . 275

 Architecture and Components . 276
 Troubleshooting . 276

 Excessive Disk Space . 277
 Too Many Open Files . 278

 Contributors . 278
 JS Benchmarking Harness . 279

 MongoDB kernel code development rules . 279
 Git Commit Rules . 279
 Kernel class rules . 279
 Kernel code style . 280

 Kernel concurrency rules . 281
 Kernel exception architecture . 281

 Kernel Logging . 281
 Kernel string manipulation . 282

 Writing Tests . 282
 Project Ideas . 283

 UI . 284
 Source Code . 284

 Building . 284
 Building Boost . 285

 Building for FreeBSD . 285
 Building for Linux . 286
 Building for OS X . 287

 Building for Solaris . 291
 Building for Windows . 291

 Boost 1.41.0 Visual Studio 2010 Binary . 291
 Boost and Windows . 292

 Building the Mongo Shell on Windows . 292
 Building with Visual Studio 2008 . 293
 Building with Visual Studio 2010 . 294

 Building Spider Monkey . 296
 scons . 297

 Database Internals . 298
 Caching . 298
 Cursors . 298

 Error Codes . 298
 Internal Commands . 298
 Replication Internals . 299

 Smoke Tests . 300
 Pairing Internals . 301

 Contributing to the Documentation . 301
 Emacs tips for MongoDB work . 301

 Mongo Documentation Style Guide . 301
 Community . 304

 MongoDB Commercial Services Providers . 304
 User Feedback . 305

 Job Board . 306
 About . 307

 Philosophy . 307
 Use Cases . 307

 Use Case - Session Objects . 308
 Production Deployments . 308

 Mongo-Based Applications . 320
 Events . 321

 Video & Slides from Recent Events and Presentations . 323
 Slide Gallery . 326

 Articles . 326
 Benchmarks . 327

 FAQ . 327
 Product Comparisons . 328

 Interop Demo (Product Comparisons) . 328

 MongoDB, CouchDB, MySQL Compare Grid . 328
 Comparing Mongo DB and Couch DB . 329

 Licensing . 330
 Windows . 331

 International Docs . 331
 Books . 332

 Doc Index . 332

.bookmarks

Recent bookmarks in MongoDB

This page is a container for all the bookmarks in this space. Do not delete or move it or you will lose all your bookmarks.
 | Bookmarks in MongoDB Links for MongoDB

 The 15 most recent bookmarks in MongoDB
There are no bookmarks to display.

1.1 Development Cycle

Redirection Notice
This page should redirect to .[1.2.0 Release Notes]

Creating and Deleting Indexes

Redirection Notice
This page should redirect to .Indexes

Diagnostic Tools

Redirection Notice
This page should redirect to .Monitoring and Diagnostics

Django and MongoDB

Redirection Notice
This page should redirect to .Python Language Center

Getting Started

http://www.mongodb.org/spaces/space-bookmarks.action?spaceKey=DOCS
http://www.mongodb.org/spaces/space-bookmarks.action?spaceKey=DOCS

Redirection Notice
This page should redirect to .Quickstart

International Documentation

Redirection Notice
This page should redirect to .International Docs

Monitoring

Redirection Notice
This page should redirect to .Monitoring and Diagnostics

Older Downloads

Redirection Notice
This page should redirect to .Downloads

PyMongo and mod_wsgi

Redirection Notice
This page should redirect to .Python Language Center

Python Tutorial

Redirection Notice
This page should redirect to .Python Language Center

Recommended Production Architectures

Redirection Notice
This page should redirect to .Production Notes

v0.8 Details

Existing Core Functionality

Basic Mongo database functionality: inserts, deletes, queries, indexing.
Master / Slave Replication
Replica Pairs
Server-side javascript code execution

New to v0.8

Drivers for Java, C++, Python, Ruby.
db shell utility
(Very) basic security
$or
Clean up logging
Performance test baseline
getlasterror
Large capped collections
Bug fixes (compound index keys, etc.)
Import/Export utility
Allow any _id that is unique, and verify uniqueness

Wanted, but may not make it

AMI's
Unlock eval()?
Better disk full handling
better replica pair negotiation logic (for robustness)

Building SpiderMonkey

Redirection Notice
This page should redirect to .Building Spider Monkey

Documentation

Redirection Notice
This page should redirect to .Home

Dot Notation

Redirection Notice
This page should redirect to .Dot Notation (Reaching into Objects)

Dot Notation

Redirection Notice
This page should redirect to .Dot Notation (Reaching into Objects)

Getting the Software
Placeholder - $$$ TODO

Language Support

Redirection Notice
This page should redirect to .Drivers

Mongo Administration Guide

Redirection Notice
This page should redirect to .Admin Zone

Working with Mongo Objects and Classes in Ruby

Redirection Notice
This page should redirect to .Ruby Language Center

MongoDB Language Support

Redirection Notice
This page should redirect to .Language Support

Community Info

Redirection Notice
This page should redirect to .Community

Internals

Cursors

Tailable Cursors

See for example of how, on the client side, to support tailable cursors.p/db/dbclient.h

Set

Option_CursorTailable = 2

in the field to indicate you want a tailable cursor.queryOptions int

If you get back no results when you query the cursor, keep the cursor live if cursorid is still nonzero. Then, you can issue future getMore
requests for the cursor.

If a request has the set, the cursor is not longer valid. It should be marked as "dead"getMore resultFlag ResultFlag_CursorNotFound
on the client side.

ResultFlag_CursorNotFound = 1

See the section of the for more information about cursors.Queries and Cursors Mongo Developers' Guide

See Also

The section of the for more information about cursorsQueries and Cursors Mongo Developers' Guide

TreeNavigation

Old Pages

Storing Data

Redirection Notice
This page should redirect to .Inserting

Indexes in Mongo

Redirection Notice
This page should redirect to .Indexes

HowTo

Redirection Notice
This page should redirect to .Developer FAQ

Searching and Retrieving

Redirection Notice
This page should redirect to .Querying

Locking

Redirection Notice
This page should redirect to .Atomic Operations

Mongo Developers' Guide

Redirection Notice
This page should redirect to .Manual

Locking in Mongo

Redirection Notice
This page should redirect to .Developer FAQ

Mongo Database Administration

Redirection Notice
This page should redirect to .Admin Zone

Mongo Concepts and Terminology

Redirection Notice
This page should redirect to .Manual

MongoDB - A Developer's Tour

Redirection Notice
This page should redirect to .Manual

Updates

Redirection Notice
This page should redirect to .Updating

Structuring Data for Mongo

Redirection Notice
This page should redirect to .Inserting

Design Overview

Redirection Notice
This page should redirect to .Developer Zone

Document-Oriented Datastore

Redirection Notice
This page should redirect to .Databases

Why so many "Connection Accepted" messages logged?

Redirection Notice
This page should redirect to .Developer FAQ

Why are my datafiles so large?

Redirection Notice
This page should redirect to .Developer FAQ

Storing Files

Redirection Notice
This page should redirect to .GridFS

Introduction - How Mongo Works

Redirection Notice
This page should redirect to .Developer Zone

Optimizing Mongo Performance

Redirection Notice
This page should redirect to .Optimization

Mongo Usage Basics

Redirection Notice
This page should redirect to .Tutorial

Server-Side Processing

Redirection Notice
This page should redirect to .Server-side Code Execution

Home

Events

Follow us on and to get all of the latest updates!Facebook Twitter
MongoDB Conferences:

Mongo Chicago - October 20
Mongo DC - November 18
MongoSV - December 3
Slides and Video: | | | | MongoSeattle MongoFR MongoUK MongoNYC MongoSF

More events...

Getting Started

Quickstart | | Downloads Tutorial

Development

Manual
C | | | | | | | | | | | | C++ C# & .NET ColdFusion Erlang Factor Java Javascript PHP Python Ruby Perl More...

Production

Production Notes | | | | Security Replication Sharding Backup

Support

Forum | | | | | | IRC Bug tracker Commercial support Training Consulting Hosting

Community

Blog | | | | | | | User groups: and Articles Twitter [Forum] Facebook LinkedIn Job Board NY SF

Meta

Use Cases | | Philosophy License

Translations

 | | | | | | | | Deutsch Español Français Italiano Português

Quickstart
Quickstart OS X

Quickstart Unix

Quickstart Windows

For an even quicker start go to .http://try.mongodb.org/

See Also

SQL to Mongo Mapping Chart

Quickstart OS X

http://www.facebook.com/#!/pages/MongoDB/397955415556
http://www.twitter.com/mongodb
http://bit.ly/mongochicago
http://bit.ly/mongodc2010
http://bit.ly/mongosv2010
http://www.10gen.com/conferences/mongoseattle2010
http://www.10gen.com/conferences/event_mongofr_21june10
http://www.10gen.com/conferences/event_mongouk_18june10
http://www.10gen.com/event_mongony_10may21
http://www.10gen.com/event_mongosf_10apr30
http://github.com/mongodb/mongo-c-driver
http://api.mongodb.org/python
http://groups.google.com/group/mongodb-user
irc://irc.freenode.net/#mongodb
http://jira.mongodb.org/
http://www.10gen.com/support
http://www.10gen.com/training
http://blog.mongodb.org/
http://twitter.com/mongodb
http://bit.ly/mongofb/
http://www.linkedin.com/groups?mostPopular=&gid=2340731
http://www.meetup.com/New-York-MongoDB-User-Group/
http://www.meetup.com/San-Francisco-MongoDB-User-Group/
http://www.mongodb.org/display/DOCSCN
http://www.mongodb.org/display/DOCSDE
http://www.mongodb.org/display/DOCSES
http://www.mongodb.org/display/DOCSFR
http://www.mongodb.org/display/DOCSIT
http://www.mongodb.org/display/DOCSJP
http://www.mongodb.org/display/DOCSPT
http://www.mongodb.org/display/DOCSRU
http://www.mongodb.org/display/DOCSRS
http://try.mongodb.org/

Install MongoDB

The easiest way to install MongoDB is to use a package manager or the pre-built binaries:

Package managers

If you use the package manager, run:Homebrew

$ brew install mongodb

If you use you can install with:MacPorts

$ sudo port install mongodb

This will take a while to install.

32-bit binaries

Note: .64-bit is recommended

$ curl http://downloads.mongodb.org/osx/mongodb-osx-i386-1.4.4.tgz > mongo.tgz
$ tar xzf mongo.tgz

64-bit binaries

$ curl http://downloads.mongodb.org/osx/mongodb-osx-x86_64-1.4.4.tgz > mongo.tgz
$ tar xzf mongo.tgz

Create a data directory

By default MongoDB will store data in , but it won't automatically create that directory. To create it, do:/data/db

$ mkdir -p /data/db

You can also tell MongoDB to use a different data directory, with the option.--dbpath

Run and connect to the server

First, start the MongoDB server in one terminal:

$./mongodb-xxxxxxx/bin/mongod

In a separate terminal, start the shell, which will connect to localhost by default:

$./mongodb-xxxxxxx/bin/mongo
> db.foo.save({ a : 1 })
> db.foo.find()

Congratulations, you've just saved and retrieved your first document with MongoDB!

Learn more

Once you have MongoDB installed and running, head over to the .Tutorial

http://mxcl.github.com/homebrew/
http://www.macports.org/
http://blog.mongodb.org/post/137788967/32-bit-limitations

Quickstart Unix

Install MongoDB

Note: If you are running an old version of Linux and the database doesn't start, or gives a floating point exception, try the "legacy static" version
on the page instead of the versions listed below.Downloads

Package managers

Ubuntu and Debian users can now install nightly snapshots via apt. See for details.Ubuntu and Debian packages

CentOS and Fedora users should head to the page.CentOS and Fedora Packages

32-bit Linux binaries

Note: .64 bit is recommended

$ curl http://downloads.mongodb.org/linux/mongodb-linux-i686-1.4.4.tgz > mongo.tgz
$ tar xzf mongo.tgz

64-bit Linux binaries

$ curl http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.4.4.tgz > mongo.tgz
$ tar xzf mongo.tgz

Other Unixes

See the page for some binaries, and also the page for information on building from source.Downloads Building

Create a data directory

By default MongoDB will store data in , but it won't automatically create that directory. To create it, do:/data/db

$ sudo mkdir -p /data/db/
$ sudo chown `id -u` /data/db

You can also tell MongoDB to use a different data directory, with the option.--dbpath

Run and connect to the server

First, start the MongoDB server in one terminal:

$./mongodb-xxxxxxx/bin/mongod

In a separate terminal, start the shell, which will connect to localhost by default:

$./mongodb-xxxxxxx/bin/mongo
> db.foo.save({ a : 1 })
> db.foo.find()

Congratulations, you've just saved and retrieved your first document with MongoDB!

Learn more

http://blog.mongodb.org/post/137788967/32-bit-limitations

Once you have MongoDB installed and running, head over to the .Tutorial

Quickstart Windows

Download
32-bit binaries
64-bit binaries

Unzip
Create a data directory
Run and connect to the server
Learn more

Download

The easiest (and recommended) way to install MongoDB is to use the pre-built binaries.

32-bit binaries

Download and extract the 32-bit .zip. The "Production" build is recommended.

64-bit binaries

Download and extract the 64-bit .zip.

Note: , although you must have a 64-bit version of Windows to run that version.64-bit is recommended

Unzip

Unzip the downloaded binary package to the location of your choice. You may want to rename mongo-xxxxxxx to just "mongo" for convenience.

Create a data directory

By default MongoDB will store data in , but it won't automatically create that folder, so we do so here:\data\db

C:\> mkdir \data
C:\> mkdir \data\db

Or you can do this from the Windows Explorer, of course.

Run and connect to the server

The important binaries for a first run are:

mongod.exe - the database server
mongo.exe - the administrative shell

To run the database, click in Explorer, or run it from a CMD window.mongod.exe

C:\> cd \my_mongo_dir\bin
C:\my_mongo_dir\bin > mongod

Note: It is also possible to run the server as a . But we can do that later.Windows Service

Now, start the administrative shell, either by double-clicking in Explorer, or from the CMD prompt. By default mongo.exe connects tomongo.exe
a server running on and uses the database named . Run to see other options.mongod localhost test mongo --help

http://blog.mongodb.org/post/137788967/32-bit-limitations

C:\> cd \my_mongo_dir\bin
C:\my_mongo_dir\bin> mongo
> // the mongo shell is a javascript shell connected to the db
> 3+3
6
> db
test
> // the first write will create the db:
> db.foo.insert({ a : 1 })
> db.foo.find()
{ _id : ..., a : 1 }

Congratulations, you've just saved and retrieved your first document with MongoDB!

Learn more

Tutorial
Windows quick links
[Mongo Shell]

Mongo Shell Info

Downloads

See also .Packages

Version OS X 32
bit

OS X 64
bit

Linux 32
bit

Linux 64
bit

Windows
32 bit

Windows
64-bit

Solaris
i86pc

Solaris
64

Source Date

Production
(Recommended)

1.4.3 os x 10.5+
os x 10.4

download *download
legacy-static

 *download
legacy-static

download download download download tgz zip 5/24/2010

nightly os x 10.5+
os x 10.4

download *download
legacy-static

 *download
legacy-static

download download download download tgz zip Daily

Previous
Release

1.2.5 os x 10.5+
os x 10.4

download *download
legacy-static

 *download
legacy-static

download download download download tgz zip 4/7/2010

nightly os x 10.5+
os x 10.4

download *download
legacy-static

 *download
legacy-static

download download download download tgz zip Daily

Dev (unstable)

1.5.3 os x 10.5+
os x 10.4

download *download
legacy-static

 *download
legacy-static

download download download download tgz zip 6/17/2010

1.5.x nightly os x 10.5+
os x 10.4

download *download
legacy-static

 *download
legacy-static

download download download download tgz zip Daily

Archived
Releases

list list list list list list list list list

See Version Numbers
The linux legacy-static builds are only recommended for older systems. If you try to run and get a floating point exception, try the
legacy-static builds. Otherwise you should use the regular ones.

http://downloads.mongodb.org/osx/mongodb-osx-i386-1.4.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-1.4.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-1.4.3.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-1.4.3.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-1.4.3.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-1.4.3.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-1.4.3.tgz
http://downloads.mongodb.org/src/mongodb-src-r1.4.3.tar.gz
http://downloads.mongodb.org/src/mongodb-src-r1.4.3.zip
http://downloads.mongodb.org/osx/mongodb-osx-i386-v1.4-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-v1.4-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-v1.4-latest.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-v1.4-latest.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-v1.4-latest.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-v1.4-latest.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-v1.4-latest.tgz
http://github.com/mongodb/mongo/tarball/v1.4
http://github.com/mongodb/mongo/zipball/v1.4
http://downloads.mongodb.org/osx/mongodb-osx-i386-1.2.5.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-1.2.5.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-1.2.5.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-1.2.5.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-1.2.5.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-1.2.5.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-1.2.5.tgz
http://downloads.mongodb.org/src/mongodb-src-r1.2.5.tar.gz
http://downloads.mongodb.org/src/mongodb-src-r1.2.5.zip
http://downloads.mongodb.org/osx/mongodb-osx-i386-v1.2-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-v1.2-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-v1.2-latest.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-v1.2-latest.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-v1.2-latest.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-v1.2-latest.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-v1.2-latest.tgz
http://github.com/mongodb/mongo/tarball/v1.2
http://github.com/mongodb/mongo/zipball/v1.2
http://downloads.mongodb.org/osx/mongodb-osx-i386-1.5.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-1.5.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-1.5.3.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-1.5.3.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-1.5.3.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-1.5.3.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-1.5.3.tgz
http://downloads.mongodb.org/src/mongodb-src-r1.5.3.tar.gz
http://downloads.mongodb.org/src/mongodb-src-r1.5.3.zip
http://downloads.mongodb.org/osx/mongodb-osx-i386-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-latest.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-latest.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-latest.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-latest.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-latest.tgz
http://github.com/mongodb/mongo/tarball/master
http://github.com/mongodb/mongo/zipball/master
http://dl.mongodb.org/dl/osx/i386
http://dl.mongodb.org/dl/osx/x86
http://dl.mongodb.org/dl/linux/i686
http://dl.mongodb.org/dl/linux/x86_64
http://dl.mongodb.org/dl/win32/386
http://dl.mongodb.org/dl/win32/x86_64
http://dl.mongodb.org/dl/sunos5/i86pc
http://dl.mongodb.org/dl/sunos5/x86_64
http://dl.mongodb.org/dl/src/

Currently the mongod server must run on little-endian cpu (intel) so if you are using a ppc os x, mongod will not work.
32-bit builds are limited 2gb of data. See for more infohttp://blog.mongodb.org/post/137788967/32-bit-limitations
See for details of builds and completion times.http://buildbot.mongodb.org/waterfall

Included in Distributions

The MongoDB database server
The MongoDB shell
Backup and restore tools
Import and export tools
GridFS tool
The MongoDB C++ client

Drivers

Information on how to separately download or install the drivers and tools can be found on the page.Drivers

Language Packages Source API Reference

Python bundles github api

PHP pecl github api

Ruby gemcutter github api

Java jar github api

Perl cpan github api

C++ included in database github api

See for more information and other languages.Drivers

Source Code

Source code for MongoDB and all drivers

Packages

MongoDB is included in several different package managers:

For , see the and packages.MacPorts mongodb mongodb-devel
For , see the and packages.FreeBSD mongodb mongodb-devel
For , see the formula.Homebrew mongodb
For , see the package in the AUR.ArchLinux mongodb
For and , see .Debian Ubuntu Ubuntu and Debian packages
For and , see .Fedora CentOS CentOS and Fedora Packages

Documentation

Pre-Exported

You can export yourself: , , or .HTML PDF XML

Logos

MongoDB logos are available for download as attachments on this page.

Powered By MongoDB Badges

We've made badges in beige, brown, blue and green for use on your sites that are powered by MongoDB. They are available below and in
multiple sizes as on this page.attachments

http://blog.mongodb.org/post/137788967/32-bit-limitations
http://buildbot.mongodb.org/waterfall
http://pypi.python.org/pypi/pymongo/
http://github.com/mongodb/mongo-python-driver
http://api.mongodb.org/python
http://pecl.php.net/package/mongo
http://github.com/mongodb/mongo-php-driver
http://us.php.net/manual/en/book.mongo.php
http://gemcutter.org/gems/mongo
http://github.com/mongodb/mongo-ruby-driver
http://api.mongodb.org/ruby
http://github.com/mongodb/mongo-java-driver/downloads
http://github.com/mongodb/mongo-java-driver
http://api.mongodb.org/java
http://search.cpan.org/dist/MongoDB/
http://github.com/mongodb/mongo-perl-driver
http://search.cpan.org/dist/MongoDB/lib/MongoDB.pm
http://github.com/mongodb/mongo
http://api.mongodb.org/cplusplus
http://www.macports.org/
http://www.FreeBSD.org
http://github.com/mxcl/homebrew
http://archlinux.org/
http://www.debian.org
http://www.ubuntu.com
http://fedoraproject.org/
http://centos.org
http://dl.mongodb.org/dl/docs/
http://www.mongodb.org/spaces/exportspacehtml.action?key=DOCS
http://www.mongodb.org/spaces/flyingpdf/flyingpdf.action?key=DOCS
http://www.mongodb.org/spaces/exportspacexml.action?key=DOCS
http://www.mongodb.org/pages/viewpageattachments.action?pageId=132305

Training

If you're just getting started with MongoDB, consider registering for an upcoming .training course

<#comment><#comment><#comment>

1.0 Changelist

Wrote MongoDB. See documentation.

1.2.x Release Notes

New Features

More indexes per collection
Faster index creation
Map/Reduce
Stored JavaScript functions
Configurable fsync time
Several small features and fixes

DB Upgrade Required

There are some changes that will require doing an upgrade if your previous version is <= 1.0.x. If you're already using a version >= 1.1.x then
these changes aren't required. There are 2 ways to do it:

--upgrade
stop your mongod process
run ./mongod --upgrade
start mongod again

use a slave
start a slave on a different port and data directory
when its synced, shut down the master, and start the new slave on the regular port.

Ask in the forums or IRC for more help.

Replication Changes

There have been minor changes in replication. If you are upgrading a master/slave setup from <= 1.1.2 you have to update the slave first.

mongoimport

mongoimportjson has been removed and is replaced with mongoimport that can do json/csv/tsv

field filter changing

We've changed the semantics of the field filter a little bit. Previously only objects with those fields would be returned. Now the field filter
only changes the output, not which objects are returned. If you need that behavior, you can use $exists

other notes

http://www.mongodb.org/display/DOCS/1.1+Development+Cycle

1.4 Release Notes

We're pleased to announce the 1.4 release of MongoDB. 1.4 is a drop in replacement for 1.2. To upgrade you just need to shutdown mongod,
then restart with the new binaries. (Users upgrading from release 1.0 should review the , in particular the instructions for1.2 release notes
upgrading the DB format.)

Release 1.4 includes the following improvements over release 1.2:

Core server enhancements

concurrency improvements
indexing memory improvements

http://www.10gen.com/training

background index creation
better detection of regular expressions so the index can be used in more cases

Replication & Sharding

better handling for restarting slaves offline for a while
fast new slaves from snapshots (--fastsync)
configurable slave delay ()--slavedelay
replication handles clock skew on master
$inc replication fixes
sharding alpha 3 - notably 2 phase commit on config servers

Deployment & production

configure "slow threshold" for profiling
ability to do for backing up raw filesfsync + lock
option for separate directory per db (--directoryperdb)
http://localhost:28017/_status to get serverStatus via http
REST interface is off by default for security (--rest to enable)
can rotate logs with a db command, logRotate
enhancements to command (db.serverStatus()) - counters and statsserverStatus replication lag
new toolmongostat

Query language improvements

$all with regex
$not
partial matching of array elements $elemMatch
$ operator for updating arrays
$addToSet
$unset
$pull supports object matching
$set with array indices

Geo

2d geospatial search
geo $center and $box searches

1.6 Release Notes

MongoDB 1.6 is a drop-in replacement for 1.4. To upgrade, simply shutdown then restart with the new binaries.*mongod

* Please note that you should upgrade to the latest version of whichever driver you're using. Certain drivers, including the Ruby driver, will require
the upgrade, and all the drivers will provide extra features for connecting to replica sets.

Sharding

Sharding is now production-ready, making MongoDB horizontally scalable, with no single point of failure. A single instance of can now bemongod
upgraded to a distributed cluster with zero downtime when the need arises.

Sharding Tutorial
Sharding Documentation
Upgrading a Single Server to a Cluster

Replica Sets

Replica sets, which provide automated failover among a cluster of nodes, are also now available.n

Plese note that replica are now deprecated; we strongly recommend that replica pair users upgrade to replica sets.pairs

Replica Set Tutorial
Replica Set Documentation
Upgrading Existing Setups to Replica Sets

Other Improvements

The (and wtimeout) forces writes to be propagated to servers before returning success (this works especially well with replicaw option n
sets)

$or queries
Improved concurrency
$slice operator for returning subsets of arrays
64 indexes per collection (formerly 40 indexes per collection)
64-bit integers can now be represented in the shell using NumberLong
The now supports upserts. It also allows you to specify fields to returnfindAndModify command
$showDiskLoc option to see disk location of a document
Support for IPv6 and UNIX domain sockets

Installation

Windows service improvements
The C++ client is a separate tarball from the binaries

1.5.x Release Notes

1.5.8
1.5.7
1.5.6
1.5.5
1.5.4
1.5.3
1.5.2
1.5.1
1.5.0

You can see a full list of all changes on .Jira

Thank you everyone for your support and suggestions!

CentOS and Fedora Packages

10gen now publishes yum-installable RPM packages for CentOS 5.4 (x86 and x86_64) and Fedora 12 and 13 (x64_64 only for the moment). For
each revision in stable, unstable, and snapshot, there are four packages, e.g., mongo-stable, mongo-stable-server, mongo-stable-devel,
mongo-stable-debuginfo, for each of the client, server, headers, and debugging information, respectively.

To use these packages, add one of the following files in /etc/yum.repos.d, and then yum update and yum install your preferred complement of
packages.

For CentOS 5.4 on x86_64:

[10gen]
name=10gen Repository
baseurl=http://downloads.mongodb.org/distros/centos/5.4/os/x86_64/
gpgcheck=0

For CentOS 5.4 on x86

[10gen]
name=10gen Repository
baseurl=http://downloads.mongodb.org/distros/centos/5.4/os/i386/
gpgcheck=0

For Fedora 13:

[10gen]
name=10gen Repository
baseurl=http://downloads.mongodb.org/distros/fedora/13/os/x86_64/
gpgcheck=0

For Fedora 12:

http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-%24or
http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-%24sliceoperator
http://groups.google.com/group/mongodb-user/browse_thread/thread/b897c5d5037a4e19#
http://groups.google.com/group/mongodb-user/browse_thread/thread/398bf3e34456b3dd
http://groups.google.com/group/mongodb-user/browse_thread/thread/e25d0dd94fc7d1c4
http://groups.google.com/group/mongodb-user/browse_thread/thread/a0eef8f67bd30116
http://groups.google.com/group/mongodb-user/browse_thread/thread/dfcd15fc473fab57
http://groups.google.com/group/mongodb-user/browse_thread/thread/86c5102fd0b14d0c?hl=en
http://groups.google.com/group/mongodb-user/browse_thread/thread/f78104dc75627400
http://groups.google.com/group/mongodb-user/browse_thread/thread/ed204f4364527dd3
http://groups.google.com/group/mongodb-user/browse_thread/thread/5408497230c64f2d
http://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10107

[10gen]
name=10gen Repository
baseurl=http://downloads.mongodb.org/distros/fedora/12/os/x86_64/
gpgcheck=0

For Fedora 11:

[10gen]
name=10gen Repository
baseurl=http://downloads.mongodb.org/distros/fedora/11/os/x86_64/
gpgcheck=0

For the moment, these packages aren't signed. (If anybody knows how to automate signing RPMs, please let us know!)

Ubuntu and Debian packages

Please read the notes on the page. Also, note that these packages are updated daily, and so if you find you can'tDownloads
download the packages, try updating your apt package lists, e.g., with 'apt-get update' or 'aptitude update'.

10gen publishes apt-gettable packages. Our packages are generally fresher than those in Debian or Ubuntu. We publish 3 distinct packages,
named "mongodb-stable", "mongodb-unstable", "mongodb-snapshot", corresponding to our latest stable release, our latest development release,
and the most recent git checkout at the time of building. Each of these packages conflicts with the others, and with the "mongodb" package in
Debian/Ubuntu.

The packaging is still a work-in-progress, so we invite Debian and Ubuntu users to try them out and let us know how the packaging might be
improved.

To use the packages, add a line to your /etc/apt/sources.list, then 'aptitude update' and one of 'aptitude install mongodb-stable', 'aptitude install
mongodb-unstable' or 'aptitude install mongodb-snapshot'.

For Ubuntu Lucid (10.4) (built using a prerelease installation):

deb http://downloads.mongodb.org/distros/ubuntu 10.4 10gen

For Ubuntu Karmic (9.10):

deb http://downloads.mongodb.org/distros/ubuntu 9.10 10gen

For Ubuntu Jaunty (9.4):

deb http://downloads.mongodb.org/distros/ubuntu 9.4 10gen

For Debian Lenny (5.0):

deb http://downloads.mongodb.org/distros/debian 5.0 10gen

These packages are snapshots of our git master branch, and we plan to
update them frequently, so package version numbers will be of the form
YYYYMMDD; when reporting issues with these packages, please include the
package version in your report.

The public gpg key used for signing these packages follows. It should be possible to import the key into apt's public keyring with a command like
this:

sudo apt-key adv --keyserver keyserver.ubuntu.com --recv 7F0CEB10

To configure these packages beyond the defaults, have a look at , and/or the initialization script, (on older,/etc/mongodb.conf /etc/init.d/mongodb
non-Upstart systems, on Upstart systems). Most MongoDB operational settings are in ; a few other/etc/init/mongodb.conf /etc/mongodb.conf
settings are in the initialization script. Note that if you customize the in the initialization script or the or settings in userid dbpath logpath

, you must ensure that the directories and files you use are writable by the userid you run the server as./etc/mongodb.conf

Packages for other distros coming soon!

-----BEGIN PGP PUBLIC KEY BLOCK-----
Version: GnuPG v1.4.10 (Darwin)

mQENBEtsQe8BCACm5G0/ei0IxyjVEp6EEtbEbWK1Q4dKaONtiCODwB8di+L8tlUd
Ra5QYxeyV90C+dqdh34o79enXxT6idHfYYqDdob2/kAPE6vFi4sLmrWIVGCRY++7
RPclZuezPm1sxG1TRAYEsW0VZUE9ofdoQ8xlUZDyn2BSjG8OCT2e4orRg1pHgzw2
n3hnWqJNuJS4jxcRJOxI049THIGUtqBfF8bQoZw8C3Wg/R6pGghUfNjpA6uF9KAH
gnqrC0swZ1/vwIJt9fnvAlzkqLrssYtKH0rMdn5n4g5tJLqY5q/NruHMq2rhoy3r
4MC1w8GTbP7qR83wAyaLJ7xACOKqxB3SrDFJABEBAAG0I1JpY2hhcmQgS3JldXRl
ciA8cmljaGFyZEAxMGdlbi5jb20+iQE4BBMBAgAiBQJLbEHvAhsDBgsJCAcDAgYV
CAIJCgsEFgIDAQIeAQIXgAAKCRCey+xGfwzrEGXbB/4nrmf/2rEnztRelmup3duI
eepzEtw1cv3uHg2oZXGS6S7o5Fsk+amngaWelWKfkSw5La7aH5vL4tKFKUfuaME1
avInDIU/0IEs8jLrdSWq601HowLQcxAhqNPdaGONDtHw56Qhs0Ba8GA6329vLWgZ
ODnXweiNSCDrv3xbIN6IjPyyO5AoUkxmJfD0mVtp3u5Ar7kfIw7ieGGxokaHewNL
Xzqcp9rPiUR6dFw2uRvDdVRrXFUPlgVugaHKytm15JpHmQfyzQiMdYXnIz0oofJO
WM/PY1iw+QJZ2M7PnfbTJeADXIc/EoOAJDRggih533SjhiCaT6FdPMMk6rCZ5cgl
uQENBEtsQe8BCADlNPIJZVSL2i6H9X19YK4CpEqsjIUGISMB1cDT311WFSnhfuMs
GL9xYRb8dlbyeJFFOyHNkIBmH5ekCvGRfS6qJYpcUQZZcWSjEMqBYQV5cw1efd0B
ek64jfvrsLz8+YhKzn+NI8O3nyGvpEEWvOhN4hNjwkDhYbXLvAlsqagbnSMf+Htf
3lgCGYa2gLiNIqNKWCsEVAan/Er6KS39WANGXi6ih0yjReBiU8WR6Qh2ylMi2xKw
yHnTOsbWxP0hqALUa7N4AEGCXS/qn+vUz/hcIbt+eUNy45qoZcTT3dZsWGfJqknh
RFMIuPiej7/WY4Ugzes5NG02ecDkDkpJvrSNABEBAAGJAR8EGAECAAkFAktsQe8C
GwwACgkQnsvsRn8M6xABeggAlNkqbqa12L1bgaCgnGGdCiuXB3F6/VFmSQdUKpts
EuqWH6rSp30r67PupzneX++ouh+9WD5O7gJ0kP3VQJpmXjT/QnN5ANjI4kAtRZUW
qCXlXOxVAeXHL5oiKz0NM23Xc2rNAyfBQY8+SUYrKBalNBq5m68g8oogX8QD5u2F
x+6C+QK9G2EBDD/NWgkKN3GOxpQ5DTdPHI5/fjwYFs1leIaQjjiyJwAifxB/1+w0
VCHe2LDVpRXY5uBTefF2guhVYisKY6n5wNDaQpBmA8w17it5Yp8ge0HMN1A+aZ+6
L6MsuHbG2OYDZgAk8eKhvyd0y/pAhZpNuQ82MMGBmcueSA==
=74Cu
-----END PGP PUBLIC KEY BLOCK-----

Version Numbers

MongoDB uses the .odd-numbered versions for development releases

There are 3 numbers in a MongoDB version: A.B.C

A is the major version. This will rarely change and signify very large changes
B is the release number. This will include many changes including features and things that possible break backwards compatibility. Even
Bs will be stable branches, and odd Bs will be development.
C is the revision number and will be used for bugs and security issues.

For example:

1.0.0 : first GA release
1.0.x : bug fixes to 1.0.x - highly recommended to upgrade, very little risk
1.1.x : development release. this will include new features that are not fully finished, and works in progress. Some things may be different
than 1.0
1.2.x : second GA release. this will be the culmination of the 1.1.x release.

Drivers
MongoDB currently has client support for the following programming languages:

mongodb.org Supported

C
C++

http://en.wikipedia.org/wiki/Software_versioning#Odd-numbered_versions_for_development_releases

Java
Javascript
Perl
PHP
Python
Ruby

Community Supported

REST

C# and .NET
Clojure
ColdFusion

Blog post: | | Part 1 Part 2 Part 3
http://github.com/virtix/cfmongodb/tree/0.9

D
Port of the MongoDB C Driver for D

Delphi
pebongo - Early stage Delphi driver for MongoDB

Erlang
emongo - An Erlang MongoDB driver that emphasizes speed and stability. "The most emo of drivers."
Erlmongo - an almost complete MongoDB driver implementation in Erlang

Factor
http://github.com/slavapestov/factor/tree/master/extra/mongodb/

Fantom
http://bitbucket.org/liamstask/fantomongo/wiki/Home

F#
http://gist.github.com/218388

Go
gomongo

Groovy
See Java Language Center

Haskell
http://hackage.haskell.org/package/mongoDB

Javascript
Lua

LuaMongo
node.js
Objective C

NuMongoDB
PHP

Asynchronous PHP driver using libevent
PowerShell

Blog post
Python
Ruby

MongoMapper
rmongo - An event-machine-based Ruby driver for MongoDB
jmongo A thin ruby wrapper around the mongo-java-driver for vastly better jruby performance.
em-mongo EventMachine MongoDB Driver (based off of RMongo).

Scala
See JVM Languages

Scheme (PLT)
http://planet.plt-scheme.org/display.ss?package=mongodb.plt&owner=jaymccarthy
docs

Smalltalk
Dolphin Smalltalk

Get Involved, Write a Driver!

Writing Drivers and Tools

C Language Center

C Driver
Download
Build

Notable Projects

C Driver

http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion.html
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion_20.html
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion_25.html
http://github.com/virtix/cfmongodb/tree/0.9
http://github.com/itiu/mongo-d-driver
http://code.google.com/p/pebongo/
http://bitbucket.org/rumataestor/emongo
http://github.com/wpntv/erlmongo/tree/master
http://github.com/slavapestov/factor/tree/master/extra/mongodb/
http://bitbucket.org/liamstask/fantomongo/wiki/Home
http://gist.github.com/218388
http://github.com/mikejs/gomongo
http://hackage.haskell.org/package/mongoDB
http://code.google.com/p/luamongo/
http://github.com/timburks/NuMongoDB
http://code.google.com/p/phpdaemon/source/browse/trunk/applications/MongoClient.php
http://dougfinke.com/blog/index.php/2009/10/25/how-to-use-mongodb-from-powershell-and-f/
http://api.mongodb.org/python/1.6%2B/tools.html
http://railstips.org/2009/6/27/mongomapper-the-rad-mongo-wrapper
http://github.com/tmm1/rmongo
http://github.com/chuckremes/jmongo
http://github.com/bcg/em-mongo
http://planet.plt-scheme.org/display.ss?package=mongodb.plt&owner=jaymccarthy
http://planet.plt-scheme.org/package-source/jaymccarthy/mongodb.plt/1/4/planet-docs/mongodb/index.html
http://www.squeaksource.com/MongoTalk.html
http://www.arcturus.com.au/dolphin/mongodb.html

The MongoDB C Driver is the 10gen-supported driver for MongoDB. It's written in pure C. The goal is to be super strict for ultimate portability, no
dependencies, and very embeddable anywhere.

Tutorial
C Driver README
Source Code

Download

The C driver is hosted at . Check out the latest version with git.GitHub.com

$ git clone git://github.com/mongodb/mongo-c-driver.git

Build

Building with gcc:

$ gcc --std=c99 -Isrc /path/to/mongo-c-driver/src/*.c YOUR_APP.c

Building with scons:

$ scons # will produce libbson.a and libmongoc.athis
$ scons --c99 # will use c99 mode in gcc (recommended)this
$ scons test # will compile and run the unit tests (optional)this
$ scons test --test-server=123.4.5.67 # use remote server testsfor

Notable Projects

NuMongodb – An Objective-C wrapper around the MongoDB C driver. It is intended for use with Nu but may be useful in other Objective-C
programming applications.

If you're working on a project that you'd like to have included, let us know.

C Tutorial

Writing Client Code
Connecting
BSON
Inserting

Single
Batch

Querying
Simple Queries
Complex Queries

Sorting
Hints
Explain

Indexing
Updating

Further Reading

This document is an introduction to usage of the MongoDB database from a C program.

First, install Mongo -- see the for details.Quickstart

Next, you may wish to take a look at the guide for a language independent look at how to use MongoDB. Also, we suggestDeveloper's Tour
some basic familiarity with the -- the shell is one's primary database administration tool and is useful for manually inspecting the shellmongo
contents of a database after your C program runs.

A working C program complete with examples from this tutorial can be found .here

Writing Client Code

http://github.com/mongodb/mongo-c-driver/blob/master/README
http://github.com/mongodb/mongo-c-driver/tree/master
http://github.com
http://github.com/timburks/NuMongoDB
http://gist.github.com/490830

For brevity, the examples below are simply inline code.

Connecting

Let's make a tutorial.c file that connects to the database:

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include "bson.h"
#include "mongo.h"

 main() {int
 mongo_connection conn[1]; /* ptr */
 mongo_connection_options opts[1];
 mongo_conn_return status;

 strcpy(opts->host ,);"127.0.0.1"
 opts->port = 27017;

 status = mongo_connect(conn, opts);

 (status) {switch
 mongo_conn_success: printf(); ;case "connection succeeded\n" break
 mongo_conn_bad_arg: printf(); 1;case "bad arguments\n" return
 mongo_conn_no_socket: printf(); 1;case "no socket\n" return
 mongo_conn_fail: printf(); 1;case "connection failed\n" return
 mongo_conn_not_master: printf(); 1;case "not master\n" return
 }

 /* CODE WILL GO HERE */

 mongo_destroy(conn);
 printf();"\nconnection closed\n"

 0;return
}

If you are using gcc on Linux or OS X, you would compile with something like this, depending on location of your include files:

$ gcc -Isrc --std=c99 /path/to/mongo-c-driver/src/*.c -I /path/to/mongo-c-driver/src/ tutorial.c -o
tutorial
$./tutorial
connection succeeded
connection closed
$

BSON

The Mongo database stores data in format. BSON is a binary object format that is JSON-like in terms of the data which can be storedBSON
(some extensions exist, for example, a Date datatype).

To save data in the database we must create objects. We use to make objects, and to enumerate bson bson_buffer bson bson_iterator
 objects.bson

Let's now create a BSON "person" object which contains name and age. We might invoke:

bson b[1];
bson_buffer buf[1];

bson_buffer_init(buf)
bson_append_string(buf, ,);"name" "Joe"
bson_append_int(buf, , 33);"age"
bson_from_buffer(b, buf);

Use the helper to add an object id to your object. The server will add an _id automatically if it is not includedbson_append_new_oid()
explicitly.

bson b[1];
bson_buffer buf[1];

bson_buffer_init(buf);
bson_append_new_oid(buf,);"_id"
bson_append_string(buf, ,);"name" "Joe"
bson_append_int(buf, , 33);"age"
bson_from_buffer(b, buf);

bson_buffer_new_oid(..., "_id") should be at the beginning of the generated object.

When you are done using the object remember to use to free up the memory allocated by the buffer.bson_destroy()

bson_destroy(b)

Inserting

Single

We now save our person object in a persons collection in the database:

mongo_insert(conn, , b);"tutorial.persons"

The first parameter to is the pointer to the object. The second parameter is the namespace. is themongo_insert mongo_connection tutorial
database and is the collection name. The third parameter is a pointer to the "person" object that we created before.persons bson

Batch

We can do batch inserts as well:

 void tutorial_insert_batch(mongo_connection *conn) {static
 bson *p, **ps;
 bson_buffer *p_buf;
 *names[4];char
 ages[] = { 29, 24, 24, 32 };int
 i, n = 4;int
 names[0] = ; names[1] = ; names[2] = ; names[3] = ;"Eliot" "Mike" "Mathias" "Richard"

 ps = (bson **)malloc(sizeof(bson *) * n);

 (i = 0; i < n; i++) {for
 p = (bson *)malloc(sizeof(bson));
 p_buf = (bson_buffer *)malloc(sizeof(bson_buffer));
 bson_buffer_init(p_buf);
 bson_append_new_oid(p_buf,);"_id"
 bson_append_string(p_buf, , names[i]);"name"
 bson_append_int(p_buf, , ages[i]);"age"
 bson_from_buffer(p, p_buf);
 ps[i] = p;
 free(p_buf);
 }

 mongo_insert_batch(conn, , ps, n);"tutorial.persons"

 (i = 0; i < n; i++) {for
 bson_destroy(ps[i]);
 free(ps[i]);
 }
}

Querying

Simple Queries

Let's now fetch all objects from the persons collection, and display them.

 void tutorial_empty_query(mongo_connection *conn) {static
 mongo_cursor *cursor;
 bson empty[1];
 bson_empty(empty);

 cursor = mongo_find(conn, , empty, empty, 0, 0, 0);"tutorial.persons"
 (mongo_cursor_next(cursor)) {while
 bson_print(&cursor->current);
 }

 mongo_cursor_destroy(cursor);
 bson_destroy(empty);
}

empty is the empty BSON object -- we use it to represent {} which indicates an empty query pattern (an empty query is a query for all objects).

We use above to print out information about each object retrieved. is a diagnostic function which prints anbson_print() bson_print()
abbreviated JSON string representation of the object.

mongo_find() returns a which must be destroyed after use.mongo_cursor

Let's now write a function which prints out the name (only) of all persons in the collection whose age is a given value:

 void tutorial_simple_query(mongo_connection *conn) { static
 bson query[1];
 bson_buffer query_buf[1];
 mongo_cursor *cursor;

 bson_buffer_init(query_buf);
 bson_append_int(query_buf, , 24);"age"
 bson_from_buffer(query, query_buf);

 cursor = mongo_find(conn, , query, NULL, 0, 0, 0);"tutorial.persons"
 (mongo_cursor_next(cursor)) {while
 bson_iterator it[1];
 (bson_find(it, &cursor->current,)) {if "name"
 printf(, bson_iterator_string(it));"name: %s\n"
 }
 }

 bson_destroy(query);
}

Our query above, written as JSON, is of the form

{ age : <agevalue> }

Queries are BSON objects of a particular format.

In the mongo shell (which uses javascript), we could invoke:

use tutorial;
db.persons.find({ age : 24 });

Complex Queries

Sometimes we want to do more then a simple query. We may want the results to be sorted in a special way, or what the query to use a certain
index.

Sorting

Let's now make the results from previous query be sorted alphabetically by name. To do this, we change the query statement from:

bson_buffer_init(query_buf);
bson_append_int(query_buf, , 24);"age"
bson_from_buffer(query, query_buf);

to:

bson_buffer_init(query_buf);
bson_append_start_object(query_buf,);"$query"
bson_append_int(query_buf, , 24);"age"
bson_append_finish_object(query_buf);
bson_append_start_object(query_buf,);"$orderby"
bson_append_int(query_buf, , 1);"name"
bson_append_finish_object(query_buf);
bson_from_buffer(query, query_buf);

Hints

While the mongo query optimizer often performs very well, explicit "hints" can be used to force mongo to use a specified index, potentially

improving performance in some situations. When you have a collection indexed and are querying on multiple fields (and some of those fields are
indexed), pass the index as a hint to the query:

bson_buffer_init(query_buf);
bson_append_start_object(query_buf,);"$query"
bson_append_int(query_buf, , 24);"age"
bson_append_string(query_buf, ,);"name" "Mathias"
bson_append_finish_object(query_buf);
bson_append_start_object(query_buf,);"$hint"
bson_append_int(query_buf, , 1);"name"
bson_append_finish_object(query_buf);
bson_from_buffer(query, query_buf);

Explain

A great way to get more information on the performance of your database queries is to use the $explain feature. This will return "explain plan"
type info about a query from the database.

bson_buffer_init(query_buf);
bson_append_start_object(query_buf,);"$query"
bson_append_int(query_buf, , 33);"age"
bson_append_finish_object(query_buf);
bson_append_bool(query_buf, , 1);"$explain"
bson_from_buffer(query, query_buf);

Indexing

Let's suppose we want to have an index on age so that our queries are fast. We would use:

 void tutorial_index(mongo_connection * conn) {static
 bson key[1];
 bson_buffer key_buf[1];

 bson_buffer_init(key_buf);
 bson_append_int(key_buf, , 1);"name"
 bson_from_buffer(key, key_buf);

 mongo_create_index(conn, , key, 0, NULL);"tutorial.persons"

 bson_destroy(key);

 printf(name\);"simple index created on \" "\n"

 bson_buffer_init(key_buf);
 bson_append_int(key_buf, , 1);"age"
 bson_append_int(key_buf, , 1);"name"
 bson_from_buffer(key, key_buf);

 mongo_create_index(conn, , key, 0, NULL);"tutorial.persons"

 bson_destroy(key);

 printf(age\ name\);"compound index created on \" ", \" "\n"
}

Updating

Use the method to perform a . For example the following update in the :mongo_update() database update mongo shell

> use tutorial
> db.persons.update({ name : 'Joe', age : 33 },
... { $inc : { visits : 1 } })

is equivalent to running the following C function:

 void tutorial_update(mongo_connection *conn) {static
 bson cond[1], op[1];
 bson_buffer cond_buf[1], op_buf[1];

 bson_buffer_init(cond_buf);
 bson_append_string(cond_buf, ,);"name" "Joe"
 bson_append_int(cond_buf, , 33);"age"
 bson_from_buffer(cond, cond_buf);

 bson_buffer_init(op_buf);
 bson_append_start_object(op_buf,);"$inc"
 bson_append_int(op_buf, , 1);"visits"
 bson_append_finish_object(op_buf);
 bson_from_buffer(op, op_buf);

 mongo_update(conn, , cond, op, 0);"tutorial.persons"

 bson_destroy(cond);
 bson_destroy(op);
}

Further Reading

This overview just touches on the basics of using Mongo from C++. There are many more capabilities. For further exploration:

See the language-independent ;Developer's Tour
Experiment with the ; shellmongo
Consider getting involved to make the product (either C driver, tools, or the database itself) better!

C Sharp Language Center

C# Drivers

mongodb-csharp driver
simple-mongodb driver
NoRM

F#

F# Example

Community Articles

A List of C# MongoDB Tools
Experimenting with MongoDB from C#
Using MongoDB from C#
Introduction to MongoDB for .NET
Using Json.NET and Castle Dynamic Proxy with MongoDB
Implementing a Blog Using ASP.NET MVC and MongoDB
Intro Article using a Post and Comments Example

Tools

MongoDB.Emitter Document Wrapper
log4net appender

Support

http://github.com/samus/mongodb-csharp/tree/master
http://code.google.com/p/simple-mongodb/
http://github.com/atheken/NoRM
http://gist.github.com/218388
http://deserialized.com/the-state-of-mongodb-and-csharp/
http://odetocode.com/Blogs/scott/archive/2009/10/13/experimenting-with-mongodb-from-c.aspx
http://blog.dynamicprogrammer.com/2009/11/10/UsingMongoDBFromC.aspx
http://www.highoncoding.com/Articles/678_Introduction_to_MongoDb_Database.aspx
http://daniel.wertheim.se/2010/02/05/getting-started-with-mongodb-using-json-net-and-castle-dynamic-proxy/
http://highoncoding.com/Articles/686_Implementing_Blog_Using_ASP_NET_MVC_and_MongoDb.aspx
http://www.codeproject.com/KB/database/MongoDBCS.aspx
http://groups.google.com/group/mongodb-user/browse_thread/thread/d85b91a68145bee3
http://github.com/jsk/log4net-MongoDB

http://groups.google.com/group/mongodb-csharp
http://groups.google.com/group/mongodb-user
IRC: #mongodb on freenode

See Also

C++ Language Center

Driver Syntax Table

The wiki generally gives examples in JavaScript, so this chart can be used to convert those examples to any language.

JavaScript Python PHP Ruby

[] [] array() []

{} {} new stdClass {}

{ x : 1 } {"x": 1} array('x' => 1) {'x' => 1}

connect("www.example.net") Connection("www.example.net") new
Mongo("www.example.net")

Mongo.new("www.example.net")

cursor.next() cursor.next() $cursor->getNext() cursor.next_object()

cursor.hasNext() * $cursor->hasNext() *

collection.findOne() collection.find_one() $collection->findOne() collection.find_one()

db.eval() db.eval() $db->execute() db.eval()

* does not exist in that language

Javascript Language Center

MongoDB can be

Used by clients written in Javascript;
Uses Javascript internally server-side for certain options such as map/reduce;
Has a that is based on Javascript for administrative purposes.shell

[node.JS and V8]

See the node.JS page.

SpiderMonkey

The MongoDB shell extends SpiderMonkey. See the .MongoDB shell documentation

Narwhal

http://github.com/sergi/narwhal-mongodb

MongoDB Server-Side Javascript

Javascript may be executed in the MongoDB server processes for various functions such as query enhancement and map/reduce processing.
See Server-side Code Execution.

node.JS

Node.js is used to write event-driven, scalable network programs in server-side JavaScript. It is similar in purpose to Twisted, EventMachine, etc.
It runs on Google's V8.

Web Frameworks

http://groups.google.com/group/mongodb-csharp
http://groups.google.com/group/mongodb-user
http://github.com/sergi/narwhal-mongodb

ExpressJS Mature web framework with MongoDB session support.

3rd Party ORM/ODM

Mongoose - Asynchronous JavaScript Driver with optional support for Modeling.

3rd Party Drivers

node-mongodb - Async Node interface to MongoDB (written in C)
node-mongodb-native - Native async Node interface to MongoDB.
mongo-v8-driver - V8 MongoDB driver (experimental, written in C++).

JVM Languages

moved to Java Language Center

Python Language Center

Redirection Notice
This page should redirect to .http://api.mongodb.org/python

PHP Language Center

Using MongoDB in PHP

To access MongoDB from PHP you will need:

The MongoDB server running - the server is the "mongo " file, not the "mongo" client (note the "d" at the end)d
The MongoDB PHP driver installed

Installing the PHP Driver

*NIX

Run:

sudo pecl install mongo

Open your php.ini file and add to it:

extension=mongo.so

It is recommended to add this to the section with the other "extensions", but it will work from anywhere within the php.ini file.

Restart your web server (Apache, nginx, etc.) for the change to take effect.

See for configuration information and OS-specific installation instructions.the installation docs

Windows

Download the correct driver for your environment from http://github.com/mongodb/mongo-php-driver/downloads
VC6 is for Apache (VC9 is for IIS)
Thread safe is for running PHP as an Apache module (typical installation), non-thread safe is for CGI

Unzip and add the php_mongo.dll file to your PHP extensions directory (usually the "ext" folder in your PHP installation.)
Add to your php.ini:

extension=php_mongo.dll

http://expressjs.com
http://www.learnboost.com/mongoose/
http://github.com/orlandov/node-mongodb
http://github.com/christkv/node-mongodb-native
http://github.com/erh/mongo-v8-driver/tree/master
http://api.mongodb.org/python
http://www.php.net/manual/en/mongo.installation.php
http://github.com/mongodb/mongo-php-driver/downloads

Restart your web server (Apache, IIS, etc.) for the change to take effect

For more information, see the Windows section of the .installation docs

Using the PHP Driver

To get started, see the . Also check out the .Tutorial API Documentation

See Also

PHP Libraries, Frameworks, and Tools for working with Drupal, Cake, Symfony, and more from MongoDB.
Admin UIs

Installing the PHP Driver

Redirection Notice
This page should redirect to .http://www.php.net/manual/en/mongo.installation.php

PHP Libraries, Frameworks, and Tools

The PHP community has created a huge number of libraries to make working with MongoDB easier and integrate it with existing frameworks.

CakePHP

MongoDB for CakePHP. There's also an on using it with Mongo.datasource introductory blog post

Codeigniter

MongoDB-Codeigniter-Driver

Doctrine

ODM (Object Document Mapper) is an experimental Doctrine MongoDB object mapper. The Doctrine\ODM\Mongo namespace is an experimental
project for a PHP 5.3 MongoDB Object Mapper. It allows you to easily write PHP 5 classes and map them to collections in MongoDB. You just
work with your objects like normal and Doctrine will transparently persist them to Mongo.

This project implements the same "style" of the Doctrine 2 ORM project interface so it will look very familiar to you and it has lots of the same
features and implementations.

Documentation - API, Reference, and Cookbook
Official blog post
Screencast
Blog post on using it with Symfony
Bug tracker

Drupal

MongoDB Integration - Views (query builder) backend, a watchdog implementation (logging), and field storage.

Fat-Free Framework

Fat-Free is a powerful yet lightweight PHP 5.3+ Web development framework designed to help you build dynamic and robust applications - fast!

Kohana Framework

Mango at github
An ActiveRecord-like library for PHP, for the .Kohana PHP Framework
See also further down.PHP Language Center#MongoDb PHP ODM

Lithium

Lithium supports Mongo out-of-the-box.

Tutorial on creating a blog backend.

http://us3.php.net/manual/en/mongo.installation.php
http://www.php.net/manual/en/mongo.tutorial.php
http://us2.php.net/mongo
http://www.php.net/manual/en/mongo.installation.php
http://github.com/ichikaway/mongoDB-Datasource/downloads
http://mark-story.com/posts/view/using-mongodb-with-cakephp
http://github.com/kyledye/MongoDB-CodeIgniter-Driver
http://www.doctrine-project.org/projects/mongodb_odm
http://www.doctrine-project.org/projects/mongodb_odm/1.0/docs/en
http://www.doctrine-project.org/blog/doctrine-mongodb-object-document-mapper
http://www.screencast.com/users/jwage/folders/Default/media/d01858d5-f9f4-43e3-a3e1-669729a85fcc
http://blog.servergrove.com/2010/04/28/mongodb-with-php-and-symfony/
http://www.doctrine-project.org/jira/browse/MODM
http://drupal.org/project/mongodb
http://fatfree.sourceforge.net/
http://github.com/Wouterrr/mangodb
http://www.kohanaphp.com/
http://rad-dev.org/lithium/wiki/drafts/blog-tutorial

Log4php

A log4php appender for MongoDB

Memcached

MongoNode
PHP script that replicates MongoDB objects to Memcached.

Symfony 2

Symfony 2 Logger
A centralized logger for Symfony applications. See .the blog post

sfMongoSessionStorage - manages session storage via MongoDB with symfony.

sfStoragePerformancePlugin - This plugin contains some extra storage engines (MongoDB and Memcached) that are currently missing
from the Symfony (>= 1.2) core.

Vork

, the high-performance enterprise framework for PHP natively supports MongoDB as either a primary datasource orVork
used in conjunction with an RDBMS. Designed for scalability & Green-IT, Vork serves more traffic with fewer servers and
can be configured to operate without any disk-IO.

Vork provides a full MVC stack that outputs semantically-correct XHTML 1.1, complies with Section 508 Accessibility
guidelines & Zend-Framework coding-standards, has SEO-friendly URLs, employs CSS-reset for cross-browser display
consistency and is written in well-documented object-oriented E_STRICT PHP5 code.

An extensive set of tools are built into Vork for ecommerce (cc-processing, SSL, PayPal, AdSense, shipment tracking,
QR-codes), Google Maps, translation & internationalization, Wiki, Amazon Web Services, Social-Networking (Twitter,

Meetup, ShareThis, YouTube, Flickr) and much more.

Zend Framework

Shanty Mongo is a prototype mongodb adapter for the Zend Framework. It's intention is to make working with mongodb documents as
natural and as simple as possible. In particular allowing embeded documents to also have custom document classes.

ZF Cache Backend
A ZF Cache Backend for MongoDB. It support tags and auto-cleaning.

There is a .Zend_Nosql_Mongo component proposal

Stand-Alone Tools

ActiveMongo

ActiveMongo is a really simple ActiveRecord for MongoDB in PHP.

There's a nice introduction to get you started at .http://crodas.org/activemongo.php

MapReduce API

A MapReduce abstraction layer. See the .blog post

MongoDB-MapReduce-PHP at github

MongoDb PHP ODM

MongoDb PHP ODM is a simple object wrapper for the Mongo PHP driver classes which makes using Mongo in your PHP application more like
ORM, but without the suck. It is designed for use with Kohana 3 but will also integrate easily with any PHP application with almost no additional
effort.

Mongodloid

A nice library on top of the PHP driver that allows you to make more natural queries ($query->query('a == 13 AND b >= 8 && c % 3 ==
), abstracts away annoying $-syntax, and provides getters and setters.4');

Project Page
Downloads
Documentation

http://github.com/char0n/log4php-MongoDB
http://code.google.com/p/phpdaemon/source/browse/trunk/applications/MongoNode.php
http://code.google.com/p/mongodbloganalyzer/
http://obvioushints.blogspot.com/2009/07/my-guess-on-symfony-2.html
http://github.com/brtriver/sfMongoSessionStorage
http://www.symfony-project.org/plugins/sfStoragePerformancePlugin
http://www.vork.us/
http://github.com/coen-hyde/Shanty-Mongo
http://github.com/stunti/Stunti_Cache_Backend_Mongo
http://framework.zend.com/wiki/display/ZFPROP/Zend_Nosql_Mongo+-+Valentin+Golev
http://github.com/crodas/ActiveMongo
http://crodas.org/activemongo.php
http://prajwal-tuladhar.net.np/2009/11/15/496/mapreduce-api-for-mongodb/
http://github.com/infynyxx/MongoDB-MapReduce-PHP
http://github.com/colinmollenhour/mongodb-php-odm
http://code.google.com/p/mongodloid/
http://code.google.com/p/mongodloid/downloads/list
http://code.google.com/p/mongodloid/wiki/Using

Morph

A high level PHP library for MongoDB. Morph comprises a suite of objects and object primitives that are designed to make working with MongoDB
in PHP a breeze.

Morph at code.google.com

simplemongophp

Very simple layer for using data objects see blog post

simplemongophp at github

Uniform Server 6-Carbo with MongoDB and phpMoAdmin

The Uniform Server is a lightweight WAMP server solution for running a web server under Windows without having anything to install; just unpack
and run it. Uniform Server 6-Carbo includes the latest versions of Apache2, Perl5, PHP5, MySQL5 and phpMyAdmin. The Uniform Server
MongoDB plugin adds the MongoDB server, phpMoAdmin browser administration interface, the MongoDB PHP driver and a Windows interface to
start and stop both Apache and MongoDB servers. From this interface you can also start either the Mongo-client or phpMoAdmin to administer
MongoDB databases.

Uniform Server 6-Carbo and MongoDB plugin at SourceForge
Uniform Server web site

PHP - Storing Files and Big Data

Redirection Notice
This page should redirect to .http://www.php.net/manual/en/class.mongogridfs.php

Troubleshooting the PHP Driver

Redirection Notice
This page should redirect to .http://www.php.net/manual/en/mongo.trouble.php

Ruby Language Center

This is an overview of the available tools and suggested practices for using Ruby with MongoDB. Those wishing to skip to more detailed
discussion should check out the , or , and . There areRuby Driver Tutorial Getting started with Rails Rails 3 MongoDB Data Modeling and Rails
also a number of good worth checking out.external resources

Ruby Driver
Installing / Upgrading
BSON

Object Mappers
Notable Projects

Ruby Driver

Install the C extension for any performance-critical applications.

The MongoDB Ruby driver is the 10gen-supported driver for MongoDB. It's written in pure Ruby, with a recommended C extension for speed.
The driver is optimized for simplicity. It can be used on its own, but it also serves as the basis for .various object-mapping libraries

Tutorial
Ruby Driver README
API Documentation
Source Code

Installing / Upgrading

http://code.google.com/p/mongodb-morph/
http://groups.google.com/group/mongodb-user/browse_thread/thread/fd51ef5eeece2238?hl=en#
http://github.com/ibwhite/simplemongophp/tree/master
http://sourceforge.net/projects/miniserver/files/Uniform%20Server/6.0.0-Carbo/
http://www.uniformserver.com
http://www.php.net/manual/en/class.mongogridfs.php
http://www.php.net/manual/en/mongo.trouble.php
http://github.com/mongodb/mongo-ruby-driver/blob/master/README.rdoc
http://api.mongodb.org/ruby/current/index.html
http://github.com/mongodb/mongo-ruby-driver/tree/master

The ruby driver is hosted at . Before installing the driver, make sure you're using the latest version of rubygems (currently 1.3.6):Rubygems.org

$ gem update --system

Then install the gems:

$ gem install mongo

To stay on the bleeding edge, check out the latest source from github:

$ git clone git://github.com/mongodb/mongo-ruby-driver.git
$ cd mongo-ruby-driver/

Then, install the driver from there:

$ rake gem:install

BSON

In versions of the Ruby driver prior to 0.20, the code for serializing to BSON existed in the mongo gem. Now, all BSON serialization is handled by
the required bson gem.

gem install bson

For significantly improved performance, install the bson extensions gem:

gem install bson_ext

If you're running on Windows, you'll need the installed in order to compile the C extensions.Ruby DevKit

As long it's in Ruby's load path, will be loaded automatically when you require .bson_ext bson

Note that beginning with version 0.20, the mongo_ext gem is no longer used.

To learn more about the Ruby driver, see the .Ruby Tutorial

Object Mappers

If you need validations, associations, and other high-level data modeling functions, consider using one of the . Many ofavailable object mappers
these exist in the Ruby ecosystem; here we host a .list of the most popular ones

Notable Projects

Tools for working with MongoDB in Ruby are being developed daily. A partial list can eb found in the section of our Projects and Libraries external
.resources page

If you're working on a project that you'd like to have included, let us know.

Ruby Tutorial

This tutorial gives many common examples of using MongoDB with the Ruby driver. If you're looking for information on data modeling, see
. Links to the various object mappers are listed on our .MongoDB Data Modeling and Rails object mappers page

Interested in GridFS? Checkout .GridFS in Ruby

As always, the can be found on .latest source for the Ruby driver github

Installation

http://rubygems.org
http://github.com/oneclick/rubyinstaller/wiki/development-kit
http://www.mongodb.org/display/DOCS/Ruby+External+Resources#RubyExternalResources-Projects
http://github.com/mongodb/mongo-ruby-driver
http://github.com/mongodb/mongo-ruby-driver/

A Quick Tour
Using the RubyGem
Making a Connection
Listing All Databases
Dropping a Database
Authentication (Optional)
Getting a List Of Collections
Getting a Collection
Inserting a Document
Finding the First Document In a Collection using find_one()
Adding Multiple Documents
Counting Documents in a Collection
Using a Cursor to get all of the Documents
Getting a Single Document with a Query
Getting a Set of Documents With a Query
Querying with Regular Expressions
Creating An Index
Creating and querying on a geospatial index
Getting a List of Indexes on a Collection
Database Administration

See Also

Installation

The mongo-ruby-driver gem is served through Rubygems.org. To install, make sure you have the latest version of rubygems.

gem update --system

Next, install the mongo rubygem:

gem install mongo

The required gem will be installed automatically.bson

For optimum performance, install the bson_ext gem:

 gem install bson_ext

After installing, you may want to look at the directory included in the source distribution. These examples walk through some of theexamples
basics of using the Ruby driver.

The full API documentation can be viewed .here

A Quick Tour

Using the RubyGem

All of the code here assumes that you have already executed the following Ruby code:

require 'rubygems' # not necessary Ruby 1.9for
require 'mongo'

Making a Connection

An Mongo::Connection instance represents a connection to MongoDB. You use a Connection instance to obtain an Mongo:DB instance, which
represents a named database. The database doesn't have to exist - if it doesn't, MongoDB will create it for you.

You can optionally specify the MongoDB server address and port when connecting. The following example shows three ways to connect to the
database "mydb" on the local machine:

db = Mongo::Connection. .db()new "mydb"
db = Mongo::Connection. ().db()new "localhost" "mydb"
db = Mongo::Connection. (, 27017).db()new "localhost" "mydb"

http://github.com/mongodb/mongo-ruby-driver/tree/master/examples
http://api.mongodb.org/ruby/index.html

At this point, the object will be a connection to a MongoDB server for the specified database. Each DB instance uses a separate socketdb
connection to the server.

If you're trying to connect to a replica set, see .Replica Sets in Ruby

Listing All Databases

connection = Mongo::Connection. # (optional host/port args)new
connection.database_names.each { |name| puts name }
connection.database_info.each { |info| puts info.inspect}

Dropping a Database

connection.drop_database('database_name')

Authentication (Optional)

MongoDB can be run in a secure mode where access to databases is controlled through name and password authentication. When run in this
mode, any client application must provide a name and password before doing any operations. In the Ruby driver, you simply do the following with
the connected mongo object:

auth = db.authenticate(my_user_name, my_password)

If the name and password are valid for the database, will be . Otherwise, it will be . You should look at the MongoDB log forauth true false
further information if available.

Getting a List Of Collections

Each database has zero or more collections. You can retrieve a list of them from the db (and print out any that are there):

db.collection_names.each { |name| puts name }

and assuming that there are two collections, name and address, in the database, you would see

name
address

as the output.

Getting a Collection

You can get a collection to use using the method:collection

coll = db.collection()"testCollection"

This is aliased to the [] method:

coll = db[]"testCollection"

Once you have this collection object, you can now do things like insert data, query for data, etc.

Inserting a Document

Once you have the collection object, you can insert documents into the collection. For example, lets make a little document that in JSON would be
represented as

{
 : ,"name" "MongoDB"
 : ,"type" "database"
 : 1,"count"
 : {"info"
 x : 203,
 y : 102
 }
}

Notice that the above has an "inner" document embedded within it. To do this, we can use a Hash or the driver's OrderedHash (which preserves
key order) to create the document (including the inner document), and then just simply insert it into the collection using the method.insert()

doc = { => , => , => 1,"name" "MongoDB" "type" "database" "count"
 => { => 203, => '102'}}"info" "x" "y"
coll.insert(doc)

Finding the First Document In a Collection using find_one()

To show that the document we inserted in the previous step is there, we can do a simple operation to get the first document in thefind_one()
collection. This method returns a single document (rather than the that the operation returns).Cursor find()

my_doc = coll.find_one()
puts my_doc.inspect

and you should see:

{ =>#<BSON::ObjectID:0x118576c ...>, => , =>{ =>203, =>102}, =>"_id" "name" "MongoDB" "info" "x" "y" "type"
, =>1}"database" "count"

Note the element has been added automatically by MongoDB to your document._id

Adding Multiple Documents

To demonstrate some more interesting queries, let's add multiple simple documents to the collection. These documents will have the following
form:

{
 : value"i"
}

Here's how to insert them:

100.times { |i| coll.insert(=> i) }"i"

Notice that we can insert documents of different "shapes" into the same collection. These records are in the same collection as the complex
record we inserted above. This aspect is what we mean when we say that MongoDB is "schema-free".

Counting Documents in a Collection

Now that we've inserted 101 documents (the 100 we did in the loop, plus the first one), we can check to see if we have them all using the
 method.count()

puts coll.count()

and it should print .101

Using a Cursor to get all of the Documents

To get all the documents from the collection, we use the method. returns a object, which allows us to iterate over thefind() find() Cursor
set of documents that matches our query. The Ruby driver's Cursor implemented Enumerable, which allows us to use ,Enumerable#each
{{Enumerable#map}, etc. For instance:

coll.find().each { |row| puts row.inspect }

and that should print all 101 documents in the collection.

Getting a Single Document with a Query

We can create a hash to pass to the method to get a subset of the documents in our collection. For example, if we wanted to findquery find()
the document for which the value of the "i" field is 71, we would do the following ;

coll.find(=> 71).each { |row| puts row.inspect }"i"

and it should just print just one document:

{ =>#<BSON::ObjectID:0x117de90 ...>, =>71}"_id" "i"

Getting a Set of Documents With a Query

We can use the query to get a set of documents from our collection. For example, if we wanted to get all documents where "i" > 50, we could
write:

coll.find(=> { => 50}).each { |row| puts row }"i" "$gt"

which should print the documents where i > 50. We could also get a range, say 20 < i <= 30:

coll.find(=> { => 20, => 30}).each { |row| puts row }"i" "$gt" "$lte"

Querying with Regular Expressions

Regular expressions can be used to query MongoDB. To find all names that begin with 'a':

coll.find({ => /^a/})"name"

You can also construct a regular expression dynamically. To match a given search string:

 search_string = params['search']

 # Constructor syntax
 coll.find({ => Regexp. (search_string)})"name" new

 # Literal syntax
 coll.find({ => /#{search_string}/})"name"

Although MongoDB isn't vulnerable to anything like SQL-injection, it may be worth checking the search string for anything malicious.

Creating An Index

MongoDB supports indexes, and they are very easy to add on a collection. To create an index, you specify an index name and an array of field
names to be indexed, or a single field name. The following creates an ascending index on the "i" field:

create_index assumes ascending order; see method docs
detailsfor
coll.create_index()"i"

To specify complex indexes or a descending index you need to use a slightly more complex syntax - the index specifier must be an Array of [field
 pairs. Directions should be specified as Mongo::ASCENDING or Mongo::DESCENDING:name, direction]

explicit "ascending"
coll.create_index([[, Mongo::ASCENDING]])"i"

Creating and querying on a geospatial index

First, create the index on a field containing long-lat values:

 people.create_index([[, Mongo::GEO2D]])"loc"

Then get a list of the twenty locations nearest to the point 50, 50:

people.find({ => { => [50, 50]}}, {:limit => 20}).each |p| "loc" "$near" do
 puts p.inspect
end

Getting a List of Indexes on a Collection

You can get a list of the indexes on a collection using .coll.index_information()

Database Administration

A database can have one of three profiling levels: off (:off), slow queries only (:slow_only), or all (:all). To see the database level:

puts db.profiling_level # => off (the symbol :off printed as a string)
db.profiling_level = :slow_only

Validating a collection will return an interesting hash if all is well or raise an exception if there is a problem.

p db.validate_collection('coll_name')

See Also

Ruby Driver Official Docs
MongoDB Koans A path to MongoDB enlightenment via the Ruby driver.
MongoDB Manual

Replica Pairs in Ruby

Replica Sets will replace replica pairs in MongoDB 1.6. If you are just now setting up an instance, you may want to wait for that
and use master/slave replication in the meantime.

Here follow a few considerations for those using the with MongoDB and replica pairing.Ruby driver

Setup
Connection Failures
Recovery
Testing
Further Reading

Setup

First, make sure that you've correctly paired two instances. If you want to do this on the same machine for testing, make sure you'vemongod
created two data directories. The init commands are as follows:

http://api.mongodb.org/ruby/index.html
http://github.com/chicagoruby/MongoDB_Koans

./mongod --pairwith localhost:27018 --dbpath /data/left --port 27017

./mongod --pairwith localhost:27017 --dbpath /data/right --port 27018

When you instantiate a Ruby connection, you'll have to make sure that the driver knows about both instances:

@connection = Connection.paired([['localhost', 27017], ['localhost', 27018]])

Connection Failures

Imagine that our master node goes offline. How will the driver respond?

At first, the driver will try to send operations to what was the master node. These operations will fail, and the driver will raise a ConnectionFailure
exception. It then becomes the client's responsibility to decide how to handle this.

If the client decides to retry, it's not guaranteed that the former slave will have been promoted to master yet, so it's still possible that the driver will
raise another . However, once the former slave has become master, typically within a few seconds, subsequent operationsConnectionFailure
will succeed.

Recovery

Driver users may wish to wrap their database calls with failure recovery code. Here's one possibility:

Ensure retry upon failure
def rescue_connection_failure(max_retries=5)
 success = false
 retries = 0
 !successwhile
 begin
 yield
 success = true
 rescue Mongo::ConnectionFailure => ex
 retries += 1
 raise ex retries >= max_retriesif
 sleep(1)
 end
 end
 end
end

Wrapping a call to #count()
rescue_connection_failure do
 @db.collection('users').count()
end

Of course, the proper way to handle connection failures will always depend on the individual application. We encourage object-mapper and
application developers to publish any promising results.

Testing

The Ruby driver (>= 0.17.2) includes some unit tests for verifying proper replica pair behavior. They reside in . You can run themtests/replica
individually with the following rake tasks:

rake test:pair_count
rake test:pair_insert
rake test:pair_query

Make sure you have a replica pair running locally before trying to run these tests.

Further Reading

Replica Pairs
Pairing Internals

Replica Sets in Ruby

Here follow a few considerations for those using the with MongoDB and .Ruby driver replica sets

Setup
Connection Failures
Recovery
Testing
Further Reading

Setup

First, make sure that you've configured and initialized a replica set.

Connecting to a replica set from the Ruby driver is easy. If you only want to specify a single node, simply pass that node to :Connection.new

 @connection = Connection. ('foo.local', 27017)new

If you want to pass in multiple seed nodes, use :Connection.multi

 @connection = Connection.multi([['n1.mydb.net', 27017],
 ['n2.mydb.net', 27017], ['n3.mydb.net', 27017]])

In both cases, the driver will attempt to connect to a master node and, when found, will merge any other known members of the replica set into
the seed list.

Connection Failures

Imagine that our master node goes offline. How will the driver respond?

At first, the driver will try to send operations to what was the master node. These operations will fail, and the driver will raise a ConnectionFailure
exception. It then becomes the client's responsibility to decide how to handle this.

If the client decides to retry, it's not guaranteed that another member of the replica set will have been promoted to master right away, so it's still
possible that the driver will raise another . However, once a member has been promoted to master, typically within a fewConnectionFailure
seconds, subsequent operations will succeed.

The driver will essentially cycle through all known seed addresses until a node identifies itself as master.

Recovery

Driver users may wish to wrap their database calls with failure recovery code. Here's one possibility:

Ensure retry upon failure
def rescue_connection_failure(max_retries=5)
 success = false
 retries = 0
 !successwhile
 begin
 yield
 success = true
 rescue Mongo::ConnectionFailure => ex
 retries += 1
 raise ex retries >= max_retriesif
 sleep(1)
 end
 end
 end
end

Wrapping a call to #count()
rescue_connection_failure do
 @db.collection('users').count()
end

Of course, the proper way to handle connection failures will always depend on the individual application. We encourage object-mapper and
application developers to publish any promising results.

Testing

The Ruby driver (>= 1.0.6) includes some unit tests for verifying replica set behavior. They reside in . You can run themtests/replica_sets
individually with the following rake tasks:

rake test:replica_set_count
rake test:replica_set_insert
rake test:pooled_replica_set_insert
rake test:replica_set_query

Make sure you have a replica set running on localhost before trying to run these tests.

Further Reading

Replica Sets
[Replics Set Configuration]

GridFS in Ruby

GridFS, which stands for "Grid File Store," is a specification for storing large files in MongoDB. It works by dividing a file into manageable chunks
and storing each of those chunks as a separate document. GridFS requires two collections to achieve this: one collection stores each file's
metadata (e.g., name, size, etc.) and another stores the chunks themselves. If you're interested in more details, check out the GridFS

.Specification

Prior to version 0.19, the MongoDB Ruby driver implemented GridFS using the GridFS::GridStore class. This class has been deprecated in favor
of two new classes: Grid and GridFileSystem. These classes have a much simpler interface, and the rewrite has resulted in a significant speed
improvement. . 0.19 is thus a worthwhile upgrade.Reads are over twice as fast, and write speed has been increased fourfold

The Grid class
Saving files
File metadata
Safe mode
Deleting files

The GridFileSystem class
Saving files
Deleting files
Metadata and safe mode

Advanced Users

The Grid class

The represents the core GridFS implementation. Grid gives you a simple file store, keyed on a unique ID. This means that duplicateGrid class
filenames aren't a problem. To use the Grid class, first make sure you have a database, and then instantiate a Grid:

 @db = Mongo::Connection. .db('social_site')new

 @grid = Grid. (@db)new

Saving files

Once you have a Grid object, you can start saving data to it. The data can be either a string or an IO-like object that responds to a #read method:

 # Saving string data
 id = @grid.put()"here's some string / binary data"

 # Saving IO data and including the optional filename
 image = File.open()"me.jpg"
 id2 = @grid.put(image, :filename =>)"me.jpg"

Grid#put returns an object id, which you can use to retrieve the file:

http://api.mongodb.org/ruby/current/Mongo/Grid.html

 # Get the string we saved
 file = @grid.get(id)

 # Get the file we saved
 image = @grid.get(id2)

File metadata

There are accessors for the various file attributes:

 image.filename
=> "me.jpg"

 image.content_type
=> "image/jpg"

 image.file_length
=> 502357

 image.upload_date
=> Mon Mar 01 16:18:30 UTC 2010

 # Read all the image's data at once
 image.read

 # Read the first 100k bytes of the image
 image.read(100 * 1024)

When putting a file, you can set many of these attributes and write arbitrary metadata:

Saving IO data
 file = File.open()"me.jpg"
 id2 = @grid.put(file,
 :filename => "my-avatar.jpg"
 :content_type => , "application/jpg"
 :_id => 'a-unique-id-to-use-in-lieu-of-a-random-one',
 :chunk_size => 100 * 1024,
 :metadata => {'description' => })"taken after a game of ultimate"

Safe mode

A kind of safe mode is built into the GridFS specification. When you save a file, and MD5 hash is created on the server. If you save the file in safe
mode, an MD5 will be created on the client for comparison with the server version. If the two hashes don't match, an exception will be raised.

 image = File.open()"me.jpg"
 id2 = @grid.put(image, , :safe =>) "my-avatar.jpg" true

Deleting files

Deleting a file is as simple as providing the id:

 @grid.delete(id2)

The GridFileSystem class

GridFileSystem is a light emulation of a file system and therefore has a couple of unique properties. The first is that filenames are assumed to be

http://api.mongodb.org/ruby/current/Mongo/GridFileSystem.html

unique. The second, a consequence of the first, is that files are versioned. To see what this means, let's create a GridFileSystem instance:

Saving files

 @db = Mongo::Connection. .db()new "social_site"

 @fs = GridFileSystem. (@db)new

Now suppose we want to save the file 'me.jpg.' This is easily done using a filesystem-like API:

 image = File.open()"me.jpg"
 @fs.open(,) |f|"me.jpg" "w" do
 f.write image
 end

We can then retrieve the file by filename:

 image = @fs.open(,) {|f| f.read }"me.jpg" "r"

No problems there. But what if we need to replace the file? That too is straightforward:

 image = File.open()"me-dancing.jpg"
 @fs.open(,) |f|"me.jpg" "w" do
 f.write image
 end

But a couple things need to be kept in mind. First is that the original 'me.jpg' will be available until the new 'me.jpg' saves. From then on, calls to
the #open method will always return the most recently saved version of a file. But, and this the second point, old versions of the file won't be
deleted. So if you're going to be rewriting files often, you could end up with a lot of old versions piling up. One solution to this is to use the
:delete_old options when writing a file:

 image = File.open()"me-dancing.jpg"
 @fs.open(, , :delete_old =>) |f|"me.jpg" "w" true do
 f.write image
 end

This will delete all but the latest version of the file.

Deleting files

When you delete a file by name, you delete all versions of that file:

 @fs.delete()"me.jpg"

Metadata and safe mode

All of the options for storing metadata and saving in safe mode are available for the GridFileSystem class:

 image = File.open()"me.jpg"
 @fs.open('my-avatar.jpg', w,
 :content_type => , "application/jpg"
 :metadata => {'description' => },"taken on 3/1/2010 after a game of ultimate"
 :_id => 'a-unique-id-to-use-instead-of-the-automatically-generated-one',
 :safe =>) { |f| f.write image }true

Advanced Users

Astute code readers will notice that the Grid and GridFileSystem classes are merely thin wrappers around an underlying . This meansGridIO class
that it's easy to customize the GridFS implementation presented here; just use GridIO for all the low-level work, and build the API you need in an
external manager class similar to Grid or GridFileSystem.

Rails - Getting Started

Using Rails 3? See Rails 3 - Getting Started

This tutorial describes how to set up a simple Rails application with MongoDB, using MongoMapper as an object mapper. We assume you're
using Rails versions prior to 3.0.

Configuration
Testing
Coding

Using a Rails Template
All of the configuration steps listed below, and more, are encapsulated in (), based on this Rails template raw version a similar one by Ben Scofield
. You can create your project with the template as follows:

rails project_name -m "http://gist.github.com/219223.txt"

Be sure to replace with the name of your project.project_name

If you want to set up your project manually, read on.

Configuration

1. We need to tell MongoMapper which database we'll be using. Save the following to :config/initializers/database.rb

MongoMapper.database = "db_name-#{Rails.env}"

Replace with whatever name you want to give the database. The variable will ensure that a different database is used fordb_name Rails.env
each environment.

2. If you're using Passenger, add this code to .config/initializers/database.rb

if defined?(PhusionPassenger)
 PhusionPassenger.on_event(:starting_worker_process) |forked|do
 MongoMapper.connection.connect_to_master forkedif
 end
end

3. Clean out . This file should be blank, as we're not connecting to the database in the traditional way.config/database.yml

4. Remove ActiveRecord from environment.rb.

config.frameworks -= [:active_record]

5. Add MongoMapper to the environment. This can be done by opening and adding the line:config/environment.rb

http://api.mongodb.org/ruby/current/Mongo/GridIO.html
http://gist.github.com/219223
http://gist.github.com/219223.txt
http://gist.github.com/181842

config.gem 'mongo_mapper'

Once you've done this, you can install the gem in the project by running:

rake gems:install
rake gems:unpack

Testing

It's important to keep in mind that with MongoDB, we cannot wrap test cases in transactions. One possible work-around is to invoke a teardown
method after each test case to clear out the database.

To automate this, I've found it effective to modify with the code below.ActiveSupport::TestCase

Drop all columns after each test .case
def teardown
 MongoMapper.database.collections.each |coll|do
 coll.remove
 end
end

Make sure that each test has a teardowncase
method to clear the db after each test.
def inherited(base)
 base.define_method teardown do
 super
 end
end

This way, all test classes will automatically invoke the teardown method. In the example above, the teardown method clears each collection. We
might also choose to drop each collection or drop the database as a whole, but this would be considerably more expensive and is only necessary
if our tests manipulate indexes.

Usually, this code is added in . See for specifics.test/test_helper.rb the aforementioned rails template

Coding

If you've followed the foregoing steps (or if you've created your Rails with the provided template), then you're ready to start coding. For help on
that, you can read about .modeling your domain in Rails

Rails 3 - Getting Started

It's not difficult to use MongoDB with Rails 3. Most of it comes down to making sure that you're not loading ActiveRecord and understanding how
to use , the new Ruby dependency manager.Bundler

Install the Rails 3
Configure your application
Bundle and Initialize

Bundling
Initializing

Running Tests
ActiveModel Compatibility
Conclusion
See also

Install the Rails 3

If you haven't done so already, install Rails 3.

Use sudo your setup requires itif
gem install rails

http://gist.github.com/219223
http://github.com/carlhuda/bundler/blob/master/README.markdown

Configure your application

The important thing here is to avoid loading ActiveRecord. One way to do this is with the switch. So you'd create your--skip-activerecord
app skeleton like so:

rails my_app --skip-activerecord

Alternatively, if you've already created your app (or just want to know what this actually does), have a look at andconfig/application.rb
change the first lines from this:

require "rails/all"

to this:

require "action_controller/railtie"
require "action_mailer/railtie"
require "active_resource/railtie"
require "rails/test_unit/railtie"

It's also important to make sure that the reference to active_record in the generator block is commented out:

Configure generators values. Many other options are available, be sure to check the documentation.
config.generators |g|do
g.orm :active_record
g.template_engine :erb
g.test_framework :test_unit, :fixture => true
end

As of this this writing, it's commented out by default, so you probably won't have to change anything here.

Bundle and Initialize

The final step involves bundling any gems you'll need and then creating an initializer for connecting to the database.

Bundling

Edit , located in the Rails root directory. By default, our will only load Rails:Gemfile Gemfile

gem , "rails" "3.0.0"

Normally, using MongoDB will simply mean adding whichever you want to work with, as these will require the "mongo" gem byOM framework
default.

Edit Gemfile to bundle your application's dependencies.this

source 'http://gemcutter.org'

gem , "rails" "3.0.0"
gem "mongo_mapper"

However, there's currently an issue with loading bson_ext, as the current gemspec isn't compatible with the way Bundler works. We'll be fixing
that soon; just pay attention to .this issue

In the meantime, you can use the following work-around:

http://jira.mongodb.org/browse/RUBY-95

Edit Gemfile to bundle your application's dependencies.this

require 'rubygems'
require 'mongo'
source 'http://gemcutter.org'

gem , "rails" "3.0.0"
gem "mongo_mapper"

Requiring and before running the command will ensure that is loaded. If you'd rather not load , justrubygems mongo gem bson_ext rubygems
make sure that both and are in your load path when you require .mongo bson_ext mongo

Once you've configured your , run the bundle installer:Gemfile

bundle install

Initializing

Last item is to create an initializer to connect to MongoDB. Create a Ruby file in . You can give it any name you want;config/initializers
here we'll call it :config/initializers/mongo.rb

MongoMapper.connection = Mongo::Connection. ('localhost', 27017)new
MongoMapper.database = "#myapp-#{Rails.env}"

 defined?(PhusionPassenger)if
 PhusionPassenger.on_event(:starting_worker_process) |forked|do
 MongoMapper.connection.connect_to_master forkedif
 end
end

Running Tests

A slight modification is required to get working (thanks to John P. Wood). Create a file containing therake test lib/tasks/mongo.rake
following:

namespace :db do
 namespace :test do
 task :prepare do
 # Stub out MongoDBfor
 end
 end
end

Now the various tasks will run properly. See for more details.rake test John's post

ActiveModel Compatibility

ActiveModel is a series of interfaces designed to make any object-mapping library compatible with the various helper methods across the Rails
stack. To see the status of ActiveModel integration on the various object mappers, see our .object mappers page

Briefly, Mongoid supports ActiveModel via a prerelease branch. MongoMapper will be adding support in the near future. In the meantime, use the
.MongoMapper Rails 3 Branch

Conclusion

That should be all. You can now start creating models based on whichever OM you've installed.

Note that this document is a work in progress. If you have any helpful comments, please add them below.

http://johnpwood.net/2010/04/13/getting-rake-test-running-with-rails-3-and-mongodb/
http://github.com/merbjedi/mongomapper

See also

Rails 3 App skeleton with MongoMapper
Rails 3 App skeleton with Mongoid and Devise
Rails 3 Release Notes

MongoDB Data Modeling and Rails

This tutorial discusses the development of a web application on Rails and MongoDB. MongoMapper will serve as our object mapper. The goal is
to provide some insight into the design choices required for building on MongoDB. To that end, we'll be constructing a simple but non-trivial social
news application. The is available on github for those wishing to dive right in.source code for newsmonger

Modeling Stories
Caching to Avoid N+1
A Note on Denormalization
Fields as arrays
Atomic Updates

Modeling Comments
Linear, Embedded Comments
Nested, Embedded Comments
Comment collections

Unfinished business

Assuming you've configured your application to work with MongoMapper, let's start thinking about the data model.

Modeling Stories

A news application relies on stories at its core, so we'll start with a Story model:

class Story
 include MongoMapper::Document

 key :title, String
 key :url, String
 key :slug, String
 key :voters, Array
 key :votes, , : => 0Integer default
 key :relevance, , : => 0Integer default

 # Cached values.
 key :comment_count, , : => 0Integer default
 key :username, String

 # Note : ids are of class ObjectId.this
 key :user_id, ObjectId
 timestamps!

 # Relationships.
 belongs_to :user

 # Validations.
 validates_presence_of :title, :url, :user_id
end

Obviously, a story needs a title, url, and user_id, and should belong to a user. These are self-explanatory.

Caching to Avoid N+1

When we display our list of stories, we'll need to show the name of the user who posted the story. If we were using a relational database, we
could perform a join on users and stores, and get all our objects in a single query. But MongoDB does not support joins and so, at times, requires
bit of denormalization. Here, this means caching the 'username' attribute.

A Note on Denormalization

Relational purists may be feeling uneasy already, as if we were violating some universal law. But let's bear in mind that MongoDB collections are
not equivalent to relational tables; each serves a unique design objective. A normalized table provides an atomic, isolated chunk of data. A
document, however, more closely represents an object as a whole. In the case of a social news site, it can be argued that a username is intrinsic
to the story being posted.

http://github.com/banker/mongodb-rails3-sample
http://github.com/fortuity/rails3-mongoid-devise.
http://guides.rails.info/3_0_release_notes.html
http://github.com/banker/newsmonger

What about updates to the username? It's true that such updates will be expensive; happily, in this case, they'll be rare. The read savings
achieved in denormalizing will surely outweigh the costs of the occasional update. Alas, this is not hard and fast rule: ultimately, developers must
evaluate their applications for the appropriate level of normalization.

Fields as arrays

With a relational database, even trivial relationships are blown out into multiple tables. Consider the votes a story receives. We need a way of
recording which users have voted on which stories. The standard way of handling this would involve creating a table, 'votes', with each row
referencing user_id and story_id.

With a document database, it makes more sense to store those votes as an array of user ids, as we do here with the 'voters' key.

For fast lookups, we can create an index on this field. In the MongoDB shell:

db.stories.ensureIndex('voters');

Or, using MongoMapper, we can specify the index in :config/initializers/database.rb

Story.ensure_index(:voters)

To find all the stories voted on by a given user:

Story.all(:conditions => {:voters => @user.id})

Atomic Updates

Storing the array in the class also allows us to take advantage of atomic updates. What this means here is that, when a uservoters Story
votes on a story, we can

1. ensure that the voter hasn't voted yet, and, if not,
2. increment the number of votes and
3. add the new voter to the array.

MongoDB's query and update features allows us to perform all three actions in a single operation. Here's what that would look like from the shell:

// Assume that story_id and user_id represent real story and user ids.
db.stories.update({_id: story_id, voters: {'$ne': user_id}},
 {'$inc': {votes: 1}, '$push': {voters: user_id}});

What this says is "get me a story with the given id whose array does not contain the given user id and, if you find such a story, performvoters
two atomic updates: first, increment by 1 and then push the user id onto the array."votes voters

This operation highly efficient; it's also reliable. The one caveat is that, because update operations are "fire and forget," you won't get a response
from the server. But in most cases, this should be a non-issue.

A MongoMapper implementation of the same update would look like this:

 def self.upvote(story_id, user_id)
 collection.update({'_id' => story_id, 'voters' => {'$ne' => user_id}},
 {'$inc' => {'votes' => 1}, '$push' => {'voters' => user_id}})
 end

Modeling Comments

In a relational database, comments are usually given their own table, related by foreign key to some parent table. This approach is occasionally
necessary in MongoDB; however, it's always best to try to embed first, as this will achieve greater query efficiency.

Linear, Embedded Comments

Linear, non-threaded comments should be embedded. Here are the most basic MongoMapper classes to implement such a structure:

class Story
 include MongoMapper::Document
 many :comments
end

class Comment
 include MongoMapper::EmbeddedDocument
 key :body, String

 belongs_to :story
end

If we were using the Ruby driver alone, we could save our structure like so:

@stories = @db.collection('stories')
 @document = {:title => ,"MongoDB on Rails"
 :comments => [{:body => ,"Revelatory! Loved it!"
 :username => "Matz"
 }
]
 }
 @stories.save(@document)

Essentially, comments are represented as an array of objects within a story document. This simple structure should be used for any one-to-many
relationship where the many items are linear.

Nested, Embedded Comments

But what if we're building threaded comments? An admittedly more complicated problem, two solutions will be presented here. The first is to
represent the tree structure in the nesting of the comments themselves. This might be achieved using the Ruby driver as follows:

@stories = @db.collection('stories')
 @document = {:title => ,"MongoDB on Rails"
 :comments => [{:body => ,"Revelatory! Loved it!"
 :username => ,"Matz"
 :comments => [{:body => ,"Agreed."
 :username => "rubydev29"
 }
]
 }
]
 }
 @stories.save(@document)

Representing this structure using MongoMapper would be tricky, requiring a number of custom mods.

But this structure has a number of benefits. The nesting is captured in the document itself (this is, in fact, how Business Insider represents
). And this schema is highly performant, since we can get the story, and all of its comments, in a single query, with no application-sidecomments

processing for constructing the tree.

One drawback is that alternative views of the comment tree require some significant reorganizing.

Comment collections

We can also represent comments as their own collection. Relative to the other options, this incurs a small performance penalty while granting us
the greatest flexibility. The tree structure can be represented by storing the unique path for each leaf (see on the idea).Mathias's original post
Here are the relevant sections of this model:

http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://groups.google.com/group/mongodb-user/browse_thread/thread/3e10a4b409dd6cb4/ccc9de1fafafe37e?lnk=gst&q=trees#ccc9de1fafafe37e

class Comment
 include MongoMapper::Document

 key :body, String
 key :depth, , : => 0Integer default
 key :path, , : => ""String default

 # Note: we're intentionally storing parent_id as a string
 key :parent_id, String
 key :story_id, ObjectId
 timestamps!

 # Relationships.
 belongs_to :story

 # Callbacks.
 after_create :set_path

 private

 # Store the comment's path.
 def set_path
 unless self.parent_id.blank?
 parent = Comment.find(self.parent_id)
 self.story_id = parent.story_id
 self.depth = parent.depth + 1
 self.path = parent.path + + parent.id":"
 end
 save
 end

The path ends up being a string of object ids. This makes it easier to display our comments nested, with each level in order of karma or votes. If
we specify an index on story_id, path, and votes, the database can handle half the work of getting our comments in nested, sorted order.

The rest of the work can be accomplished with a couple grouping methods, which can be found in .the newsmonger source code

It goes without saying that modeling comments in their own collection also facilitates various site-wide aggregations, including displaying the
latest, grouping by user, etc.

Unfinished business

Document-oriented data modeling is still young. The fact is, many more applications will need to be built on the document model before we can
say anything definitive about best practices. So the foregoing should be taken as suggestions, only. As you discover new patterns, we encourage
you to document them, and feel free to let us know about what works (and what doesn't).

Developers working on object mappers and the like are encouraged to implement the best document patterns in their code, and to be wary of
recreating relational database models in their apps.

Object Mappers for Ruby and MongoDB

Although it's possible to use the Ruby driver by itself, sometimes you want validations, associations, and many of the other conveniences
provided by ActiveRecord. Here, then, is a list of the most popular object mappers available for working with Ruby and MongoDB.

Recommendations
Libraries

MongoMapper
Mongoid
Mongomatic
MongoDoc
MongoModel
Candy
MongoRecord

Recommendations

First we advise that you get to know how the database itself works. This is best accomplished by playing with the shell and experimenting with the
Ruby driver (or any of the other drivers, for that matter)*.

http://github.com/banker/newsmonger/blob/master/app/models/comment.rb

Once you understand how MongoDB works, you'll be in a good position to choose the object mapper that best suits your needs. So long as you
pick an OM that's used in production and is actively developed, you really can't make a bad choice.

Libraries

MongoMapper

John Nunemaker's OM. and actively-developed. ActiveModel support forthcoming.Used in production

Installation:

gem install mongo_mapper

Source:

mongo_mapper on github

Documentation:

MongoMapper on google groups
#mongomapper on freenode.

Articles:

Getting Started with MongoMapper
MongoMapper and Rails
More MongoMapper Awesomeness.

Mongoid

If you're using Mongoid, please read the page on this site.Using Mongoid

Durran Jordan's OM. and actively-developed. Supports ActiveModel and Rails 3.Used in production

Installation:

gem install mongoid

Source:

mongoid on github

Documentation:

Docs at mongoid.org

Mongomatic

A simple object mapper emphasizing MongoDB idioms.

Installation:

gem install mongomatic

Source:

mongomatic on github

MongoDoc

MongoDoc is a simple, fast ODM for MongoDB. The project will eventually be merged into Mongoid.

Installation:

gem install mongodoc

Source:

mongodoc on github

http://github.com/jnunemaker/mongomapper/tree/master
http://groups.google.com/group/mongomapper
http://railstips.org/2009/6/27/mongomapper-the-rad-mongo-wrapper
http://railstips.org/2009/7/23/getting-started-with-mongomapper-and-rails
http://railstips.org/2009/10/9/more-mongomapper-awesomeness
http://github.com/durran/mongoid/
http://mongoid.org/
http://github.com/benmyles/mongomatic
git://github.com/leshill/mongodoc.git

MongoModel

Sam Pohlenz's OM. Actively-developed.

Notes:

An OM with emphaisis on ActiveModel compatibility.

Installation:

gem install mongomodel

Source:

mongomodel on github

Candy

Stephen Eley's OM. Actively-developed.

Notes:

From the README:
Candy's goal is to provide the simplest possible object persistence for the MongoDB database. By "simple" we mean "nearly invisible." Candy
doesn't try to mirror ActiveRecord or DataMapper. Instead, we play to MongoDB's unusual strengths – extremely fast writes and a set of
field-specific update operators – and do away with the cumbersome, unnecessary methods of last-generation workflows.

Installation:

gem install candy

Source:

candy on github

MongoRecord

10gen's original OM.

Notes:
MongoRecord is an ActiveRecord-like OM, and the first of its kind developed for MongoDB. Favored by a contingent of developers for its
simplicity, MongoRecord currently receives a lot of love from Nate Wiger.

Installation:

gem install mongo_record

Source:

mongo-record on github

Using Mongoid

Mongoid is a mature ODM for MongoDB. Much work has gone into the project, and it sports an active user community and excellent
documentation. That said, we've seen a few of Mongoid's design decisions cause problems for users in production. This page is an attempt to
make current and future users aware of these issues.

Most of the issues mentioned here will be resolved with the release of Mongoid 2.0.

These principles should be applied to every MongoDB object mapper, regardless of implementation language. We still recommend Mongoid, but
only if the following points are taken into account.

Object ids should be stored as object ids, not as strings.
Index creation shouldn't be defined in the model and triggered on load.
Embedded documents and related documents are both appropriate solutions.
Automated sorting by _id (#last method).
Safe mode should not be enabled for every operation by default.

Final thoughts

Object ids should be stored as object ids, not as strings.

http://github.com/spohlenz/mongomodel
http://github.com/SFEley/candy
http://github.com/mongodb/mongo-record

Problem:
Mongoid currently stores object ids as string, by default. There are a couple of problems with this. The first is that the object id type is the reigning
convention; if you ever need to switch languages or ODMs, you'll find yourself in trouble, since all other projects will expect an object id proper
and not a string. Since it's impossible to change the _id attribute, the only way to convert a collection to use object ids proper is to rewrite the
collection. For many users, this would be incredibly inconvenient.

The second problem is that storing an object id as a string requires 16 extra bytes of storage per object id. This will be duplicated in any index
where it appears. Thus, storing object ids as strings needlessly increases storage size.

A final problem with storing object ids as strings is that upserts will always insert an object id proper. If you ever want to use upserts, you must
store object ids and object ids proper. Otherwise, your collection will contain object ids of multiple types.

Solution
In the Mongoid config, make sure you set

 use_object_ids: true

All object mappers should use real, non-string object ids by default.

Index creation shouldn't be defined in the model and triggered on load.

Problem
Mongoid (and MongoMapper) allows developers to define indexes on the model layer. Because of this, we've now seen numerous examples of
developers accidentally triggering new index builds on production boxes. This can cause unwanted downtime and worse, depending on how the
developers react.

We've also noticed that this index creation API doesn't encourage compound indexes, which are often the best choice for certain queries. If you're
not familiar with compound indexes, read our indexing advice

Solution
The best solution for the moment is to avoid defining indexes in the model. We'd recommend creating some kind of rake task that updates
indexes so that you never inadvertently trigger an index creation. You can easily accomplish this with the Ruby driver API. Read the docs on
create_index

It's also important to know how and when to create compound indexes. Again, check our this .indexing advice

Embedded documents and related documents are both appropriate solutions.

Problem
The Mongoid API and documentation can lead newer users to believe that embedded documents are almost always the way to represent
one-to-many relations. However, there are plenty of situations where storing the related documents in a separate collection is the better choice.

Too much embedding can lead to extra large documents (> 100kb), which can be hard to work with. In addition, these large documents can be
inefficient when updating on the server, transferring across the network, and/or serializing to and from BSON.

Solution
Know that related documents can be a good choice just as frequently as embedded documents. Consult these schema design resources:

Schema design docs
MongoDB Schema Design slides
Schema Design in MongoDB Video from MongoNY

Automated sorting by _id ().#last method

Problem
We've seen methods that invoke automated sorts by _id to preserve order. This is fine if the right indexes are defined, but can start to result in
slow queries as the collection grows.

Solution
If you have large collections, be sure that you have the proper indexes defined so that sorts on _id don't slow down your system.

Safe mode should not be enabled for every operation by default.

Problem
Mongoid uses :safe mode by default for every insert and update. This isn't always necessary. Safe mode should be used when an error is
expected or when you want to use replication acknowledgment.

Solution
We suggest disabling safe mode in the Mongoid config, especially if performance is critical.

http://api.mongodb.org/ruby/1.0.6/Mongo/Collection.html#create_index-instance_method
http://www.slideshare.net/kbanker/mongodb-schema-design
http://www.blip.tv/file/3704083
http://github.com/durran/mongoid/blob/master/lib/mongoid/contexts/mongo.rb#L167

 persist_in_safe_mode: false

Then, decide which operations actually need it. If you have a unique on a collection, or if you're doing updates that you think could fail, then safe
mode is a good idea. If you're logging, doing analytics, or performing a bulk insert, it may not be necessary.

The API should allow users to set safe mode on individual insert and update operations.

Final thoughts

This isn't an indictment of Mongoid or of any other object mapper. We think Mongoid is a great project, and we hope to see it continue to flourish.

But we've seen enough pain caused by some of its design decisions to warrant this page. Our only hope is that the recommendations here help
users have a better experience with Mongoid and MongoDB.

Ruby External Resources

There are a number of good resources appearing all over the web for learning about MongoDB and Ruby. A useful selection is listed below. If you
know of others, do let us know.

Screencasts
Presentations
Articles
Projects
Libraries

Screencasts

Introduction to MongoDB - Part I
An introduction to MongoDB via the MongoDB shell.

Introduction to MongoDB - Part II
In this screencast, Joon You teaches how to use the Ruby driver to build a simple Sinatra app.

Introduction to MongoDB - Part III
For the final screencast in the series, Joon You introduces MongoMapper and Rails.

RailsCasts: MongoDB & MongoMapper
Ryan Bates' RailsCast introducing MongoDB and MongoMapper.

Presentations

Introduction to MongoDB (Video)
Mike Dirolf's introduction to MongoDB at Pivotal Labs, SF.

MongoDB: A Ruby Document Store that doesn't rhyme with 'Ouch' (Slides)
Wynn Netherland's introduction to MongoDB with some comparisons to CouchDB.

MongoDB (is) for Rubyists (Slides)
Kyle Banker's presentation on why MongoDB is for Rubyists (and all human-oriented programmers).

Introduction to Mongoid and MongoDB (Video)
Durran Jordan discusses Mongoid, MongoDB, and how HashRocket uses these tools in production.

Articles

Why I Think Mongo is to Databases What Rails was to Frameworks
What if a key-value store mated with a relational database system?
John Nunemaker's articles on MongoDB.

A series of articles on aggregation with MongoDB and Ruby:
1. Part I: Introduction of Aggregation in MongoDB
2. Part II: MongoDB Grouping Elaborated
3. Part III: Introduction to Map-Reduce in MongoDB

Does the MongoDB Driver Support Feature X?
An explanation of how the MongoDB drivers usually automatically support new database features.

Projects

http://www.teachmetocode.com/screencasts/introduction-to-mongodb-part-i
http://www.teachmetocode.com/screencasts/introduction-to-mongodb-part-ii
http://www.teachmetocode.com/screencasts/introduction-to-mongodb-part-iii-mongomapper-rails
http://railscasts.com/episodes/194-mongodb-and-mongomapper
http://pivotallabs.com/talks/85
http://www.slideshare.net/pengwynn/mongodb-ruby-document-store-that-doesnt-rhyme-with-ouch
http://www.slideshare.net/kbanker/mongodb-is-for-rubyists-boston-ruby
http://www.livestream.com/hashrocket/video?clipId=pla_686e2833-4950-4389-8c69-46776949da1e
http://railstips.org/blog/archives/2009/12/18/why-i-think-mongo-is-to-databases-what-rails-was-to-frameworks/
http://railstips.org/2009/6/3/what-if-a-key-value-store-mated-with-a-relational-database-system
http://kylebanker.com/blog/2009/11/mongodb-count-group/
http://kylebanker.com/blog/2009/11/mongodb-advanced-grouping/
http://kylebanker.com/blog/2009/11/mongodb-advanced-grouping/
http://kylebanker.com/blog/2010/03/28/does-the-driver-support-feature-x/

Mongo Queue
An extensible thread safe job/message queueing system that uses mongodb as the persistent storage engine.

Resque-mongo
A port of the Github's Resque to MongoDB.

Mongo Admin
A Rails plugin for browsing and managing MongoDB data. See the .live demo

Sinatra Resource
Resource Oriented Architecture (REST) for Sinatra and MongoMapper.

Shorty
A URL-shortener written with Sinatra and the MongoDB Ruby driver.

NewsMonger
A simple social news application demonstrating MongoMapper and Rails.

Data Catalog API
From , a non-trivial application using MongoMapper and Sinatra.Sunlight Labs

Watchtower
An example application using Mustache, MongoDB, and Sinatra.

Shapado
A question and answer site similar to Stack Overflow. Live version at .shapado.com

Libraries

ActiveExpando
An extension to ActiveRecord to allow the storage of arbitrary attributes in MongoDB.

ActsAsTree (MongoMapper)
ActsAsTree implementation for MongoMapper.

Machinist adapter (MongoMapper)
Machinist adapter using MongoMapper.

Mongo-Delegate
A delegation library for experimenting with production data without altering it. A quite useful pattern.

Remarkable Matchers (MongoMapper)
Testing / Matchers library using MongoMapper.

OpenIdAuthentication, supporting MongoDB as the datastore
Brandon Keepers' fork of OpenIdAuthentication supporting MongoDB.

MongoTree (MongoRecord)
MongoTree adds parent / child relationships to MongoRecord.

Merb_MongoMapper
a plugin for the Merb framework for supporting MongoMapper models.

Mongolytics (MongoMapper)
A web analytics tool.

Rack-GridFS
A Rack middleware component that creates HTTP endpoints for files stored in GridFS.

Frequently Asked Questions - Ruby

This is a list of frequently asked questions about using Ruby with MongoDB. If you have a question you'd like to have answered here, please add
it in the comments.

Can I run [insert command name here] from the Ruby driver?
Does the Ruby driver support an EXPLAIN command?
I see that BSON supports a symbol type. Does this mean that I can store Ruby symbols in MongoDB?
Why can't I access random elements within a cursor?
Why can't I save an instance of TimeWithZone?
I keep getting CURSOR_NOT_FOUND exceptions. What's happening?
I periodically see connection failures between the driver and MongoDB. Why can't the driver retry the operation automatically?

Can I run [insert command name here] from the Ruby driver?

http://github.com/Skiz/mongo_queue
http://github.com/ctrochalakis/resque-mongo
http://github.com/ahe/mongo_admin
http://mongo_admin.2dconcept.com
http://github.com/djsun/sinatra_resource
http://github.com/dancroak/shorty/
http://github.com/banker/newsmonger
http://github.com/sunlightlabs/datacatalog-api
http://www.sunlightlabs.com/
http://github.com/kneath/watchtower/
http://github.com/patcito/Shapado
http://shapado.com
http://github.com/hayesdavis/active-expando
http://github.com/ramdiv/mongo_mapper_acts_as_tree
http://github.com/yeastymobs/machinist_mongomapper/tree/master
http://github.com/mharris717/mongo_delegate
http://github.com/nmerouze/machinist_mongo
http://github.com/collectiveidea/open_id_authentication
http://github.com/mully/mongo_tree/tree/master
http://github.com/shingara/merb_mongomapper/tree/master
http://github.com/tpitale/mongolytics/tree/master
http://github.com/skinandbones/rack-gridfs/

Yes. You can run any of the from the driver using the DB#command method. The only trick is to use anavailable database commands
OrderedHash when specifying the command. For example, here's how you'd run an asynchronous fsync from the driver:

 # This command is run on the admin database.
 @db = Mongo::Connection. .db('admin') new

 # Build the command.
 cmd = OrderedHash.new
 cmd['fsync'] = 1
 cmd['async'] = true

 # Run it.
 @db.command(cmd)

It's important to keep in mind that some commands, like , must be run on the database, while other commands can be run on anyfsync admin
database. If you're having trouble, check the to make sure you're using the command correctly.command reference

Does the Ruby driver support an EXPLAIN command?

Yes. is, technically speaking, an option sent to a query that tells MongoDB to return an explain plan rather than the query's results. Youexplain
can use by constructing a query and calling explain at the end:explain

 @collection = @db['users']
 result = @collection.find({:name => }).explain"jones"

The resulting explain plan might look something like this:

{ => , "cursor" "BtreeCursor name_1"
 =>{ => }, "startKey" "name" "Jones"
 =>{ => }, "endKey" "name" "Jones"
 =>1.0, "nscanned"
 =>1, "n"
 =>0, "millis"
 =>{ => , "oldPlan" "cursor" "BtreeCursor name_1"
 =>{ => }, "startKey" "name" "Jones"
 =>{ => }"endKey" "name" "Jones"
 },
 =>[{ => , "allPlans" "cursor" "BtreeCursor name_1"
 =>{ => }, "startKey" "name" "Jones"
 =>{ => }}]"endKey" "name" "Jones"
 }

Because this collection has an index on the "name" field, the query uses that index, only having to scan a single record. "n" is the number of
records the query will return. "millis" is the time the query takes, in milliseconds. "oldPlan" indicates that the query optimizer has already seen this
kind of query and has, therefore, saved an efficient query plan. "allPlans" shows all the plans considered for this query.

I see that BSON supports a symbol type. Does this mean that I can store Ruby symbols in MongoDB?

You can store Ruby symbols in MongoDB, but only as values. BSON specifies that document keys must be strings. So, for instance, you can do
this:

@collection = @db['test']

boat_id = @collection.save({:vehicle => :boat})
car_id = @collection.save({ => })"vehicle" "car"

@collection.find_one('_id' => boat_id)
{ => ObjectID('4bb372a8238d3b5c8c000001'), => :boat}"_id" "vehicle"

@collection.find_one('_id' => car_id)
{ => ObjectID('4bb372a8238d3b5c8c000002'), => }"_id" "vehicle" "car"

Notice that the symbol values are returned as expected, but that symbol keys are treated as strings.

Why can't I access random elements within a cursor?

MongoDB cursors are designed for sequentially iterating over a result set, and all the drivers, including the Ruby driver, stick closely to this
directive. Internally, a Ruby cursor fetches results in batches by running a MongoDB operation. The results are buffered for efficientgetmore
iteration on the client-side.

What this means is that a cursor is nothing more than a device for returning a result set on a query that's been initiated on the server. Cursors are
not containers for result sets. If we allow a cursor to be randomly accessed, then we run into issues regarding the freshness of the data. For
instance, if I iterate over a cursor and then want to retrieve the cursor's first element, should a stored copy be returned, or should the cursor re-run
the query? If we returned a stored copy, it may not be fresh. And if the the query is re-run, then we're technically dealing with a new cursor.

To avoid those issues, we're saying that anyone who needs flexible access to the results of a query should store those results in an array and
then access the data as needed.

Why can't I save an instance of TimeWithZone?

MongoDB stores times in UTC as the number of milliseconds since the epoch. This means that the Ruby driver serializes Ruby Time objects only.
While it would certainly be possible to serialize a TimeWithZone, this isn't preferable since the driver would still deserialize to a Time object.

All that said, if necessary, it'd be easy to write a thin wrapper over the driver that would store an extra time zone attribute and handle the
serialization/deserialization of TimeWithZone transparently.

I keep getting CURSOR_NOT_FOUND exceptions. What's happening?

The most likely culprit here is that the cursor is timing out on the server. Whenever you issue a query, a cursor is created on the server. Cursor
naturally time out after ten minutes, which means that if you happen to be iterating over a cursor for more than ten minutes, you risk a
CURSOR_NOT_FOUND exception.

There are two solutions to this problem. You can either:

1. Limit your query. Use some combination of and to reduce the total number of query results. This will, obviously, bring down thelimit skip
time it takes to iterate.

2. Turn off the cursor timeout. To do that, invoke with a block, and pass :find :timeout => true

 @collection.find({}, :timeout =>) |cursor|false do
 cursor.each |documentdo
 # documents hereProcess
 end
 end

I periodically see connection failures between the driver and MongoDB. Why can't the driver retry the operation automatically?

A connection failure can indicate any number of failure scenarios. Has the server crashed? Are we experiencing a temporary network partition? Is
there a bug in our ssh tunnel?

Without further investigation, it's impossible to know exactly what has caused the connection failure. Furthermore, when we do see a connection
failure, it's impossible to know how many operations prior to the failure succeeded. Imagine, for instance, that we're using safe mode and we send
an operation to the server. It's entirely possible that the server has received the but failed on the call to . In that case,$inc $inc getLastError
retrying the operation would result in a double-increment.

Because of the indeterminacy involved, the MongoDB drivers will not retry operations on connection failure. How connection failures should be
handled is entirely dependent on the application. Therefore, we leave it to the application developers to make the best decision in this case.

The drivers will reconnect on the subsequent operation.

Java Language Center

Basics

Tutorial
API Documentation
Downloads

Specific Topics

Concurrency
Saving Objects
Data Types

3rd Party

POJO Mappers

Morphia - Type-Safe Wrapper with DAO/Datastore abstractions
pojo to MongoDB
mungbean
daybreak PoJo mapping for Java & MongoDB using Java 5 annotations.

Code Generation

Sculptor - mongodb-based DSL -> Java (code generator)
GuicyData - DSL -> Java generator with Guice integration

Blog Entries

Misc

log4j -> mongodb appender
(Experimental, Type4) JDBC driver

Other JVM-based Languages

Clojure
Groovy

Groovy Tutorial for MongoDB
MongoDB made more Groovy
GMongo, a Groovy wrapper to the mongodb Java driver
GMongo 0.5 Released

Scala
Lift-MongoDB - Wrapper, Mapper, and back-end implementation. Part of the .Record Lift Web Framework
mongo-scala-driver is a thin wrapper around mongo-java-driver to make working with MongoDB more Scala-like.

Wiki
Mailing list

Casbah Casbah is a Scala oriented series of wrappers and extensions to the MongoDB Java driver to provide a more
scala-friendly interface to MongoDB. Implements the Scala 2.8 collection interfaces to improve interaction, and a fluid query
syntax which closely matches the MongoDB interface. Support for ORM-style Object mapping is coming soon, as well.

Tutorial
Mailing List
GitHub Project Page

JavaScript
MongoDB-Rhino - A toolset to provide full integration between the Rhino JavaScript engine for the JVM and MongoDB. Uses the
MongoDB Java driver.

JRuby
jmongo A thin ruby wrapper around the mongo-java-driver for vastly better jruby performance.

If there is a project missing here, just add a comment or email the list and we'll add it.

Presentations

Using MongoDB with Scala - Brendan McAdams' Presentation at the New York Scala Enthusiasts (August 2010)
Java Development - Brendan McAdams' Presentation from MongoNYC (May 2010)
Java Development - James Williams' Presentation from MongoSF (April 2010)
Building a Mongo DSL in Scala at Hot Potato - Lincoln Hochberg's Presentation from MongoSF (April 2010)

http://api.mongodb.org/java/index.html
http://github.com/mongodb/mongo-java-driver/downloads
http://code.google.com/p/morphia/
http://github.com/maxaf/daybreak
http://github.com/jannehietamaki/mungbean
http://github.com/maxaf/daybreak
http://java.dzone.com/articles/using-mongodb-sculptor
http://github.com/mattinsler/com.lowereast.guiceymongo/
http://www.mattinsler.com/tag/guiceymongo/
http://code.google.com/p/log4mongo/
http://github.com/erh/mongo-jdbc
http://github.com/somnium/congomongo
http://asrijaffar.blogspot.com/2009/08/groovy-tutorial-for-mongodb.html
http://jameswilliams.be/blog/entry/165
http://github.com/poiati/gmongo
http://blog.paulopoiati.com/2010/06/20/gmongo-0-5-released/
http://www.assembla.com/wiki/show/liftweb/MongoDB
http://www.assembla.com/wiki/show/liftweb/Record
http://liftweb.net
http://github.com/alaz/mongo-scala-driver
http://wiki.github.com/alaz/mongo-scala-driver/
http://groups.google.com/group/mongodb-scala
http://novus.github.com/docs/casbah
http://novus.github.com/docs/casbah/sphinx/html/intro/getting_started.html
http://groups.google.com/group/mongodb-casbah-users
http://github.com/novus/casbah
http://code.google.com/p/mongodb-rhino/
http://github.com/chuckremes/jmongo
http://code.technically.us/post/942542158/brendan-mcadams-gives-an-introduction-to-mongodb
http://blip.tv/file/3701248
http://blip.tv/file/3595830
http://blip.tv/file/3596243

Java Driver Concurrency

The Java MongoDB driver is thread safe. If you are using in a web serving environment, for example, you should create a single Mongo instance,
and you can use it in every request. The Mongo object maintains an internal pool of connections to the database (default pool size of 10).

However, if you want to ensure complete consistency in a "session" (maybe an http request), you probably want the driver to use the same socket
for that session (which isn't necessarily the case since Mongo instances have built-in connection pooling). This is only necessary for a write heavy
environment, where you might read data that you wrote.

To do that, you would do something like:

DB db...;
db.requestStart();

code....

db.requestDone();

Java - Saving Objects Using DBObject

The Java driver provides a DBObject interface to save custom objects to the database.

For example, suppose one had a class called Tweet that they wanted to save:

public class Tweet DBObject {implements
 /* ... */
}

Then you can say:

Tweet myTweet = Tweet();new
myTweet.put(, userId);"user"
myTweet.put(, msg);"message"
myTweet.put(, Date());"date" new

collection.insert(myTweet);

When a document is retrieved from the database, it is automatically converted to a DBObject. To convert it to an instance of your class, use
DBCollection.setObjectClass():

collection.setObjectClass(Tweet);

Tweet myTweet = (Tweet)collection.findOne();

Java Tutorial

Introduction
A Quick Tour

Making A Connection
Authentication (Optional)
Getting A List Of Collections
Getting A Collection
Inserting a Document
Finding the First Document In A Collection using findOne()
Adding Multiple Documents
Counting Documents in A Collection
Using a Cursor to Get All the Documents
Getting A Single Document with A Query
Getting A Set of Documents With a Query
Creating An Index
Getting a List of Indexes on a Collection

Quick Tour of the Administrative Functions
Getting A List of Databases

Dropping A Database

Introduction

This page is a brief overview of working with the MongoDB Java Driver.

For more information about the Java API, please refer to the online API Documentation for Java Driver

A Quick Tour

Using the Java driver is very simple. First, be sure to include the driver jar in your classpath. The following code snippets come frommongo.jar
the example code found in the driver.examples/QuickTour.java

Making A Connection

To make a connection to a MongoDB, you need to have at the minimum, the name of a database to connect to. The database doesn't have to
exist - if it doesn't, MongoDB will create it for you.

Additionally, you can specify the server address and port when connecting. The following example shows three ways to connect to the database
 on the local machine :mydb

import com.mongodb.Mongo;
 com.mongodb.DB;import
 com.mongodb.DBCollection;import
 com.mongodb.BasicDBObject;import
 com.mongodb.DBObject;import
 com.mongodb.DBCursor;import

Mongo m = Mongo();new
Mongo m = Mongo();new "localhost"
Mongo m = Mongo(, 27017);new "localhost"

DB db = m.getDB();"mydb"

At this point, the object will be a connection to a MongoDB server for the specified database. With it, you can do further operations. db

Note: The object instance actually represents a pool of connections to the database; you will only need one object of class Mongo evenMongo
with multiple threads. See the doc page for more information.concurrency

Authentication (Optional)

MongoDB can be run in a where access to databases is controlled through name and password authentication. When run in thissecure mode
mode, any client application must provide a name and password before doing any operations. In the Java driver, you simply do the following with
the connected mongo object :

boolean auth = db.authenticate(myUserName, myPassword);

If the name and password are valid for the database, will be . Otherwise, it will be . You should look at the MongoDB log forauth true false
further information if available.

Most users run MongoDB without authentication in a trusted environment.

Getting A List Of Collections

Each database has zero or more collections. You can retrieve a list of them from the db (and print out any that are there) :

Set< > colls = db.getCollectionNames();String

 (s : colls) {for String
 .out.println(s);System
}

and assuming that there are two collections, name and address, in the database, you would see

http://api.mongodb.org/java/index.html
http://api.mongodb.org/java/1.2/com/mongodb/Mongo.html

name
address

as the output.

Getting A Collection

To get a collection to use, just specify the name of the collection to the method:getCollection(String collectionName)

DBCollection coll = db.getCollection()"testCollection"

Once you have this collection object, you can now do things like insert data, query for data, etc

Inserting a Document

Once you have the collection object, you can insert documents into the collection. For example, lets make a little document that in JSON would be
represented as

{
 : ,"name" "MongoDB"
 : ,"type" "database"
 : 1,"count"
 : {"info"
 x : 203,
 y : 102
 }
}

Notice that the above has an "inner" document embedded within it. To do this, we can use the class to create the documentBasicDBObject
(including the inner document), and then just simply insert it into the collection using the method.insert()

BasicDBObject doc = BasicDBObject();new

 doc.put(,);"name" "MongoDB"
 doc.put(,);"type" "database"
 doc.put(, 1);"count"

 BasicDBObject info = BasicDBObject();new

 info.put(, 203);"x"
 info.put(, 102);"y"

 doc.put(, info);"info"

 coll.insert(doc);

Finding the First Document In A Collection using findOne()

To show that the document we inserted in the previous step is there, we can do a simple operation to get the first document in thefindOne()
collection. This method returns a single document (rather than the that the operation returns), and it's useful for things whereDBCursor find()
there only is one document, or you are only interested in the first. You don't have to deal with the cursor.

DBObject myDoc = coll.findOne();
.out.println(myDoc);System

and you should see

{ : , : , : , : 1 , "_id" "49902cde5162504500b45c2c" "name" "MongoDB" "type" "database" "count" "info"
: { : 203 , : 102} , : }"x" "y" "_ns" "testCollection"

http://api.mongodb.org/java/1.2/com/mongodb/DB.html#getCollection%28java.lang.String%29
http://api.mongodb.org/java/1.2/com/mongodb/BasicDBObject.html
http://api.mongodb.org/java/1.2/com/mongodb/DBCollection.html#findOne%28java.lang.Object%29
http://api.mongodb.org/java/1.2/com/mongodb/DBCursor.html
http://api.mongodb.org/java/1.2/com/mongodb/DBCollection.html#find%28com.mongodb.DBObject,%20com.mongodb.DBObject,%20int,%20int,%20int%29

Note the and elements have been added automatically by MongoDB to your document. Remember, MongoDB reserves element names_id _ns
that start with _ for internal use.

Adding Multiple Documents

In order to do more interesting things with queries, let's add multiple simple documents to the collection. These documents will just be

{
 : value"i"
}

and we can do this fairly efficiently in a loop

for (i=0; i < 100; i++) {int
 coll.insert(BasicDBObject().append(, i));new "i"
}

Notice that we can insert documents of different "shapes" into the same collection. This aspect is what we mean when we say that MongoDB is
"schema-free"

Counting Documents in A Collection

Now that we've inserted 101 documents (the 100 we did in the loop, plus the first one), we can check to see if we have them all using the
 method.getCount()

System.out.println(coll.getCount());

and it should print .101

Using a Cursor to Get All the Documents

In order to get all the documents in the collection, we will use the method. The method returns a object which allowsfind() find() DBCursor
us to iterate over the set of documents that matched our query. So to query all of the documents and print them out :

DBCursor cur = coll.find();

 (cur.hasNext()) {while
 .out.println(cur.next());System
 }

and that should print all 101 documents in the collection.

Getting A Single Document with A Query

We can create a to pass to the method to get a subset of the documents in our collection. For example, if we wanted to find thequery find()
document for which the value of the "i" field is 71, we would do the following ;

BasicDBObject query = BasicDBObject();new

 query.put(, 71);"i"

 cur = coll.find(query);

 (cur.hasNext()) {while
 .out.println(cur.next());System
 }

and it should just print just one document

{ : , : 71 , : }"_id" "49903677516250c1008d624e" "i" "_ns" "testCollection"

Getting A Set of Documents With a Query

We can use the query to get a set of documents from our collection. For example, if we wanted to get all documents where "i" > 50, we could write
:

query = BasicDBObject();new

 query.put(, BasicDBObject(, 50)); "i" new "$gt" // e.g. find all where i > 50

 cur = coll.find(query);

 (cur.hasNext()) {while
 .out.println(cur.next());System
 }

which should print the documents where i > 50. We could also get a range, say 20 < i <= 30 :

query = BasicDBObject();new

 query.put(, BasicDBObject(, 20).append(, 30)); "i" new "$gt" "$lte" // i.e. 20 < i <= 30

 cur = coll.find(query);

 (cur.hasNext()) {while
 .out.println(cur.next());System
 }

Creating An Index

MongoDB supports indexes, and they are very easy to add on a collection. To create an index, you just specify the field that should be indexed,
and specify if you want the index to be ascending (1) or descending (-1). The following creates an ascending index on the "i" field :

coll.createIndex(BasicDBObject(, 1)); new "i" // create index on , ascending"i"

Getting a List of Indexes on a Collection

You can get a list of the indexes on a collection :

List<DBObject> list = coll.getIndexInfo();

 (DBObject o : list) {for
 .out.println(o);System
 }

and you should see something like

{ : , : , : { : 1} , : }"name" "i_1" "ns" "mydb.testCollection" "key" "i" "_ns" "system.indexes"

Quick Tour of the Administrative Functions

Getting A List of Databases

You can get a list of the available databases:

Mongo m = Mongo();new

 (s : m.getDatabaseNames()) {for String
 .out.println(s);System
 }

Dropping A Database

You can drop a database by name using the object:Mongo

m.dropDatabase();"my_new_db"

Java Types

Object Ids
Regular Expressions
Dates/Times
Database References
Binary Data
Embedded Documents
Arrays

Object Ids

com.mongodb.ObjectId is used to autogenerate unique ids.

ObjectId id = ObjectId();new
ObjectId copy = ObjectId(id);new

Regular Expressions

The Java driver uses for regular expressions.java.util.regex.Pattern

Pattern john = Pattern.compile(, CASE_INSENSITIVE);"joh?n"
BasicDBObject query = BasicDBObject(, john);new "name"

// finds all people with matching /joh?n/i"name"
DBCursor cursor = collection.find(query);

Dates/Times

The class is used for dates.java.util.Date

Date now = Date();new
BasicDBObject time = BasicDBObject(, now);new "ts"

collection.save(time);

Database References

com.mongodb.DBRef can be used to save database references.

http://api.mongodb.org/java/0.11/com/mongodb/ObjectId.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://api.mongodb.org/java/0.11/com/mongodb/DBRef.html

DBRef addressRef = DBRef(db, , address_id);new "foo.bar"
DBObject address = addressRef.fetch();

DBObject person = BasicDBObjectBuilder.start()
 .add(,)"name" "Fred"
 .add(, addressRef)"address"
 .get();
collection.save(person);

DBObject fred = collection.findOne();
DBRef addressObj = (DBRef)fred.get();"address"
addressObj.fetch()

Binary Data

An array of bytes () can be used for binary data.byte[]

Embedded Documents

Suppose we have a document that, in JavaScript, looks like:

{
 : {"x"
 : 3"y"
 }
}

The equivalent in Java is:

BasicDBObject y = BasicDBObject(, 3);new "y"
BasicDBObject x = BasicDBObject(, y);new "x"

Arrays

Anything that extends List in Java will be saved as an array.

So, if you are trying to represent the JavaScript:

{
 : ["x"
 1,
 2,
 { : },"foo" "bar"
 4
]
}

you could do:

ArrayList x = ArrayList();new
x.add(1);
x.add(2);
x.add(BasicDBObject(,));new "foo" "bar"
x.add(4);

BasicDBObject doc = BasicDBObject(, x);new "x"

C++ Language Center

A C++ driver is available for communicating with the MongoDB. As the database is written in C++, the driver actually uses some core MongoDB
code -- this is the same driver that the database uses itself for replication.

The driver has been compiled successfully on Linux, OS X, Windows, and Solaris.

API Documentation

MongoDB C++ Client Tutorial

Using BSON from C++

HOWTO
Connecting
Tailable Cursors

Mongo Database and C++ Driver Source Code (at github). See the client subdirectory for client driver related files.

Download

Additional Notes

The documentation covers compiling the entire database, but some of the notes there may be helpful for compiling clientBuilding
applications too.

There is also a pure for MongoDB. For true C++ apps we recommend using the C++ driver.C driver

C++ BSON Library

Overview
Examples
API Docs
Short Class Names

Overview

The MongoDB C++ driver library includes a bson package that implements the BSON specification (see). This libraryhttp://www.bsonspec.org/
can be used standalone for object serialization and deserialization even when one is not using MongoDB at all.

Include or in your application (not both). is new and may not work in some situations, was is good for lightbson/bson.h db/jsobj.h bson.h
header-only usage of BSON (see the bsondemo.cpp example).

Key classes:

BSONObj a BSON object

BSONElement a single element in a bson object. This is a key and a value.

BSONObjBuilder used to make BSON objects

BSONObjIterator to enumerate BSON objects

Let's now create a BSON "person" object which contains name and age. We might invoke:

BSONObjBuilder b;
b.append(,);"name" "Joe"
b.append(, 33);"age"
BSONObj p = b.obj();

Or more concisely:

BSONObj p = BSONObjBuilder().append(,).append(, 33).obj();"name" "Joe" "age"

We can also create objects with a stream-oriented syntax:

http://api.mongodb.org/cplusplus
http://github.com/mongodb/mongo/tree/master
http://fastdl.mongodb.org/cxx-driver/mongodb-linux-x86_64-v1.6-latest.tgz
http://github.com/mongodb/mongo-c-driver
http://www.bsonspec.org/
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_element.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_builder.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_iterator.html

BSONObjBuilder b;
b << << << << 33;"name" "Joe" "age"
BSONObj p = b.obj();

The macro BSON lets us be even more compact:

BSONObj p = BSON(<< << << 33);"name" "Joe" "age"

Use the GENOID helper to add an object id to your object. The server will add an _id automatically if it is not included explicitly.

BSONObj p = BSON(GENOID << << << << 33);"name" "Joe" "age"
// result is: { _id : ..., name : , age : 33 }"Joe"

GENOID should be at the beginning of the generated object. We can do something similar with the non-stream builder syntax:

BSONObj p =
 BSONObjBuilder().genOID().append(,).append(,33).obj();"name" "Joe" "age"

Examples

http://github.com/mongodb/mongo/blob/master/bson/bsondemo/bsondemo.cpp

API Docs

http://api.mongodb.org/cplusplus/

Short Class Names

Add

using namespace bson;

to your code to use the following shorter more C++ style names for the BSON classes:

// from bsonelement.h
namespace bson {
 typedef mongo::BSONElement be;
 typedef mongo::BSONObj bo;
 typedef mongo::BSONObjBuilder bob;
}

(Or one could use fully qualified for example).bson::bo

Also available is as a synonym for .bo::iterator BSONObjIterator

C++ Tutorial

Installing the Driver Library and Headers
Unix

Full Database Source Driver Build
Driver Build

Windows
Compiling
Writing Client Code

Connecting
BSON
Inserting

http://github.com/mongodb/mongo/blob/master/bson/bsondemo/bsondemo.cpp
http://api.mongodb.org/cplusplus/

Querying
Indexing
Sorting
Updating

Further Reading

This document is an introduction to usage of the MongoDB database from a C++ program.

First, install Mongo -- see the for details.Quickstart

Next, you may wish to take a look at the guide for a language independent look at how to use MongoDB. Also, we suggestDeveloper's Tour
some basic familiarity with the -- the shell is one's primary database administration tool and is useful for manually inspecting the shellmongo
contents of a database after your C++ program runs.

Installing the Driver Library and Headers

A good source for general information about setting up a MongoDB development environment on various operating systems is the page.building

The normal database distribution used to include the C++ driver, but there were many problems with library version mismatches so now you have
to build from source. You can either get the for the database and just build the C++ driver or separately andfull source code download the driver
build it.

Unix

For Unix, the Mongo driver library is . For either build, run to see all options.libmongoclient.a scons --help

Full Database Source Driver Build

To install the libraries, run:

scons --full install

--full tells the install target to include the library and header files; by default library and header files are installed in ./usr/local

You can use to change the install path: . You can also specify --prefix scons --prefix /opt/mongo --full install
 to build a shared library instead of a statically linked library.--sharedclient

Driver Build

If you download the separately, you can build it by running (no options).driver source code scons

Windows

For more information on setup see the page.Boost Building for Windows

Compiling

The C++ drivers requires the and libraries (with headers) to compile. Be sure they are in your include and lib paths. You can usuallypcre boost
install them from your OS's package manager if you don't already have them.

Writing Client Code

Note: for brevity, the examples below are simply inline code. In a real application one will define classes for each database object typically.

Connecting

Let's make a tutorial.cpp file that connects to the database (see client/examples/tutorial.cpp for full text of the examples below):

http://github.com/mongodb/mongo
http://dl.mongodb.org/dl/cxx-driver
http://dl.mongodb.org/dl/cxx-driver
http://www.boost.org/
http://www.pcre.org/
http://www.boost.org/

#include <iostream>
#include "client/dbclient.h"

using namespace mongo;

void run() {
 DBClientConnection c;
 c.connect();"localhost"
}

 main() {int
 {try
 run();
 cout << << endl;"connected ok"
 } (DBException &e) {catch
 cout << << e.what() << endl;"caught "
 }
 0;return
}

If you are using gcc on Linux or OS X, you would compile with something like this, depending on location of your include files and libraries:

$ g++ tutorial.cpp -lmongoclient -lboost_thread-mt -lboost_filesystem -lboost_program_options -o
tutorial
$./tutorial
connected ok
$

Depending on your boost version you might need to link against the library as well: . Also, youboost_system -lboost_system
may need to append "-mt" to boost_filesystem and boost_program_options. And, of course, you may need to use -I and -L to
specify the locations of your mongo and boost headers and libraries.

BSON

The Mongo database stores data in format. BSON is a binary object format that is JSON-like in terms of the data which can be storedBSON
(some extensions exist, for example, a Date datatype).

To save data in the database we must create objects of class . The components of a BSONObj are represented as BSONObj BSONElement
objects. We use to make BSON objects, and to enumerate BSON objects.BSONObjBuilder BSONObjIterator

Let's now create a BSON "person" object which contains name and age. We might invoke:

BSONObjBuilder b;
b.append(,);"name" "Joe"
b.append(, 33);"age"
BSONObj p = b.obj();

Or more concisely:

BSONObj p = BSONObjBuilder().append(,).append(, 33).obj();"name" "Joe" "age"

We can also create objects with a stream-oriented syntax:

BSONObjBuilder b;
b << << << << 33;"name" "Joe" "age"
BSONObj p = b.obj();

The macro BSON lets us be even more compact:

http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_element.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_builder.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_iterator.html

BSONObj p = BSON(<< << << 33);"name" "Joe" "age"

Use the GENOID helper to add an object id to your object. The server will add an _id automatically if it is not included explicitly.

BSONObj p = BSON(GENOID << << << << 33);"name" "Joe" "age"
// result is: { _id : ..., name : , age : 33 }"Joe"

GENOID should be at the beginning of the generated object. We can do something similar with the non-stream builder syntax:

BSONObj p =
 BSONObjBuilder().genOID().append(,).append(,33).obj();"name" "Joe" "age"

Inserting

We now save our person object in a persons collection in the database:

c.insert(, p);"tutorial.persons"

The first parameter to insert is the namespace. tutorial is the database and persons is the collection name.

Querying

Let's now fetch all objects from the persons collection, and display them. We'll also show here how to use count().

cout << << c.count() << endl;"count:" "tutorial.persons"

 auto_ptr<DBClientCursor> cursor =
 c.query(, emptyObj);"tutorial.persons"
 (cursor->more())while
 cout << cursor->next().toString() << endl;

emptyObj is the empty BSON object -- we use it to represent {} which indicates an empty query pattern (an empty query is a query for all objects).

We use BSONObj::toString() above to print out information about each object retrieved. BSONObj::toString is a diagnostic function which prints
an abbreviated JSON string representation of the object. For full JSON output, use BSONObj::jsonString.

Let's now write a function which prints out the name (only) of all persons in the collection whose age is a given value:

void printIfAge(DBClientConnection&c, age) {int
 auto_ptr<DBClientCursor> cursor =
 c.query(, QUERY(<< age));"tutorial.persons" "age"
 (cursor->more()) {while
 BSONObj p = cursor->next();
 cout << p.getStringField() << endl;"name"
 }
}

getStringField() is a helper that assumes the "name" field is of type string. To manipulate an element in a more generic fashion we can retrieve
the particular BSONElement from the enclosing object:

BSONElement name = p["name"];
// or:
//BSONElement name = p.getField("name");

See the api docs, and jsobj.h, for more information.

Our query above, written as JSON, is of the form

{ age : <agevalue> }

Queries are BSON objects of a particular format -- in fact, we could have used the BSON() macro above instead of QUERY(). See class inQuery
dbclient.h for more information on Query objects, and the Sorting section below.

In the mongo shell (which uses javascript), we could invoke:

use tutorial;
db.persons.find({ age : 33 });

Indexing

Let's suppose we want to have an index on age so that our queries are fast. We would use:

c.ensureIndex(, fromjson());"tutorial.persons" "{age:1}"

The ensureIndex method checks if the index exists; if it does not, it is created. ensureIndex is intelligent and does not repeat transmissions to the
server; thus it is safe to call it many times in your code, for example, adjacent to every insert operation.

In the above example we use a new function, . fromjson converts a JSON string to a BSONObj. This is sometimes a convenient way tofromjson
specify BSON. Alternatively we could have written:

c.ensureIndex(, BSON(<< 1));"tutorial.persons" "age"

Sorting

Let's now make the results from printIfAge sorted alphabetically by name. To do this, we change the query statement from:

auto_ptr<DBClientCursor> cursor = c.query(, QUERY(<< age));"tutorial.persons" "age"

to

to auto_ptr<DBClientCursor> cursor = c.query(, QUERY(<< age).sort()"tutorial.persons" "age" "name"
);

Here we have used Query::sort() to add a modifier to our query expression for sorting.

Updating

Use the update() method to perform a . For example the following update in the :database update mongo shell

> use tutorial
> db.persons.update({ name : 'Joe', age : 33 },
... { $inc : { visits : 1 } })

is equivalent to the following C++ code:

db.update(,"tutorial.persons"
 BSON(<< << << 33),"name" "Joe" "age"
 BSON(<< BSON(<< 1)));"$inc" "visits"

Further Reading

This overview just touches on the basics of using Mongo from C++. There are many more capabilities. For further exploration:

See the language-independent ;Developer's Tour
Experiment with the ; shellmongo

http://api.mongodb.org/cplusplus/current/classmongo_1_1_query.html
http://api.mongodb.org/cplusplus/current/namespacemongo.html#4f542be0d0f9bad2d8cb32c3436026c2

Review the ;doxygen API docs
See information in the API docs;connecting pooling
See information in the API docs;GridFS file storage
See the HOWTO pages under the C++ Language Center
Consider getting involved to make the product (either C++ driver, tools, or the database itself) better!

Connecting

The C++ driver includes several classes for managing collections under the parent class DBClientInterface.

In general, you will want to instantiate either a DBClientConnection object, or a DBClientPaired object. DBClientConnection is our normal
connection class for a connection to a single MongoDB database server (or shard manager). We use DBClientPaired to connect to database

.replica pairs

See for details on each of the above classes.http://api.mongodb.org/cplusplus/

Note : replica pairs will soon be replaced by Replica Sets; a new / adjusted interface will be available then.

Perl Language Center

Installing
CPAN
Manual (Non-CPAN) Installation
Big-Endian Systems

Next Steps
MongoDB Perl Tools

Entities::Backend::MongoDB
MojoX::Session::Store::MongoDB
MongoDB::Admin
Mongoose
Mongrel
MongoX

Installing

Start a MongoDB server instance () before installing so that the tests will pass. The cannot be running as amongod mongod
slave for the tests to pass.

Some tests may be skipped, depending on the version of the database you are running.

CPAN

$ sudo cpan MongoDB

The Perl driver is available through CPAN as the package . It should build cleanly on *NIX and Windows (via). It is alsoMongoDB Strawberry Perl
available as an ActivePerl module.

Manual (Non-CPAN) Installation

If you would like to try the latest code or are contributing to the Perl driver, it is available at . There is also generated afterGithub documentation
every commit.

You can see if it's a good time to grab the bleeding edge code by seeing if the .build is green

To build the driver, run:

$ perl Makefile.PL
$ make
$ make test # make sure mongod is running, first
$ sudo make install

http://api.mongodb.org/cplusplus/current/annotated.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_d_b_connection_pool.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_grid_f_s.html
http://api.mongodb.org/cplusplus/
http://search.cpan.org/dist/MongoDB/
http://strawberryperl.com/
http://github.com/mongodb/mongo-perl-driver
http://api.mongodb.org/perl/index.html
http://buildbot.mongodb.org:81/waterfall

Please note that the tests will not pass without a process running.mongod

Big-Endian Systems

The driver will work on big-endian machines, but the database will not. The tests assume that will be running on localhost unlessmongod
%ENV{MONGOD} is set. So, to run the tests, start the database on a little-endian machine (at, say, "example.com") and then run the tests with:

MONGOD=example.com make test

A few tests that require a database server on "localhost" will be skipped.

Next Steps

There is a tutorial and API documentation on .CPAN

If you're interested in contributing to the Perl driver, check out .Contributing to the Perl Driver

MongoDB Perl Tools

Entities::Backend::MongoDB

Entities::Backend::MongoDB is a backend for the Entities user management and authorization system stores all entities and relations
between them in a MongoDB database, using the MongoDB module. This is a powerful, fast backend that gives you all the features of MongoDB.

MojoX::Session::Store::MongoDB

MojoX::Session::Store::MongoDB is a store for that stores a session in a MongoDB database. Created by Ask BjørnMojoX::Session
Hansen.

MongoDB::Admin

MongoDB::Admin is a collection of MongoDB administrative functions. Created by David Burley.

Mongoose

Mongoose is an attempt to bring together the full power of Moose with MongoDB. Created by Rodrigo de Oliveira Gonzalez.

Mongrel

Mongrel provides a simple database abstraction layer for MongoDB. Mongrel uses the Oogly data validation framework to provide you with a
simple way to create codebased schemas that have data validation built-in, etc.

MongoX

MongoX - DSL sugar for MongoDB

Contributing to the Perl Driver

The easiest way to contribute is to file bugs and feature requests on .Jira

If you would like to help code the driver, read on...

Finding Something to Help With

Fixing Bugs

You can choose a bug on and fix it. Make a comment that you're working on it, to avoid overlap.Jira

Writing Tests

The driver could use a lot more tests. We would be grateful for any and all tests people would like to write.

Adding Features

http://search.cpan.org/dist/MongoDB/
http://search.cpan.org/~idoperel/Entities-0.2/lib/Entities/Backend/MongoDB.pm
http://search.cpan.org/~idoperel/Entities-0.2/lib/Entities/Backend/MongoDB.pm
http://search.cpan.org/dist/MojoX-Session-Store-MongoDB/
http://search.cpan.org/dist/MojoX-Session-Store-MongoDB/
http://search.cpan.org/dist/MojoX-Session/
http://search.cpan.org/dist/MongoDB-Admin
http://search.cpan.org/dist/MongoDB-Admin
http://search.cpan.org/dist/Mongoose/
http://search.cpan.org/dist/Mongoose/
http://search.cpan.org/dist/Mongrel/
http://search.cpan.org/dist/Mongrel/
http://search.cpan.org/dist/MongoX/
http://search.cpan.org/dist/MongoX/
http://jira.mongodb.org/browse/PERL
http://jira.mongodb.org/browse/PERL

If you think a feature is missing from the driver, you're probably right. Check on IRC or the mailing list, then go ahead and create a Jira case and
add the feature. The Perl driver was a bit neglected for a while (although it's now getting a lot of TLC) so it's missing a lot of things that the other
drivers have. You can look through their APIs for ideas.

Contribution Guildlines

The best way to make changes is to create an account on , fork the , make your improvements, and submit a merge request.[Github] driver

To make sure your changes are approved and speed things along:

Write tests. Lots of tests.
Document your code.
Write POD, when applicable.

Bonus (for C programmers, particularly):

Make sure your change works on Perl 5.8, 5.10, Windows, Mac, Linux, etc.

Code Layout

The important files:

 | perl_mongo.c # serialization/deserialization
 | mongo_link.c # connecting to, sending to, and receiving from the database
 - lib
 - MongoDB
 | Connection.pm # connection, queries, inserts... everything comes through here
 | Database.pm
 | Collection.pm
 | Cursor.pm
 | OID.pm
 | GridFS.pm
 - GridFS
 | File.pm
 - xs
 | Mongo.xs
 | Connection.xs
 | Cursor.xs
 | OID.xs

Perl Tutorial

Redirection Notice
This page should redirect to .http://search.cpan.org/dist/MongoDB/lib/MongoDB/Tutorial.pod

Online API Documentation

MongoDB API and driver documentation is available online. It is updated daily.

Java Driver API Documentation
C++ Driver API Documentation
Python Driver API Documentation
Ruby Driver API Documentation
PHP Driver API Documentation

Writing Drivers and Tools

http://github.com/mongodb/mongo-perl-driver
http://search.cpan.org/dist/MongoDB/lib/MongoDB/Tutorial.pod
http://api.mongodb.org/java
http://api.mongodb.org/cplusplus
http://api.mongodb.org/python
http://api.mongodb.org/ruby
http://api.mongodb.org/php

See Also

Mongo Query Language
mongosniff
--objcheck command line parameter

Overview - Writing Drivers and Tools

This section contains information for developers that are working with the low-level protocols of Mongo - people who are writing drivers and
higher-level tools.

Documents of particular interest :

 BSON http://bsonspec.org Description of the BSON binary document format. Fundamental to how Mongo and it's client software works.

Mongo Wire Protocol Specification for the basic socket communications protocol used between Mongo and clients.

Mongo Driver Requirements Description of what functionality is expected from a Mongo Driver

GridFS Specification Specification of GridFS - a convention for storing large objects in Mongo

Mongo Extended JSON Description of the extended JSON protocol for the REST-ful interface (ongoing development)

Additionally we recommend driver authors take a look at as an example.existing driver source code

bsonspec.org

Mongo Driver Requirements

This is a high-level list of features that a driver for MongoDB might provide. We attempt to group those features by priority. This list should be
taken with a grain of salt, and probably used more for inspiration than as law that must be adhered to. A great way to learn about implementing a
driver is by reading the source code of any of the existing , especially the ones listed as "mongodb.org supported".drivers

High priority

BSON serialization/deserialization
full cursor support (e.g. support OP_GET_MORE operation)
close exhausted cursors via OP_KILL_CURSORS
support for running database commands
handle query errors
convert all strings to UTF-8 (part of proper support for BSON)
hint, explain, count, $where
database profiling: set/get profiling level, get profiling info
advanced connection management (replica pairs, slave okay)
automatic reconnection

Medium priority

validate a collection in a database
buffer pooling
Tailable cursor support

A driver should be able to connect to a single server. By default this must be , and must also allow the server to be specifiedlocalhost:27017
by hostname and port.

Mongo m = Mongo(); new // go to localhost, portdefault

Mongo m = Mongo(host, port);new String int

How the driver does this is up to the driver - make it idiomatic. However, a driver should make it explicit and clear what is going on.

Pair Mode Connection

A driver must be able to support "Pair Mode" configurations, where two mongod servers are specified, and configured for hot-failover.

The driver should determine which of the pair is the current master, and send all operations to that server. In the event of an error, either socket
error or a "not a master" error, the driver must restart the determination process. It must not assume the other server in the pair is now the master.

http://bsonspec.org
http://github.com/search?type=Repositories&language=&q=mongo+driver&repo=&langOverride=&x=0&y=0&start_value=1

1.

ServerPair sp = ServerPair(INETAddr...);new
Mongo m = Mongo(sp)new

A driver may optionally allow a driver to connect deliberately to the "non-master" in the pair, for debugging, admin or operational purposes.

ServerPair sp = ServerPair(INETAddr...);new
sp.setTarget(ServerPair.SHADOW_MASTER);
Mongo m = Mongo(sp);new

Cluster Mode Connect to master in master-slave cluster

ServerCluster sc = ServerCluster(INETAddr...); new // again, give one and discover?
Mongo m = Mongo(sc);new

Connect to slave in read-only mode in master-slave cluster

ServerCluster sc = ServerCluster(INETAddr...); new // again, give one and discover?
sc.setTarget(...)
Mongo m = Mongo(sc);new

or maybe make it like *Default/Simple* w/ a flag?

Other than that, we need a way to get a DB object :

Mongo m = Mongo();new

DB db = m.getDB(name);

And a list of db names (useful for tools...) :

List< > getDBNameList();String

Database Object

Simple operations on a database object :

/**
 * get name of database
 */

 dbName = db.getName();String

/**
 * Get a list of all the collection names in databasethis
 */
List< > cols = db.getCollectionNames();String

/**
 * get a collection object. Can optionally create it itif
 * doesn't exist, or just be strict. (XJDM has strictness as an option)
 */
Collection coll = db.getCollection(string);

/**
 * Create a collection w/ optional options. Can fault
 * the collection exists, or can just it it already doesif return if
 */
Collection coll = db.createCollection(string);
Collection coll = db.createCollection(string, options);

/**
 * Drop a collection by its name or by collection object.
 * Driver could invalidate any outstanding Collection objects
 * that collection, or just hope the best.for for
 */

 b = db.dropCollection(name);boolean
 b = db.dropCollection(Collection);boolean

/**
 * Execute a command on the database, returning the
 * BSON doc with the results
 */
Document d = db.executeCommand(command);

/**
 * Close the [logical] database
 */
void db.close();

/**
 * Erase / drop an entire database
 */
bool dropDatabase(dbname)

Database Administration

These methods have to do with database metadata: profiling levels and collection validation. Each admin object is associated with a database.
These methods could either be built into the Database class or provided in a separate Admin class whose instances are only available from a
database instance.

/* get an admin object from a database object. */
Admin admin = db.getAdmin();

/**
 * Get profiling level. Returns one of the strings , , or"off" "slowOnly"
 * . Note that the database returns an integer. This method could"all"
 * an or an instead --- in Ruby, example, we return int enum for return
 * symbols.
 */

 profilingLevel = admin.getProfilingLevel();String

/**
 * Set profiling level. Takes whatever getProfilingLevel() returns.
 */
admin.setProfilingLevel();"off"

/**
 * Retrieves the database's profiling info.
 */
Document profilingInfo = admin.getProfilingInfo();

/**
 * Returns collection is valid; raises an exception not.true if if
 */

 admin.validateCollection(collectionName);boolean

 Collection Basic Ops

/**
 * full query capabilities - limit, skip, returned fields, sort, etc
 */
Cursor find(...);

void insert(...) // insert one or more objects into the collection, local variants on args
void remove(query) // remove objects that match the query
void modify(selector, modifier) // modify all objects that match selector w/ modifier object
void replace(selector, object) // replace first object that match selector w/ specified
object
void repsert(selector, object) // replace first object that matches, or insert **upsert w/
modifier makes no logical sense*

 getCount();long
 getCount(query);long

Index Operations

void createIndex(index_info)
void dropIndex(name)
void dropIndexes()
List<info> getIndexInformation()

Misc Operations

document explain(query)
options getOptions();
string getName();
void close();

Cursor Object

document getNextDocument()
iterator getIterator() // again, local to language
bool hasMore()
void close()

Spec, Notes and Suggestions for Mongo Drivers

Assume that the objects returned from the database may be up to 4MB. This size may change over time but for now the limit is 4MB perBSON
object. We recommend you test your driver with 4MB objects.

See Also

Driver Requirements
BSON
The main pageDatabase Internals

Feature Checklist for Mongo Drivers

Functionality Checklist

This section lists tasks the driver author might handle.

Essential

BSON serialization/deserialization
Basic operations: , , , , , , , query save update remove ensureIndex findOne limit sort
Fetch more data from a cursor when necessary (dbGetMore)
Sending of operation when use of a cursor has completed (ideally for efficiently these are sent in batches)KillCursors
Convert all strings to utf8
Authentication

Recommended

automatic doc_id generation (important when using replication)
Database support and helpers$cmd
Detect { } response from a db query and handle appropriately --see $err: ... Error Handling in Mongo Drivers
Automatically connect to proper server, and failover, when connecting to a Replica Set
ensureIndex commands should be cached to prevent excessive communication with the database. (Or, the driver user should be
informed that is not a lightweight operation for the particular driver.)ensureIndex
Support for objects up to 4MB in size

More Recommended

lasterror helper functions
count() helper function
$where clause
eval()
File chunking
hint fields
explain helper
Automatic _id index creation (maybe the db should just do this???)

More Optional

addUser, helperslogout
Allow client user to specify for a queryOption_SlaveOk
Tailable cursor support
In/out buffer pooling (if implementing in a garbage collected languages)

More Optional

[connection pooling]
Automatic reconnect on connection failure
DBRef Support:

Ability to generate easily
Automatic traversal

http://github.com/10gen/mongo/tree/master/client/dbclient.h

See Also

The for information about the latest driversDriver and Integration Center
The for this section[top page]
The main pageDatabase Internals
The starting point for all Home

Conventions for Mongo Drivers

Interface Conventions

It is desirable to keep driver interfaces consistent when possible. Of course, idioms vary by language, and when they do adaptation is appropriate.
However, when the idiom is the same, keeping the interfaces consistent across drivers is desirable.

Terminology

In general, use these terms when naming identifiers. Adapt the names to the normal "punctuation" style of your language in C might-- foo_bar
be in Java.fooBar

database - what does this mean?
collection
index

Driver Testing Tools

Object IDs

driverOIDTest for testing toString

> db.runCommand({ : ObjectId() })"driverOIDTest" new
{
 : ObjectId(),"oid" "4b8991f221752a6e61a88267"
 : ,"str" "4b8991f221752a6e61a88267"
 : 1"ok"
}

Mongo Wire Protocol

Introduction
Messages Types and Formats

Standard Message Header
Request Opcodes

Client Request Messages
OP_UPDATE
OP_INSERT
OP_QUERY
OP_GETMORE
OP_DELETE
OP_KILL_CURSORS
OP_MSG

Database Response Messages
OP_REPLY

Introduction

The Mongo Wire Protocol is a simple socket-based, request-response style protocol. Clients communicate with the database server through a
regular TCP/IP socket.

Default Socket Port
The default port is 27017, but this is configurable and will vary.

Clients should connect to the database with a regular TCP/IP socket. Currently, there is no connection handshake.

To describe the message structure, a C-like is used. The types used in this document (, , etc.) are thestruct cstring int32
same as those defined in the . The standard message header is typed as . Integer constants areBSON specification MsgHeader
in capitals (e.g. for the integer value of 0).ZERO

In the case where more than one of something is possible (like in a or), we again use theOP_INSERT OP_KILL_CURSORS
notation from the (e.g.). This simply indicates that one or more of the specified type can be writtenBSON specification int64*
to the socket, one after another.

Byte Ordering
Note that like BSON documents, all data in the mongo wire protocol is little-endian.

Messages Types and Formats

TableOfContents

There are two types of messages, client requests and database responses, each having a slightly different structure.

Standard Message Header

In general, each message consists of a standard message header followed by request-specific data. The standard message header is structured
as follows :

struct MsgHeader {
 int32 messageLength; // total message size, including this
int32 requestID; // identifier messagefor this
int32 responseTo; // requestID from the original request
// (used in reponses from db)
int32 opCode; // request type - see table below
}

messageLength : This is the total size of the message in bytes. This total includes the 4 bytes that holds the message length.

requestID : This is a client or database-generated identifier that uniquely identifies this message. For the case of client-generated messages
(e.g. and), it will be returned in theCONTRIB:OP_QUERY CONTRIB:OP_GET_MORE

 field of the message. Along with the field in responses, clients can use this to associate queryresponseTo CONTRIB:OP_REPLY reponseTo
responses with the originating query.

responseTo : In the case of a message from the database, this will be the requestID taken from the or CONTRIB:OP_QUERY
 messages from the client. Along with the field in queries, clients can use this to associate queryCONTRIB:OP_GET_MORE requestID

responses with the originating query.

opCode : Type of message. See the table below in the next section.

Request Opcodes

TableOfContents

The following are the currently supported opcodes :

Opcode Name opCode value Comment

OP_REPLY 1 Reply to a client request. responseTo is set

OP_MSG 1000 generic msg command followed by a string

OP_UPDATE 2001 update document

OP_INSERT 2002 insert new document

RESERVED 2003 formerly used for OP_GET_BY_OID

OP_QUERY 2004 query a collection

OP_GET_MORE 2005 Get more data from a query. See Cursors

http://bsonspec.org/#/specification
http://bsonspec.org/#/specification

OP_DELETE 2006 Delete documents

OP_KILL_CURSORS 2007 Tell database client is done with a cursor

Client Request Messages

TableOfContents

Clients can send all messages except for . This is reserved for use by the database.CONTRIB:OP_REPLY

Note that only the and messages result in a response from the database. There will be noCONTRIB:OP_QUERY CONTRIB:OP_GET_MORE
response sent for any other message.

You can determine if a message was successful with a $$$ TODO get last error command.

OP_UPDATE

The OP_UPDATE message is used to update a document in a collection. The format of a OP_UPDATE message is

struct OP_UPDATE {
 MsgHeader header; // standard message header
int32 ZERO; // 0 - reserved usefor future
cstring fullCollectionName; // "dbname.collectionname"
int32 flags; // bit vector. see below
document selector; // the query to select the document
document update; // specification of the update to perform
}

fullCollectionName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

flags :

bit num name description

0 Upsert If set, the database will insert the supplied object into the collection if no matching document is found.

1 MultiUpdate If set, the database will update all matching objects in the collection. Otherwise only updates first matching doc.

2-31 Reserved Must be set to 0.

selector : BSON document that specifies the query for selection of the document to update.

update : BSON document that specifies the update to be performed. For information on specifying updates see the documentation on .Updating

There is no response to an OP_UPDATE message.

OP_INSERT

The OP_INSERT message is used to insert one or more documents into a collection. The format of the OP_INSERT message is

struct {
 MsgHeader header; // standard message header
int32 ZERO; // 0 - reserved usefor future
cstring fullCollectionName; // "dbname.collectionname"
document* documents; // one or more documents to insert into the collection
}

fullCollectionName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

documents : One or more documents to insert into the collection. If there are more than one, they are written to the socket in sequence, one after
another.

There is no response to an OP_INSERT message.

OP_QUERY

The OP_QUERY message is used to query the database for documents in a collection. The format of the OP_QUERY message is :

struct OP_QUERY {
 MsgHeader header; // standard message header
int32 flags; // bit vector of query options. See below details.for
cstring fullCollectionName; // "dbname.collectionname"
int32 numberToSkip; // number of documents to skip
int32 numberToReturn; // number of documents to return
// in the first OP_REPLY batch
document query; // query object. See below details.for
[document returnFieldSelector;] // Optional. Selector indicating the fields
// to . See below details.return for
}

flags :

bit
num

name description

0 Reserved Must be set to 0.

1 TailableCursor Tailable means cursor is not closed when the last data is retrieved. Rather, the cursor marks the final object's
position. You can resume using the cursor later, from where it was located, if more data were received. Like any
"latent cursor", the cursor may become invalid at some point (CursorNotFound) – for example if the final object it
references were deleted.

2 SlaveOk Allow query of replica slave. Normally these return an error except for namespace "local".

3 OplogReplay Internal replication use only - driver should not set

4 NoCursorTimeout The server normally times out idle cursors after an inactivity period (10 minutes) to prevent excess memory use. Set
this option to prevent that.

5 AwaitData Use with TailableCursor. If we are at the end of the data, block for a while rather than returning no data. After a
timeout period, we do return as normal.

6 Exhaust Stream the data down full blast in multiple "more" packages, on the assumption that the client will fully read all data
queried. Faster when you are pulling a lot of data and know you want to pull it all down. Note: the client is not
allowed to not read all the data unless it closes the connection.

7-31 Reserved Must be set to 0.

fullCollectionName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

numberToSkip : Sets the number of documents to omit - starting from the first document in the resulting dataset - when returning the result of
the query.

numberToReturn : Limits the number of documents in the message to the query. However, the database will stillfirst CONTRIB:OP_REPLY
establish a cursor and return the to the client if there are more results than . If the client driver offers 'limit'cursorID numberToReturn
functionality (like the SQL keyword), then it is up to the client driver to ensure that no more than the specified number of document areLIMIT
returned to the calling application. If is 0, the db will used the default return size. If the number is negative, then the databasenumberToReturn
will return that number and close the cursor. No futher results for that query can be fetched. If is 1 the server will treat it as -1numberToReturn
(closing the cursor automatically).

query : BSON document that represents the query. The query will contain one or more elements, all of which must match for a document to be
included in the result set. Possible elements include , , , , and .$query $orderby $hint $explain $snapshot

returnFieldsSelector : OPTIONAL BSON document that limits the fields in the returned documents. The returnFieldsSelector contains one
or more elements, each of which is the name of a field that should be returned, and and the integer value 1. In JSON notation, a
returnFieldsSelector to limit to the fields "a", "b" and "c" would be :

{ a : 1, b : 1, c : 1}

The database will respond to an OP_QUERY message with an message.CONTRIB:OP_REPLY

OP_GETMORE

The OP_GETMORE message is used to query the database for documents in a collection. The format of the OP_GETMORE message is :

struct {
 MsgHeader header; // standard message header
int32 ZERO; // 0 - reserved usefor future
cstring fullCollectionName; // "dbname.collectionname"
int32 numberToReturn; // number of documents to return
int64 cursorID; // cursorID from the OP_REPLY
}

fullCollectionName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

numberToReturn : Limits the number of documents in the message to the query. However, the database will stillfirst CONTRIB:OP_REPLY
establish a cursor and return the to the client if there are more results than . If the client driver offers 'limit'cursorID numberToReturn
functionality (like the SQL keyword), then it is up to the client driver to ensure that no more than the specified number of document areLIMIT
returned to the calling application. If is 0, the db will used the default return size.numberToReturn

cursorID : Cursor identifier that came in the . This must be the value that came from the database.CONTRIB:OP_REPLY

The database will respond to an OP_GETMORE message with an message.CONTRIB:OP_REPLY

OP_DELETE

The OP_DELETE message is used to remove one or more messages from a collection. The format of the OP_DELETE message is :

struct {
 MsgHeader header; // standard message header
int32 ZERO; // 0 - reserved usefor future
cstring fullCollectionName; // "dbname.collectionname"
int32 flags; // bit vector - see below details.for
document selector; // query object. See below details.for
}

fullCollectionName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

flags :

bit
num

name description

0 SingleRemove If set, the database will remove only the first matching document in the collection. Otherwise all matching documents
will be removed.

1-31 Reserved Must be set to 0.

selector : BSON document that represent the query used to select the documents to be removed. The selector will contain one or more
elements, all of which must match for a document to be removed from the collection. Please see $$$ TODO QUERY for more information.

There is no reponse to an OP_DELETE message.

OP_KILL_CURSORS

The OP_KILL_CURSORS message is used to close an active cursor in the database. This is necessary to ensure that database resources are
reclaimed at the end of the query. The format of the OP_KILL_CURSORS message is :

struct {
 MsgHeader header; // standard message header
int32 ZERO; // 0 - reserved usefor future
int32 numberOfCursorIDs; // number of cursorIDs in message
int64* cursorIDs; // sequence of cursorIDs to close
}

numberOfCursorIDs : The number of cursors that are in the message.

cursorIDs : "array" of cursor IDs to be closed. If there are more than one, they are written to the socket in sequence, one after another.

Note that if a cursor is read until exhausted (read until OP_QUERY or OP_GETMORE returns zero for the cursor id), there is no need to kill the

cursor.

OP_MSG

Deprecated. OP_MSG sends a diagnostic message to the database. The database sends back a fixed resonse. The format is

struct {
 MsgHeader header; // standard message header
cstring message; // message the databasefor
}

Drivers do not need to implement OP_MSG.

Database Response Messages

TableOfContents

OP_REPLY

The OP_REPLY message is sent by the database in response to an or CONTRIB:OP_QUERY CONTRIB:OP_GET_MORE
message. The format of an OP_REPLY message is:

struct {
 MsgHeader header; // standard message header
int32 responseFlags; // bit vector - see details below
int64 cursorID; // cursor id client needs to get more'sif do
int32 startingFrom; // where in the cursor reply is startingthis
int32 numberReturned; // number of documents in the reply
document* documents; // documents
}

responseFlags :

bit
num

name description

0 CursorNotFound Set when getMore is called but the cursor id is not valid at the server. Returned with zero results.

1 QueryFailure Set when query failed. Results consist of one document containing an "$err" field describing the failure.

2 ShardConfigStale Drivers should ignore this. Only mongos will ever see this set, in which case, it needs to update config from the
server.

3 AwaitCapable Set when the server supports the AwaitData Query option. If it doesn't, a client should sleep a little between
getMore's of a Tailable cursor. Mongod version 1.6 supports AwaitData and thus always sets AwaitCapable.

4-31 Reserved Ignore

cursorID : The cursorID that this OP_REPLY is a part of. In the event that the result set of the query fits into one OP_REPLY message,
 will be 0. This must be used in any messages used to get more data, and also must be closedcursorID cursorID CONTRIB:OP_GET_MORE

by the client when no longer needed via a message.CONTRIB:OP_KILL_CURSORS

BSON

bsonspec.org
BSON and MongoDB
Language-Specific Examples

C
C++
Java
PHP
Python
Ruby

MongoDB Document Types

bsonspec.org

http://www.bsonspec.org/

BSON is a bin­ary-en­coded seri­al­iz­a­tion of JSON-like doc­u­ments. BSON is designed to be lightweight, traversable, and efficient. BSON, like
JSON, supports the embedding of objects and arrays within other objects and arrays. See for the spec and more information inbsonspec.org
general.

BSON and MongoDB

MongoDB uses as the data storage and network transfer format for "documents". BSON

BSON at first seems BLOB-like, but there exists an important difference: the Mongo database understands BSON internals. This means that
MongoDB can " " BSON objects, even nested ones. Among other things, this allows MongoDB to build indexes and match objectsreach inside
against query expressions on both top-level and nested BSON keys.

See also: the .BSON blog post

Language-Specific Examples

We often map from a language's "dictionary" type – which may be its native objects – to BSON. The mapping is particularly natural in dynamically
typed languages:

JavaScript: { : }"foo" "bar"
Perl: { => }"foo" "bar"
PHP: array(=>)"foo" "bar"
Python: { : }"foo" "bar"
Ruby: { => }"foo" "bar"
Java: DBObject obj = BasicDBObject(,);new "foo" "bar"

C

bson b;
bson_buffer buf;
bson_buffer_init(&buf)
bson_append_string(&buf, ,);"name" "Joe"
bson_append_int(&buf, , 33);"age"
bson_from_buffer(&b, &buf);
bson_print(&b);

See for more information.http://github.com/mongodb/mongo-c-driver/blob/master/src/bson.h

C++

BSONObj p = BSON(<< << << 33);"name" "Joe" "age"
cout << p.toString() << endl;
cout << p[].number() << endl;"age"

See the BSON section of the for more information.C++ Tutorial

Java

BasicDBObject doc = BasicDBObject();new
doc.put(,);"name" "MongoDB"
doc.put(,);"type" "database"
doc.put(, 1);"count"
BasicDBObject info = BasicDBObject();new
info.put(, 203);"x"
info.put(, 102);"y"
doc.put(, info);"info"
coll.insert(doc);

PHP

The PHP driver includes and functions. takes any PHP type and serializes it, returning a string ofbson_encode bson_decode bson_encode
bytes:

http://www.bsonspec.org/
http://bsonspec.org
http://blog.mongodb.org/post/114440717/bson
http://github.com/mongodb/mongo-c-driver/blob/master/src/bson.h

1.

a.
b.
c.

2.

3.

$bson = bson_encode();null
$bson = bson_encode();true
$bson = bson_encode(4);
$bson = bson_encode();"hello, world"
$bson = bson_encode(array(=>));"foo" "bar"
$bson = bson_encode(MongoDate());new

Mongo-specific objects (, , ,) will be encoded in their respective BSON formats. For other objects,MongoId MongoDate MongoRegex MongoCode
it will create a BSON representation with the key/value pairs you would get by running .for ($object as $key => $value)

bson_decode takes a string representing a BSON object and parses it into an associative array.

Python

>>> from pymongo.bson BSONimport
>>> bson_string = BSON.from_dict({ : })"hello" "world"
>>> bson_string
'\x16\x00\x00\x00\x02hello\x00\x06\x00\x00\x00world\x00\x00'
>>> bson_string.to_dict()
{u'hello': u'world'}

PyMongo also supports "ordered dictionaries" through the module. The class can handle instances using the samepymongo.son BSON SON
methods you would use for regular dictionaries.

Ruby

There are now two gems that handle BSON-encoding: bson and bson_ext. These gems can be used to work with BSON independently of the
MongoDB Ruby driver.

irb
>> require 'rubygems'
=> true
>> require 'bson'
=> true
>> doc = {:hello => }"world"
>> bson = BSON.serialize(doc).to_s
=> "\026\000\000\000\002hello\000\006\000\000\000world\000\000"
>> BSON.deserialize(bson.unpack())"C*"
=> { => }"hello" "world"

The BSON class also supports ordered hashes. Simply construct your documents using the OrderedHash class, also found in the MongoDB Ruby
Driver.

MongoDB Document Types

MongoDB uses BSON documents for three things:

Data storage (user documents). These are the regular JSON-like objects that the database stores for us. These BSON documents are
sent to the database via the INSERT operation. User documents have limitations on the "element name" space due to the usage of
special characters in the JSON-like query language.

A user document element name cannot begin with "$".
A user document element name cannot have a "." in the name.
The element name "_id" is reserved for use as a primary key id, but you can store anything that is unique in that field.
The database expects that drivers will prevent users from creating documents that violate these constraints.

Query "Selector" Documents : Query documents (or selectors) are BSON documents that are used in QUERY, DELETE and UPDATE
operations. They are used by these operations to match against documents. Selector objects have no limitations on the "element name"
space, as they must be able to supply special "marker" elements, like "$where" and the special "command" operations.
"Modifier" Documents : Documents that contain 'modifier actions' that modify user documents in the case of an update (see).Updating

Mongo Extended JSON

Mongo's REST interface supports storage and retrieval of JSON documents. Special representations are used for BSON types that do not have
obvious JSON mappings, and multiple representations are allowed for some such types. The REST interface supports three different modes for
document output { Strict, JS, TenGen }, which serve to control the representations used. Mongo can of course understand all of these

representations in REST input.

Strict mode produces output conforming to the JSON spec .http://www.json.org
JS mode uses some Javascript types to represent certain BSON types.
TenGen mode uses some Javascript types and some 10gen specific types to represent certain BSON types.

The following BSON types are represented using special conventions:

Type Strict JS TenGen Explanation

data_binary

{ "$binary"
:
"<bindata>"
, :"$type"

 }"<t>"

{ : "$binary"
, "<bindata>"

 : }"$type" "<t>"

{ : "$binary"
, "<bindata>"

 : }"$type" "<t>"

<bindata> is
the base64
representation
of a binary
string. <t> is
the
hexadecimal
representation
of a single byte
indicating the
data type.

data_date

{ :"$date"
<date> }

Date(<date>) Date(<date>)

<date> is the
JSON
representation
of a 64 bit
unsigned
integer for
milliseconds
since epoch.

data_regex

{ "$regex"
:

,"<sRegex>"
 :"$options"

"<sOptions>"
}

/<jRegex>/<jOptions> /<jRegex>/<jOptions>

<sRegex> is a
string of valid
JSON
characters.
<jRegex> is a
string that may
contain valid
JSON
characters and
unescaped '"'
characters, but
may not
contain
unescaped '/'
characters.
<sOptions> is
a string
containing
letters of the
alphabet.
<jOptions> is a
string that may
contain only
the characters
'g', 'i', and 'm'.
Because the
JS and
TenGen
representations
support a
limited range of
options, any
nonconforming
options will be
dropped when
converting to
this
representation.

http://www.json.org

data_oid

{ : "$oid"
 }"<id>"

{ : }"$oid" "<id>" ObjectId()"<id>"

<id> is a 24
character
hexadecimal
string. Note
that these
representations
require a
data_oid value
to have an
associated
field name
"_id".

data_ref

{ : "$ref"
, "<name>"

 : "$id"
 }"<id>"

{ : "$ref" "<name>"
, : }"$id" "<id>"

Dbref(, "<name>"
)"<id>"

<name> is a
string of valid
JSON
characters.
<id> is a 24
character
hexadecimal
string.

GridFS Specification

Introduction
Specification

Storage Collections
files
chunks

Indexes

Introduction

GridFS is a storage specification for large objects in MongoDB. It works by splitting large object into small chunks, usually 256k in size. Each
chunk is stored as a separate document in a collection. Metadata about the file, including the filename, content type, and any optionalchunks
information needed by the developer, is stored as a document in a collection.files

So for any given file stored using GridFS, there will exist one document in collection and one or more documents in the collection.files chunks

If you're just interested in using GridFS, see the docs on . If you'd like to understand the GridFS implementation, read on.storing files

Specification

Storage Collections

GridFS uses two collections to store data:

files contains the object metadata
chunks contains the binary chunks with some additional accounting information

In order to make more than one GridFS namespace possible for a single database, the files and chunks collections are named with a prefix. By
default the prefix is , so any default GridFS store will consist of collections named and . The drivers make it possible tofs. fs.files fs.chunks
change this prefix, so you might, for instance, have another GridFS namespace specifically for photos where the collections would be

 and .photos.files photos.chunks

Here's an example of the standard GridFS interface in Java:

/*
 * root collection usage - must be supporteddefault
 */
GridFS myFS = GridFS(myDatabase); new // returns a GridFS (e.g. rootdefault "fs"
collection)
myFS.storeFile(File()); new "/tmp/largething.mpg" // saves the file into the GridFS store"fs"

/*
 * specified root collection usage - optional
 */

GridFS myContracts = GridFS(myDatabase,); new "contracts" // returns a GridFS where
 is root"contracts"

myFS.retrieveFile(, File()); "smithco" new "/tmp/smithco_20090105.pdf" // retrieves object whose
filename is "smithco"

Note that the above API is for demonstration purposes only - this spec does not (at this time) recommend any API. See individual driver
documentation for API specifics.

files

Documents in the collection require the following fields:files

{
 : <unspecified>, "_id" // unique ID filefor this

 : data_number, "length" // size of the file in bytes
 : data_number, "chunkSize" // size of each of the chunks. Default is 256k
 : data_date, "uploadDate" // date when object first stored

 : data_string "md5" // result of running the command on file's"filemd5" this
chunks
}

Any other desired fields may be added to the files document; common ones include the following:

{
 : data_string, "filename" // human name the filefor

 : data_string, "contentType" // valid mime type the objectfor
 : data_array of data_string, "aliases" // optional array of alias strings
 : data_object, "metadata" // anything the user wants to store

}

Note that the _id field can be of any type, per the discretion of the spec implementor.

chunks

The structure of documents from the collection is as follows:chunks

{
 : <unspecified>, "_id" // object id of the chunk in the _chunks collection

 : <unspecified>, "files_id" // _id of the corresponding files collection entry
 : chunk_number, "n" // chunks are numbered in order, starting with 0

 : data_binary, "data" // the chunk's payload as a BSON binary type
}

Notes:

The is whatever type you choose. As with any MongoDB document, the default will be a BSON object id._id
The is a foreign key containing the field for the relevant collection entryfiles_id _id files

Indexes

GridFS implementations should create a unique, compound index in the collection for and . Here's how you'd do that fromchunks files_id n

the shell:

db.fs.chunks.ensureIndex({files_id:1, n:1}, {unique: });true

This way, a chunk can be retrieved efficiently using it's and values. Note that GridFS implementations should use findOnefiles_id n
operations to get chunks individually, and should leave open a cursor to query for all chunks. So to get the first chunk, we could do:not

db.fs.chunks.findOne({files_id: myFileID, n: 0});

Implementing Authentication in a Driver

The current version of Mongo supports only very basic authentication. One authenticates a username and password in the context of a particular
database. Once authenticated, the user has full read and write access to the database in question.

The database is special. In addition to several commands that are administrative being possible only on , authentication on admin admin admin
gives one read and write access to all databases on the server. Effectively, access means root access to the db.admin

Note on a single socket we may authenticate for any number of databases, and as different users. This authentication persists for the life of the
database connection (barring a command).logout

The Authentication Process

Authentication is a two step process. First the driver runs a command to get a nonce for use in the subsequent authentication. Wegetnonce
can view a sample invocation from :getnonce dbshell

> db.$cmd.findOne({getnonce:1})
{ : , :1"nonce" "7268c504683936e1" "ok"

The nonce returned is a hex String.

The next step is to run an command for the database on which to authenticate. The authenticate command has the form:authenticate

{ authenticate : 1, user : username, nonce : nonce, key : digest }

where

username is a username in the database's system.users collection;
nonce is the nonce returned from a previous getnonce command;
digest is the hex encoding of a MD5 message digest which is the MD5 hash of the concatenation of (, , nonce username password_digest
), where is the user's password value in the field of the associated user object in the database's system.userspassword_digest pwd
collection. is the hex encoding of MD5(username + ":mongo:" +).pwd password_text

Authenticate will return an object containing

{ ok : 1 }

when successful.

Details of why an authentication command failed may be found in the Mongo server's log files.

The following code from the Mongo Javascript driver provides an example implementation:

DB.prototype.addUser = function(username , pass){
 c = .getCollection();var this "system.users"

 u = c.findOne({ user : username }) || { user : username };var
 u.pwd = hex_md5(username + + pass);":mongo:"
 print(tojson(u));

 c.save(u);
}

DB.prototype.auth = function(username , pass){
 n = .runCommand({ getnonce : 1 });var this

 a = .runCommand(var this
 {
 authenticate : 1 ,
 user : username ,
 nonce : n.nonce ,
 key : hex_md5(n.nonce + username + hex_md5(username + + pass))":mongo:"
 }
);

 a.ok;return
}

Logout

Drivers may optionally implement the logout command which deauthorizes usage for the specified database for this connection. Note other
databases may still be authorized.

Alternatively, close the socket to deauthorize.

> db.$cmd.findOne({logout:1})
{
 : 1.0"ok"
}

Replica Pairs and Authentication

For drivers that support replica pairs, extra care with replication is required.

When switching from one server in a pair to another (on a failover situation), you must reauthenticate. Clients will likely want to cache
authentication from the user so that the client can reauthenticate with the new server when appropriate.

Be careful also with operations such as Logout - if you log out from only half a pair, that could be an issue.

Authenticating with a server in slave mode is allowed.

See Also

Security and Authentication

Notes on Pooling for Mongo Drivers

Note that with the db write operations can be sent asynchronously or synchronously (the latter indicating a getlasterror request after the write).

When asynchronous, one must be careful to continue using the same connection (socket). This ensures that the next operation will not begin until
after the write completes.

Pooling and Authentication

An individual socket connection to the database has associated authentication state. Thus, if you pool connections, you probably want a separate
pool for each authentication case (db + username).

Pseudo-code

The following pseudo-code illustrates our recommended approach to implementing connection pooling in a driver's connection class. This handles
authentication, grouping operations from a single "request" onto the same socket, and a couple of other gotchas:

class Connection:
 init(pool_size, addresses, auto_start_requests):
 .pool_size = pool_sizethis
 .addresses = addressesthis
 .auto_start_requests = auto_start_requeststhis
 .thread_map = {}this
 .locks = Lock[pool_size]this
 .sockets = Socket[pool_size]this
 .socket_auth = [pool_size][]this String
 .auth = {}this

 .find_master()this

 find_master():
 address in .addresses:for this
 address.is_master():if
 .master = addressthis

 pick_and_acquire_socket():
 choices = random permutation of [0, ..., .pool_size - 1]this

 choices.sort(order: ascending,
 value: size of preimage of choice under .thread_map)this

 choice in choices:for
 .locks[choice].non_blocking_acquire():if this
 choicereturn

 sock = choices[0]
 .locks[sock].blocking_acquire()this
 sockreturn

 get_socket():
 .thread_map[current_thread] >= 0:if this
 sock_number = .thread_map[current_thread]this
 .locks[sock_number].blocking_acquire()this
 :else
 sock_number = .pick_and_lock_socket()this
 .auto_start_requests or current_thread in .thread_map:if this this
 .thread_map[current_thread] = sock_numberthis

 not .sockets[sock_number]:if this
 .sockets[sock_number] = Socket(.master)this this

 sock_numberreturn

 send_message_without_response(message):
 sock_number = .get_socket()this
 .check_auth()this
 .sockets[sock_number].send(message)this
 .locks[sock_number].release()this

 send_message_with_response(message):
 sock_number = .get_socket()this
 .check_auth()this
 .sockets[sock_number].send(message)this
 result = .sockets[sock_number].receive()this
 .locks[sock_number].release()this
 resultreturn

 # start_request is only needed auto_start_requests is Falseif
 start_request():
 .thread_map[current_thread] = -1this

 end_request():
 delete .thread_map[current_thread]this

 authenticate(database, username, password):
 # TODO should probably make sure that these credentials are valid,
 # otherwise errors are going to be delayed until first op.
 .auth[database] = (username, password)this

 logout(database):
 delete .auth[database]this

 check_auth(sock_number):
 db in .socket_auth[sock_number]:for this
 db not in .auth.keys():if this
 .sockets[sock_number].send(logout_message)this
 .socket_auth[sock_number].remove(db)this
 db in .auth.keys():for this
 db not in .socket_auth[sock_number]:if this
 .sockets[sock_number].send(authenticate_message)this
 .socket_auth[sock_number].append(db)this

somewhere we need to error checking - you get not master then everythingdo if
in .sockets gets closed and set to and we call find_master() again.this null

1.

2.

3.

4.
a.
b.

5.

we also need to reset the socket_auth information - nothing is authorized yet
on the master.new

See Also

The for information about the latest driversDriver and Integration Center
The for this section[top page]
The main pageDatabase Internals
The starting point for all Home

Driver and Integration Center

Connecting Drivers to Replica Sets

Ideally a MongoDB driver can connect to a cluster of servers which represent a , and automatically find the right set member with whichreplica set
to communicate. Failover should be automatic too. The general steps are:

The user, when opening the connection, specifies host[:port] for one or more members of the set. Not all members need be specified --
in fact the exact members of the set might change over time. This list for the connect call is the .seed list
The driver then connects to all servers on the seed list, perhaps in parallel to minimize connect time. Send an ismaster command to each
server.
When the server is in replSet mode, it will return a field with all members of the set that are potentially eligible to serve data. Thehosts
client should cache this information. Ideally this refreshes too, as the set's config could change over time.
Choose a server with which to communicate.

If ismaster == true, that server is primary for the set. This server can be used for writes and immediately consistent reads.
If secondary == true, that server is not primary, but is available for eventually consistent reads. In this case, you can use the

 field to see which server the master should be.primary
If an error occurs with the current connection, find the new primary and resume use there.

For example, if we run the ismaster command on a non-primary server, we might get something like:

> db.runCommand()"ismaster"
{
 : ,"ismaster" false
 : ,"secondary" true
 : ["hosts"
 ,"ny1.acme.com"
 ,"ny2.acme.com"
 "sf1.acme.com"
],
 : ["passives"
 ,"ny3.acme.com"
 "sf3.acme.com"
],
 : ["arbiters"
 ,"sf2.acme.com"
]
 : ,"primary" "ny2.acme.com"
 : "ok" true
}

There are three servers with priority > 0 (, , and), two passive servers (and), and an arbiter (). The primary should be ,ny1 ny2 sf1 ny3 sf3 sf2 ny2
but the driver should call ismaster on that server before it assumes it is.

Error Handling in Mongo Drivers

If an error occurs on a query (or getMore operation), Mongo returns an error object instead of user data.

The error object has a first field guaranteed to have the reserved key . For example:$err

{ $err : }"some error message"

The value can be of any type but is usually a string.$err

Drivers typically check for this return code explicitly and take action rather than returning the object to the user. The query results flags include a
set bit when $err is returned.

/* db response format

Query or GetMore: // see struct QueryResult
 resultFlags;int

 int64 cursorID;
 startingFrom;int
 nReturned;int
 list of marshalled JSObjects;

*/

struct QueryResult : MsgData {public
 {enum
 ResultFlag_CursorNotFound = 1, /* returned, with zero results, when getMore is called but the
cursor id is not valid at the server. */
 ResultFlag_ErrSet = 2 /* { $err : ... } is being returned */
 };
 ...
};

See Also

The for information about the latest driversDriver and Integration Center
The for this section[top page]
The main pageDatabase Internals
The starting point for all Home

Developer Zone
Tutorial
Shell
Manual

Databases
Collections
Indexes
Data Types and Conventions
GridFS
Inserting
Updating
Querying
Removing
Optimization

Developer FAQ
Cookbook

If you have a comment or question about anything, please contact us through IRC (freenode.net#mongodb) or the , rather than leavingmailing list
a comment at the bottom of a page. It is easier for us to respond to you through those channels.

Introduction

MongoDB is a collection-oriented, schema-free document database.

By , we mean that data is grouped into sets that are called 'collections'. Each collection has a unique name in the database,collection-oriented
and can contain an unlimited number of documents. Collections are analogous to tables in a RDBMS, except that they don't have any defined
schema.

By , we mean that the database doesn't need to know anything about the structure of the documents that you store in a collection. Inschema-free
fact, you can store documents with different structure in the same collection if you so choose.

By , we mean that we store data that is a structured collection of key-value pairs, where keys are strings, and values are any of a richdocument
set of data types, including arrays and documents. We call this data format " " for "Binary Serialized dOcument Notation."BSON

MongoDB Operational Overview

http://cookbook.mongodb.org
http://groups.google.com/group/mongodb-user/

MongoDB is a server process that runs on Linux, Windows and OS X. It can be run both as a 32 or 64-bit application. We recommend running in
64-bit mode, since Mongo is limited to a total data size of about 2GB for all databases in 32-bit mode.

The MongoDB process listens on port 27017 by default (note that this can be set at start time - please see for moreCommand Line Parameters
information).

Clients connect to the MongoDB process, optionally authenticate themselves if security is turned on, and perform a sequence of actions, such as
inserts, queries and updates.

MongoDB stores its data in files (default location is), and uses memory mapped files for data management for efficiency./data/db/

MongoDB can also be configured for , as well as .automatic data replication automatic fail-over

For more information on MongoDB administration, please see .Mongo Administration Guide

MongoDB Functionality

As a developer, MongoDB drivers offer a rich range of operations:

Queries: Search for documents based on either query objects or SQL-like "where predicates". Queries can be sorted, have limited return
sizes, can skip parts of the return document set, and can also return partial documents.
Inserts and Updates : Insert new documents, update existing documents.
Index Management : Create indexes on one or more keys in a document, including substructure, deleted indexes, etc
General commands : Any MongoDB operation can be managed via DB Commands over the regular socket.

cookbook.mongodb.org

Redirection Notice
This page should redirect to .http://cookbook.mongodb.org

Tutorial

Getting the Database
Getting A Database Connection
Inserting Data into A Collection
Accessing Data From a Query
Specifying What the Query Returns

 - Syntactic SugarfindOne()
Limiting the Result Set via limit()
More Help
What Next

Getting the Database

First, run through the guide for your platform to get up and running.Quickstart

Getting A Database Connection

Let's now try manipulating the database with the database . (We could perform similar operations from any programming language using anshell
appropriate . The shell is convenient for interactive and administrative use.)driver

Start the MongoDB JavaScript shell with:

$ bin/mongo

By default the shell connects to database "test" on localhost. You then see:

MongoDB shell version: <whatever>
url: test
connecting to: test
type help"help" for
>

http://cookbook.mongodb.org

"connecting to:" tells you the name of the database the shell is using. To switch databases, type:

> use mydb
switched to db mydb

To see a list of handy commands, type .help

Tip for Developers with Experience in Other Databases
You may notice, in the examples below, that we never create a database or collection. MongoDB does not require that you do
so. As soon as you insert something, MongoDB creates the underlying collection and database. If you query a collection that
does not exist, MongoDB treats it as an empty collection.

Switching to a database with the command won't immediately create the database - the database is created lazily the firstuse
time data is inserted. This means that if you a database for the first time it won't show up in the list provided by ` `use show dbs
until data is inserted.

Inserting Data into A Collection

Let's create a test collection and insert some data into it. We will create two objects, and , and then save them in the collection .j t things

In the following examples, '>' indicates commands typed at the shell prompt.

> j = { name : };"mongo"
{ : }"name" "mongo"
> t = { x : 3 };
{ : 3 }"x"
> db.things.save(j);
> db.things.save(t);
> db.things.find();
{ : ObjectId(), : }"_id" "4c2209f9f3924d31102bd84a" "name" "mongo"
{ : ObjectId(), : 3 }"_id" "4c2209fef3924d31102bd84b" "x"
>

A few things to note :

We did not predefine the collection. The database creates it automatically on the first insert.
The documents we store can have any "structure" - in fact in this example, the documents have no common data elements at all. In
practice, one usually stores documents of the same structure within collections. However, this flexibility means that schema migration and
augmentation are very easy in practice - rarely will you need to write scripts which perform "alter table" type operations.
Upon being inserted into the database, objects are assigned an (if they do not already have one) in the field .object ID _id
When you run the above example, your ObjectID values will be different.

Let's add some more records to this collection:

> (i = 1; i <= 20; i++) db.things.save({x : 4, j : i});for var
> db.things.find();
{ : ObjectId(), : }"_id" "4c2209f9f3924d31102bd84a" "name" "mongo"
{ : ObjectId(), : 3 }"_id" "4c2209fef3924d31102bd84b" "x"
{ : ObjectId(), : 4, : 1 }"_id" "4c220a42f3924d31102bd856" "x" "j"
{ : ObjectId(), : 4, : 2 }"_id" "4c220a42f3924d31102bd857" "x" "j"
{ : ObjectId(), : 4, : 3 }"_id" "4c220a42f3924d31102bd858" "x" "j"
{ : ObjectId(), : 4, : 4 }"_id" "4c220a42f3924d31102bd859" "x" "j"
{ : ObjectId(), : 4, : 5 }"_id" "4c220a42f3924d31102bd85a" "x" "j"
{ : ObjectId(), : 4, : 6 }"_id" "4c220a42f3924d31102bd85b" "x" "j"
{ : ObjectId(), : 4, : 7 }"_id" "4c220a42f3924d31102bd85c" "x" "j"
{ : ObjectId(), : 4, : 8 }"_id" "4c220a42f3924d31102bd85d" "x" "j"
{ : ObjectId(), : 4, : 9 }"_id" "4c220a42f3924d31102bd85e" "x" "j"
{ : ObjectId(), : 4, : 10 }"_id" "4c220a42f3924d31102bd85f" "x" "j"
{ : ObjectId(), : 4, : 11 }"_id" "4c220a42f3924d31102bd860" "x" "j"
{ : ObjectId(), : 4, : 12 }"_id" "4c220a42f3924d31102bd861" "x" "j"
{ : ObjectId(), : 4, : 13 }"_id" "4c220a42f3924d31102bd862" "x" "j"
{ : ObjectId(), : 4, : 14 }"_id" "4c220a42f3924d31102bd863" "x" "j"
{ : ObjectId(), : 4, : 15 }"_id" "4c220a42f3924d31102bd864" "x" "j"
{ : ObjectId(), : 4, : 16 }"_id" "4c220a42f3924d31102bd865" "x" "j"
{ : ObjectId(), : 4, : 17 }"_id" "4c220a42f3924d31102bd866" "x" "j"
{ : ObjectId(), : 4, : 18 }"_id" "4c220a42f3924d31102bd867" "x" "j"
has more

Note that not all documents were shown - the shell limits the number to 20 when automatically iterating a cursor. Since we already had 2
documents in the collection, we only see the first 18 of the newly-inserted documents.

If we want to return the next set of results, there's the shortcut. Continuing from the code above:it

{ : ObjectId(), : 4, : 17 }"_id" "4c220a42f3924d31102bd866" "x" "j"
{ : ObjectId(), : 4, : 18 }"_id" "4c220a42f3924d31102bd867" "x" "j"
has more
> it
{ : ObjectId(), : 4, : 19 }"_id" "4c220a42f3924d31102bd868" "x" "j"
{ : ObjectId(), : 4, : 20 }"_id" "4c220a42f3924d31102bd869" "x" "j"

Technically, find() returns a cursor object. But in the cases above, we haven't assigned that cursor to a variable. So, the shell automatically
iterates over the cursor, giving us an initial result set, and allowing us to continue iterating with the command.it

But we can also work with the cursor directly; just how that's done is discussed in the next section.

Accessing Data From a Query

Before we discuss queries in any depth, lets talk about how to work with the results of a query - a cursor object. We'll use the simple find()
query method, which returns everything in a collection, and talk about how to create specific queries later on.

In order to see all the elements in the collection when using the , we need to explicitly use the cursor returned from the mongo shell find()
operation.

Lets repeat the same query, but this time use the cursor that returns, and iterate over it in a while loop :find()

> cursor = db.things.find();var
> (cursor.hasNext()) printjson(cursor.next());while
{ : ObjectId(), : }"_id" "4c2209f9f3924d31102bd84a" "name" "mongo"
{ : ObjectId(), : 3 }"_id" "4c2209fef3924d31102bd84b" "x"
{ : ObjectId(), : 4, : 1 }"_id" "4c220a42f3924d31102bd856" "x" "j"
{ : ObjectId(), : 4, : 2 }"_id" "4c220a42f3924d31102bd857" "x" "j"
{ : ObjectId(), : 4, : 3 }"_id" "4c220a42f3924d31102bd858" "x" "j"
{ : ObjectId(), : 4, : 4 }"_id" "4c220a42f3924d31102bd859" "x" "j"
{ : ObjectId(), : 4, : 5 }"_id" "4c220a42f3924d31102bd85a" "x" "j"
{ : ObjectId(), : 4, : 6 }"_id" "4c220a42f3924d31102bd85b" "x" "j"
{ : ObjectId(), : 4, : 7 }"_id" "4c220a42f3924d31102bd85c" "x" "j"
{ : ObjectId(), : 4, : 8 }"_id" "4c220a42f3924d31102bd85d" "x" "j"
{ : ObjectId(), : 4, : 9 }"_id" "4c220a42f3924d31102bd85e" "x" "j"
{ : ObjectId(), : 4, : 10 }"_id" "4c220a42f3924d31102bd85f" "x" "j"
{ : ObjectId(), : 4, : 11 }"_id" "4c220a42f3924d31102bd860" "x" "j"
{ : ObjectId(), : 4, : 12 }"_id" "4c220a42f3924d31102bd861" "x" "j"
{ : ObjectId(), : 4, : 13 }"_id" "4c220a42f3924d31102bd862" "x" "j"
{ : ObjectId(), : 4, : 14 }"_id" "4c220a42f3924d31102bd863" "x" "j"
{ : ObjectId(), : 4, : 15 }"_id" "4c220a42f3924d31102bd864" "x" "j"
{ : ObjectId(), : 4, : 16 }"_id" "4c220a42f3924d31102bd865" "x" "j"
{ : ObjectId(), : 4, : 17 }"_id" "4c220a42f3924d31102bd866" "x" "j"
{ : ObjectId(), : 4, : 18 }"_id" "4c220a42f3924d31102bd867" "x" "j"
{ : ObjectId(), : 4, : 19 }"_id" "4c220a42f3924d31102bd868" "x" "j"
{ : ObjectId(), : 4, : 20 }"_id" "4c220a42f3924d31102bd869" "x" "j"

The above example shows cursor-style iteration. The function tells if there are any more documents to return, and the hasNext() next()
function returns the next document. We also used the built-in method to render the document in a pretty JSON-style format.tojson()

When working in the JavaScript , we can also use the functional features of the language, and just call on the cursor. Repeatingshell forEach
the example above, but using directly on the cursor rather than the while loop:forEach()

> db.things.find().forEach(printjson);
{ : ObjectId(), : }"_id" "4c2209f9f3924d31102bd84a" "name" "mongo"
{ : ObjectId(), : 3 }"_id" "4c2209fef3924d31102bd84b" "x"
{ : ObjectId(), : 4, : 1 }"_id" "4c220a42f3924d31102bd856" "x" "j"
{ : ObjectId(), : 4, : 2 }"_id" "4c220a42f3924d31102bd857" "x" "j"
{ : ObjectId(), : 4, : 3 }"_id" "4c220a42f3924d31102bd858" "x" "j"
{ : ObjectId(), : 4, : 4 }"_id" "4c220a42f3924d31102bd859" "x" "j"
{ : ObjectId(), : 4, : 5 }"_id" "4c220a42f3924d31102bd85a" "x" "j"
{ : ObjectId(), : 4, : 6 }"_id" "4c220a42f3924d31102bd85b" "x" "j"
{ : ObjectId(), : 4, : 7 }"_id" "4c220a42f3924d31102bd85c" "x" "j"
{ : ObjectId(), : 4, : 8 }"_id" "4c220a42f3924d31102bd85d" "x" "j"
{ : ObjectId(), : 4, : 9 }"_id" "4c220a42f3924d31102bd85e" "x" "j"
{ : ObjectId(), : 4, : 10 }"_id" "4c220a42f3924d31102bd85f" "x" "j"
{ : ObjectId(), : 4, : 11 }"_id" "4c220a42f3924d31102bd860" "x" "j"
{ : ObjectId(), : 4, : 12 }"_id" "4c220a42f3924d31102bd861" "x" "j"
{ : ObjectId(), : 4, : 13 }"_id" "4c220a42f3924d31102bd862" "x" "j"
{ : ObjectId(), : 4, : 14 }"_id" "4c220a42f3924d31102bd863" "x" "j"
{ : ObjectId(), : 4, : 15 }"_id" "4c220a42f3924d31102bd864" "x" "j"
{ : ObjectId(), : 4, : 16 }"_id" "4c220a42f3924d31102bd865" "x" "j"
{ : ObjectId(), : 4, : 17 }"_id" "4c220a42f3924d31102bd866" "x" "j"
{ : ObjectId(), : 4, : 18 }"_id" "4c220a42f3924d31102bd867" "x" "j"
{ : ObjectId(), : 4, : 19 }"_id" "4c220a42f3924d31102bd868" "x" "j"
{ : ObjectId(), : 4, : 20 }"_id" "4c220a42f3924d31102bd869" "x" "j"

In the case of a we must define a function that is called for each document in the cursor.forEach()

In the , you can also treat cursors like an array :mongo shell

> cursor = db.things.find();var
> printjson(cursor[4]);
{ : ObjectId(), : 4, : 3 }"_id" "4c220a42f3924d31102bd858" "x" "j"

When using a cursor this way, note that all values up to the highest accessed (cursor[4] above) are loaded into RAM at the same time. This is
inappropriate for large result sets, as you will run out of memory. Cursors should be used as an iterator with any query which returns a large

number of elements.

In addition to array-style access to a cursor, you may also convert the cursor to a true array:

> arr = db.things.find().toArray();var
> arr[5];
{ : ObjectId(), : 4, : 4 }"_id" "4c220a42f3924d31102bd859" "x" "j"

Please note that these array features are specific to , and not offered by all drivers.mongo - The Interactive Shell

MongoDB cursors are not snapshots - operations performed by you or other users on the collection being queried between the first and last call to
 of your cursor be returned by the cursor. Use explicit locking to perform a snapshotted query.next() may or may not

Specifying What the Query Returns

Now that we know how to work with the cursor objects that are returned from queries, lets now focus on how to tailor queries to return specific
things.

In general, the way to do this is to create "query documents", which are documents that indicate the pattern of keys and values that are to be
matched.

These are easier to demonstrate than explain. In the following examples, we'll give example SQL queries, and demonstrate how to represent the
same query using MongoDB via the . This way of specifying queries is fundamental to MongoDB, so you'll find the same generalmongo shell
facility in any driver or language.

SELECT * FROM things WHERE name="mongo"

> db.things.find({name: }).forEach(printjson);"mongo"
{ : ObjectId(), : }"_id" "4c2209f9f3924d31102bd84a" "name" "mongo"

SELECT * FROM things WHERE x=4

> db.things.find({x:4}).forEach(printjson);
{ : ObjectId(), : 4, : 1 }"_id" "4c220a42f3924d31102bd856" "x" "j"
{ : ObjectId(), : 4, : 2 }"_id" "4c220a42f3924d31102bd857" "x" "j"
{ : ObjectId(), : 4, : 3 }"_id" "4c220a42f3924d31102bd858" "x" "j"
{ : ObjectId(), : 4, : 4 }"_id" "4c220a42f3924d31102bd859" "x" "j"
{ : ObjectId(), : 4, : 5 }"_id" "4c220a42f3924d31102bd85a" "x" "j"
{ : ObjectId(), : 4, : 6 }"_id" "4c220a42f3924d31102bd85b" "x" "j"
{ : ObjectId(), : 4, : 7 }"_id" "4c220a42f3924d31102bd85c" "x" "j"
{ : ObjectId(), : 4, : 8 }"_id" "4c220a42f3924d31102bd85d" "x" "j"
{ : ObjectId(), : 4, : 9 }"_id" "4c220a42f3924d31102bd85e" "x" "j"
{ : ObjectId(), : 4, : 10 }"_id" "4c220a42f3924d31102bd85f" "x" "j"
{ : ObjectId(), : 4, : 11 }"_id" "4c220a42f3924d31102bd860" "x" "j"
{ : ObjectId(), : 4, : 12 }"_id" "4c220a42f3924d31102bd861" "x" "j"
{ : ObjectId(), : 4, : 13 }"_id" "4c220a42f3924d31102bd862" "x" "j"
{ : ObjectId(), : 4, : 14 }"_id" "4c220a42f3924d31102bd863" "x" "j"
{ : ObjectId(), : 4, : 15 }"_id" "4c220a42f3924d31102bd864" "x" "j"
{ : ObjectId(), : 4, : 16 }"_id" "4c220a42f3924d31102bd865" "x" "j"
{ : ObjectId(), : 4, : 17 }"_id" "4c220a42f3924d31102bd866" "x" "j"
{ : ObjectId(), : 4, : 18 }"_id" "4c220a42f3924d31102bd867" "x" "j"
{ : ObjectId(), : 4, : 19 }"_id" "4c220a42f3924d31102bd868" "x" "j"
{ : ObjectId(), : 4, : 20 }"_id" "4c220a42f3924d31102bd869" "x" "j"

The query expression is an document itself. A query document of the form { a:A, b:B, ... } means "where a==A and b==B and ...". More
information on query capabilities may be found in the section of the .Queries and Cursors Mongo Developers' Guide

MongoDB also lets you return "partial documents" - documents that have only a subset of the elements of the document stored in the database.
To do this, you add a second argument to the query, supplying a document that lists the elements to be returned.find()

To illustrate, lets repeat the last example with an additional argument that limits the returned document to just the "j" elements:find({x:4})

SELECT j FROM things WHERE x=4

> db.things.find({x:4}, {j: }).forEach(printjson);true
{ : ObjectId(), : 1 }"_id" "4c220a42f3924d31102bd856" "j"
{ : ObjectId(), : 2 }"_id" "4c220a42f3924d31102bd857" "j"
{ : ObjectId(), : 3 }"_id" "4c220a42f3924d31102bd858" "j"
{ : ObjectId(), : 4 }"_id" "4c220a42f3924d31102bd859" "j"
{ : ObjectId(), : 5 }"_id" "4c220a42f3924d31102bd85a" "j"
{ : ObjectId(), : 6 }"_id" "4c220a42f3924d31102bd85b" "j"
{ : ObjectId(), : 7 }"_id" "4c220a42f3924d31102bd85c" "j"
{ : ObjectId(), : 8 }"_id" "4c220a42f3924d31102bd85d" "j"
{ : ObjectId(), : 9 }"_id" "4c220a42f3924d31102bd85e" "j"
{ : ObjectId(), : 10 }"_id" "4c220a42f3924d31102bd85f" "j"
{ : ObjectId(), : 11 }"_id" "4c220a42f3924d31102bd860" "j"
{ : ObjectId(), : 12 }"_id" "4c220a42f3924d31102bd861" "j"
{ : ObjectId(), : 13 }"_id" "4c220a42f3924d31102bd862" "j"
{ : ObjectId(), : 14 }"_id" "4c220a42f3924d31102bd863" "j"
{ : ObjectId(), : 15 }"_id" "4c220a42f3924d31102bd864" "j"
{ : ObjectId(), : 16 }"_id" "4c220a42f3924d31102bd865" "j"
{ : ObjectId(), : 17 }"_id" "4c220a42f3924d31102bd866" "j"
{ : ObjectId(), : 18 }"_id" "4c220a42f3924d31102bd867" "j"
{ : ObjectId(), : 19 }"_id" "4c220a42f3924d31102bd868" "j"
{ : ObjectId(), : 20 }"_id" "4c220a42f3924d31102bd869" "j"

Note that the "_id" field is always returned.

findOne() - Syntactic Sugar

For convenience, the (and other drivers) lets you avoid the programming overhead of dealing with the cursor, and just lets youmongo shell
retrieve one document via the function. takes all the same parameters of the function, but instead of returning afindOne() findOne() find()
cursor, it will return either the first document returned from the database, or if no document is found that matches the specified query.null

As an example, lets retrieve the one document with . There are many ways to do it, including just calling on the cursorname=='mongo' next()
(after checking for , of course), or treating the cursor as an array and accessing the 0th element.null

However, the method is both convenient and efficient:findOne()

> printjson(db.things.findOne({name: }));"mongo"
{ : ObjectId(), : }"_id" "4c2209f9f3924d31102bd84a" "name" "mongo"

This is more efficient because the client requests a single object from the database, so less work is done by the database and the network. This is
the equivalent of .find({name:"mongo"}).limit(1)

Limiting the Result Set via limit()

You may limit the size of a query's result set by specifing a maximum number of results to be returned via the method.limit()

This is highly recommended for performance reasons, as it limits the work the database does, and limits the amount of data returned over the
network. For example:

> db.things.find().limit(3);
{ : ObjectId(), : }"_id" "4c2209f9f3924d31102bd84a" "name" "mongo"
{ : ObjectId(), : 3 }"_id" "4c2209fef3924d31102bd84b" "x"
{ : ObjectId(), : 4, : 1 }"_id" "4c220a42f3924d31102bd856" "x" "j"

More Help

In addition to the general "help" command, you can call help on and to see a summary of methods available.db db.whatever

If you are curious about what a function is doing, you can type it without the {{()}}s and the shell will print the source, for example:

> printjson
function (x) {
 print(tojson(x));
}

mongo is a full JavaScript shell, so any JavaScript function, syntax, or class can be used in the shell. In addition, MongoDB defines some of its
own classes and globals (e.g.,). You can see the full API at .db http://api.mongodb.org/js/

What Next

After completing this tutorial the next step to learning MongoDB is to dive into the for more details.manual

Manual

This is the MongoDB manual. Except where otherwise noted, all examples are in JavaScript for use with the . There is a mongo shell table
available giving the equivalent syntax for each of the drivers.

Connections
Databases

Commands
Clone Database
fsync Command
Index-Related Commands
Last Error Commands
Windows Service
Viewing and Terminating Current Operation
Validate Command
getLastError
List of Database Commands

Mongo Metadata
Collections

Capped Collections
Using a Large Number of Collections

Data Types and Conventions
Internationalized Strings
Object IDs
Database References

GridFS
When to use GridFS

Indexes
Using Multikeys to Simulate a Large Number of Indexes
Geospatial Indexing
Indexing as a Background Operation
Multikeys
Indexing Advice and FAQ

Inserting
Legal Key Names
Schema Design
Trees in MongoDB

Optimization
Optimizing Object IDs
Optimizing Storage of Small Objects
Query Optimizer

Querying
Mongo Query Language
Retrieving a Subset of Fields
Advanced Queries
Dot Notation (Reaching into Objects)
Full Text Search in Mongo
min and max Query Specifiers
OR operations in query expressions
Queries and Cursors

Tailable Cursors
Server-side Code Execution
Sorting and Natural Order
Aggregation

Removing
Updating

Atomic Operations
findandmodify Command

http://api.mongodb.org/js/

Updating Data in Mongo
MapReduce
Data Processing Manual

Connections

MongoDB is a database server: it runs in the foreground or background and waits for connections from the user. Thus, when you start MongoDB,
you will see something like:

~/$./mongod
#
some logging output
#
Tue Mar 9 11:15:43 waiting connections on port 27017for
Tue Mar 9 11:15:43 web admin listening on port 28017interface

It will stop printing output at this point but it hasn't frozen, it is merely waiting for connections on port 27017. Once you connect and start sending
commands, it will continue to log what it's doing. You can use any of the MongoDB or to connect to the database.drivers Mongo shell

You connect to MongoDB by going to in your web browser. The database be accessed via HTTP on portcannot http://localhost:27017 cannot
27017.

Standard Connection String Format

The uri scheme described on this page is not yet supported by all of the drivers. Refer to a specific driver's documentation to
see how much (if any) of the standard connection uri is supported. All drivers support an alternative method of specifying
connections if this format is not supported.

mongodb://[username:password@]host1[:port1][,host2[:port2],...[,hostN[:portN]]][/database]

mongodb:// is a required prefix to identify that this is a string in the standard connection format.
username:password@ are optional. If given, the driver will attempt to login to a database after connecting to a database server.
host1 is the only required part of the URI. It identifies a server address to connect to.
:portX is optional and defaults to :27017 if not provided.
/database is the name of the database to login to and thus is only relevant if the syntax is used. If notusername:password@
specified the "admin" database will be used by default.

As many hosts as necessary may be specified (for connecting to replica pairs/sets).

Examples

Connect to a database server running locally on the default port:

mongodb://localhost

Connect and login to the admin database as user "fred" with password "foobar":

mongodb://fred:foobar@localhost

Connect and login to the "baz" database as user "fred" with password "foobar":

mongodb://fred:foobar@localhost/baz

Connect to a replica pair, with one server on example1.com and another server on example2.com:

mongodb://example1.com:27017,example2.com:27017

Connect to a replica set with three servers running on localhost (on ports 27017, 27018, and 27019):

http://localhost:27017

mongodb://localhost,localhost:27018,localhost:27019

Connection Pooling

The server will use one thread per TCP connection, therefore it is highly recomended that your application use some sort of connection pooling.
Luckily, most drivers handle this for you behind the scenes. One notable exception is setups where your app spawns a new process for each
request, such as CGI and some configurations of PHP.

Databases

Each MongoDB server can support multiple . Each database is independent, and the data for each database is stored separately, fordatabases
security and ease of management.

A database consists of one or more , the (objects) in those collections, and an optional set of security credentials forcollections documents
controlling access.

Commands
Clone Database
fsync Command
Index-Related Commands
Last Error Commands
Windows Service
Viewing and Terminating Current Operation
Validate Command
getLastError
List of Database Commands

Mongo Metadata

Commands

Introduction

The Mongo database has a concept of a . Database commands are ways to ask the database to perform special operations,database command
or to request information about its current operational status.

Introduction
Privileged Commands
Getting Help Info for a Command
More Command Documentation

List of Database Commands

A command is sent to the database as a query to a special collection namespace called . The database will return a single document with$cmd
the command results - use for that if your driver has it.findOne()

The general command syntax is:

db.$cmd.findOne({ <commandname>: <value> [, options] });

The shell provides a helper function for this:

db.runCommand({ <commandname>: <value> [, options] });

For example, to check our database's current profile level setting, we can invoke:

> db.runCommand({profile:-1});
{
 : 0.0 ,"was"
 : 1.0"ok"
}

For many db commands, some drivers implement wrapper methods are implemented to make usage easier. For example, the offersmongo shell

> db.getProfilingLevel()
0.0

Let's look at what this method is doing:

> print(db.getProfilingLevel)
function () {
 res = ._dbCommand({profile:-1});var this
 res ? res.was : ;return null
}

> print(db._dbCommand)
function (cmdObj) {
 .$cmd.findOne(cmdObj);return this
}

Many commands have helper functions - see your driver's documentation for more information.

Privileged Commands

Certain operations are for the database administrator only. These privileged operations may only be performed on the special database named
.admin

> use admin;
> db.runCommand(); "shutdown" // shut down the database

If the db variable is not set to 'admin', you can use _adminCommand to switch to the right database automatically (and just for that operation):

> db._adminCommand();"shutdown"

(For this particular command there is also a shell helper function, db.shutdownServer.)

Getting Help Info for a Command

Use commandHelp in shell to get help info for a command:

> db.commandHelp()"datasize"
help : datasize example: { datasize: , keyPattern:{x:1}, min:{x:10}, max:{x:55} }for "blog.posts"
NOTE: This command may take awhile to run

(Help is not yet available for some commands.)

More Command Documentation

Clone Database
fsync Command
Index-Related Commands
Last Error Commands
Windows Service
Viewing and Terminating Current Operation
Validate Command
getLastError
List of Database Commands

Commands Quick Reference Card

Clone Database

MongoDB includes commands for copying a database from one server to another.

http://www.10gen.com/reference

// copy an entire database from one name on one server to another
// name on another server. omit <from_hostname> to copy from one
// name to another on the same server.
db.copyDatabase(<from_dbname>, <to_dbname>, <from_hostname>);
// you must authenticate with the source databaseif
db.copyDatabase(<from_dbname>, <to_dbname>, <from_hostname>, <username>, <password>);
// in syntax (runnable from any driver):"command"
db.runCommand({ copydb : 1, fromdb : ..., todb : ..., fromhost : ... });
// command syntax authenticating with the source:for
n = db.runCommand({ copydbgetnonce : 1, fromhost: ... });
db.runCommand({ copydb : 1, fromhost: ..., fromdb: ..., todb: ..., username: ..., nonce: n.nonce,
key: <hash of username, nonce, password > });

// clone the current database (implied by 'db') from another host
 fromhost = ...;var

print(+ db + + fromhost);"about to get a copy of database " " from "
db.cloneDatabase(fromhost);
// in syntax (runnable from any driver):"command"
db.runCommand({ clone : fromhost });

fsync Command

fsync Command
Lock, Snapshot and Unlock

Caveats
Snapshotting Slaves

See Also

Version 1.3.1 and higher

The fsync command allows us to flush all pending writes to datafiles. More importantly, it also provides a lock option that makes backups easier.

fsync Command

The fsync command forces the database to flush all datafiles:

> use admin
> db.runCommand({fsync:1});

By default the command returns after synchronizing. To return immediately use:

> db.runCommand({fsync:1,async: });true

To fsync on a regular basis, use the --syncdelay command line option (see mongod --help output). By default a full flush is forced every 60
seconds.

Lock, Snapshot and Unlock

The fsync command supports a lock option that allows one to safely snapshot the database's datafiles. While locked, all write operations are
blocked, although read operations are still allowed. After snapshotting, use the unlock command to unlock the database and allow locks again.
Example:

> use admin
switched to db admin
> db.runCommand({fsync:1,lock:1})
{
 : ,"info" "now locked against writes"
 : 1"ok"
}
> db.currentOp()
{
 : ["inprog"
],
 : 1"fsyncLock"
}

>// some work here: example, snapshot datafiles...do for
>// runProgram()"/path/to/my-filesystem-snapshotting-script.sh"

> db.$cmd.sys.unlock.findOne();
{ : 1, : }"ok" "info" "unlock requested"
> // unlock is now requested. it may take a moment to take effect.
> db.currentOp()
{ : [] }"inprog"

Caveats

While the database can be read while locked for snapshotting, if a write is attempted, this will block readers due to the database's use of a
read/write lock. This should be addressed in the future : http://jira.mongodb.org/browse/SERVER-1423

Snapshotting Slaves

The above procedure works on replica slaves. The slave will not apply operations while locked. However, see the above caveats section.

See Also

Backups

Index-Related Commands

Create Index

ensureIndex() is the helper function for this. Its implementation creates an index by adding its info to the table.system.indexes

> db.myCollection.ensureIndex(<keypattern>);
> // same as:
> db.system.indexes.insert({ name: , ns: , "name" "namespaceToIndex"
 key: <keypattern> });

Note: Once you've inserted the index, all subsequent document inserts for the given collection will be indexed, as will all pre-existing documents
in the collection. If you have a large collection, this can take a significant amount of time and will block other operations. However, beginning with
version 1.3.2, you can specify that indexing happen in the background. See the for details.background indexing docs

You can query system.indexes to see all indexes for a table :foo

>db.system.indexes.find({ ns: });"foo"

In some drivers, remembers if it has recently been called, and foregoes the insert operation in that case. Even if this is not theensureIndex()
case, is a cheap operation, so it may be invoked often to ensure that an index exists.ensureIndex()

Dropping an Index

From the shell:

http://jira.mongodb.org/browse/SERVER-1423

db.mycollection.dropIndex(<name_or_pattern>)
db.mycollection.dropIndexes()

// example:
t.dropIndex({ name : 1 });

From a driver (raw command object form; many drivers have helpers):

{ deleteIndexes: <collection_name>, index: <index_name> }
// <index_name> will drop all indexes except _id"*" for

Index Namespace

Each index has a namespace of its own for the btree buckets. The namespace is:

<collectionnamespace>.$<indexname>

This is an internal namespace that cannot be queried directly.

Last Error Commands

Since MongoDB doesn't wait for a response by default when writing to the database, a couple commands exist for ensuring that these operations
have succeeded. These commands can be invoked automatically with many of the drivers when saving and updating in "safe" mode. But what's
really happening is that a special command called is being invoked. Here, we explain how this works.getlasterror

getlasterror
Drivers
Use Cases
Mongo Shell Behavior
fsync option
With Replication

getPrevError

getlasterror

The command checks for an error on the last database operation for this connection. Since it's a command, there are a few waysgetlasterror
to invoke it:

> db.$cmd.findOne({getlasterror:1})

Or

> db.runCommand()"getlasterror"

Or you can use the helper:

> db.getLastError()

For more about commands, see the .command documentation

Drivers

The drivers support in the command form and many also offer a "safe" mode for operations. If you're using Python, for example,getlasterror
you automatically call getlasterror on insert as follows:

collection.save({ : }, safe=True)"name" "MongoDB"

If the save doesn't succeed, an exception will be raised. For more on "safe" mode, see your driver's documentation.

Use Cases

getlasterror is primarily useful for write operations (although it is set after a command or query too). Write operations by default do not have a
return code: this saves the client from waiting for client/server turnarounds during write operations. One can always call getLastError if one wants
a return code.

If you're writing data to MongoDB on multiple connections, then it can sometimes be important to call on one connection to begetlasterror
certain that the data has been committed to the database. For instance, if you're writing to connection #1 and want those writes to be reflected in
reads from connection #2, you can assure this by calling after writing to connection #1.getlasterror

Note: The special killCursors operation does not support getlasterror. (This is really only of significant to .)mongo wire protocol driver developers

Mongo Shell Behavior

The database shell performs a before each read/eval/print loop command evaluation - and automatically prints the error, if oneresetError()
occurred, after each evaluation. Thus, after an error, at the shell prompt will return null. However, if called before returningdb.getLastError()
to the prompt, the result is as one would expect:

> { db.foo.findOne() } (e) { print(+ tojson(db.getPrevError())); print(try catch "preverr:" "lasterr:"
+ tojson(db.getLastError()));}
preverr:{ : , : 1 , : 1}"err" "unauthorized" "nPrev" "ok"
lasterr:"unauthorized"

fsync option

Include the fsync option to force the database to fsync all files before returning (v1.3+):

> db.runCommand({getlasterror:1,fsync: })true
{ : , : 0, : 2, : 1 }"err" null "n" "fsyncFiles" "ok"

With Replication

See .blocking for replication

getPrevError

Note: getPrevError may be deprecated in the future.

When performing bulk write operations, and can be an efficient way to check for success of the operation. resetError() getPrevError()
For example if we are inserting 1,000 objects in a collection, checking the return code 1,000 times over the network is slow. Instead one might do
something like this:

db.resetError();
(loop 1000 times...)for

 db.foo.save(something...);
(db.getPrevError().err) if

 print();"didn't work!"

Windows Service

On windows mongod.exe has native support for installing and running as a windows service.

Service Related Commands

The service related commands are:

mongod --install
mongod --service
mongod --remove
mongod --reinstall

You may also option pass the following to --install and --reinstall

--serviceName {arg}
--serviceUser {arg}
--servicePassword {arg}

The --install and --remove options install and remove the mongo daemon as a windows service respectively. The --service option starts the
service. --reinstall will attempt to remove the service, and then install it. If the service is not already installed, --reinstall will still work.

Both --remove and --reinstall will stop the service if it is currently running.

To change the name of the service use --serviceName. To make mongo execute as a local or domain user, as opposed to the Local System
account, use --serviceUser and --servicePassword.

Whatever other arguments you pass to mongod.exe on the command line alongside --install are the arguments that the service is configured to
execute mongod.exe with. Take for example the following command line:

mongod --bind_ip 127.0.0.1 --logpath d:\mongo\logs --logappend --dbpath d:\mongo\data --directoryperdb
--install

Will cause a service to be created called Mongo that will execute the following command:

mongod --bind_ip 127.0.0.1 --logpath d:\mongo\logs --logappend --dbpath d:\mongo\data --directoryperdb

Viewing and Terminating Current Operation

View Current Operation(s) in Progress
Terminate (Kill) an Operation in Progress

View Current Operation(s) in Progress

> db.currentOp();
> // same as: db.$cmd.sys.inprog.findOne()
{ inprog: [{ : 18 , : , : ,"opid" "op" "query" "ns" "mydb.votes"
 : , : 1 }"query" "{ score : 1.0 }" "inLock"
]
}

Fields:

opid - an incrementing operation number. Use with killOp().
op - the operation type (query, update, etc.)
ns - namespace for the operation (database + collection name)
query - the query spec, if operation is a query

NOTE: currentOp's output format varies from version 1.0 and version 1.1 of MongoDB. The format above is for 1.1 and higher.

You can also do

db.$cmd.sys.inprog.find()

or this version which prints all connections

db.$cmd.sys.inprog.find({ $all : 1 })

Terminate (Kill) an Operation in Progress

// <= v1.2
> db.killOp()
> // same as: db.$cmd.sys.killop.findOne()
{ : }"info" "no op in progress/not locked"

// v>= 1.3
> db.killOp(1234/*opid*/)
> // same as: db.$cmd.sys.killop.findOne({op:1234})

Validate Command

Use this command to check that a collection is valid (not corrupt) and to get various statistics.

This command scans the entire collection and its indexes and will be very slow on large datasets.

From the shell:mongo

> db.foo.validate()
{ : , : ""ns" "test.foo" "result"
validate
 details: 08D03C9C ofs:963c9c
 firstExtent:0:156800 ns:test.foo
 lastExtent:0:156800 ns:test.foo
 # extents:1
 datasize?:144 nrecords?:3 lastExtentSize:2816
 padding:1
 first extent:
 loc:0:156800 xnext: xprev:null null
 ns:test.foo
 size:2816 firstRecord:0:1568b0 lastRecord:0:156930
 3 objects found, nobj:3
 192 bytes data w/headers
 144 bytes data wout/headers
 deletedList: 0000000100000000000
 deleted: n: 1 size: 2448
 nIndexes:1
 test.foo.$x_1 keys:3

ok valid lastExtentSize" : 2816}" , " " : 1 , " " : , "true

From a driver one might invoke the driver's equivalent of:

> db.$cmd.findOne({validate: });"foo"

validate takes an optional scandata parameter which skips the scan of the base collection (but still scans indexes).

> db.$cmd.findOne({validate: , scandata: });"foo" true

getLastError

Redirection Notice
This page should redirect to in about 3 seconds.Last Error Commands

Most drivers, and the db shell, support a getlasterror capability. This lets one check the error code on the last operation.

Database , as well as queries, have a direct return code. commands

getlasterror is primarily useful for write operations (although it is set after a command or query too). Write operations by default do not have a
return code: this saves the client from waiting for client/server turnarounds during write operations. One can always call getLastError if one wants
a return code.

> db.runCommand()"getlasterror"
> db.getLastError()

Note: The special killCursors operation does not support getlasterror. (This is really only of significant to .)mongo wire protocol driver developers

getPrevError

Note: getPrevError may be deprecated in the future.

When performing bulk write operations, and can be an efficient way to check for success of the operation. resetError() getPrevError()
For example if we are inserting 1,000 objects in a collection, checking the return code 1,000 times over the network is slow. Instead one might do
something like this:

db.resetError();
(loop 1000 times...)for

 db.foo.save(something...);
(db.getPrevError().err) if

 print();"didn't work!"

Last Error in the Shell

The database shell performs a before each read/eval/print loop command evaluation - and automatically prints the error, if oneresetError()
occurred, after each evaluation. Thus, after an error, at the shell prompt will return null. However, if called before returningdb.getLastError()
to the prompt, the result is as one would expect:

> { db.foo.findOne() } (e) { print(+ tojson(db.getPrevError())); print(try catch "preverr:" "lasterr:"
+ tojson(db.getLastError()));}
preverr:{ : , : 1 , : 1}"err" "unauthorized" "nPrev" "ok"
lasterr:"unauthorized"

FSync with GetLastError

Include the fsync option to force the database to fsync all files before returning (v1.3+):

> db.runCommand({getlasterror:1,fsync: })true
{ : , : 0, : 2, : 1 }"err" null "n" "fsyncFiles" "ok"

List of Database Commands

List of MongoDB Commands

See the page for details on how to invoke a command.Commands

Also: with v1.5+, run with enabled, and then go to mongod --rest http://localhost:28017/_commands

Commands Quick Reference Card

Mongo Metadata

The <dbname>.system.* namespaces in MongoDB are special and contain database system information. System collections include:

system.namespaces lists all namespaces.
system.indexes lists all indexes.
Additional namespace / index metadata exists in the database.ns files, and is opaque.
system.profile stores database profiling information.
system.users lists users who may access the database.
local.sources stores replica slave configuration data and state.
Information on the structure of a stored object is stored within the object itself. See .BSON

There are several restrictions on manipulation of objects in the system collections. Inserting in adds an index, but otherwisesystem.indexes
that table is immutable (the special drop index command updates it for you). is modifiable. is droppable.system.users system.profile

Note: is a reserved character. Do not use it in namespace names or within field names. Internal collections for indexes use the character in$ $
their names. These collection store b-tree bucket data and are not in BSON format (thus direct querying is not possible).

http://api.mongodb.org/internal/current/commands.html
http://localhost:28017/_commands
http://www.10gen.com/reference

Collections

MongoDB collections are essentially named groupings of documents. You can think of them as roughly equivalent to relational database tables.

Details

A MongoDB collection is a collection of documents. These documents are usually have the same structure, but this is not a requirementBSON
since MongoDB is a database. You may store a heterogeneous set of documents within a collection, as you do not need predefineschema-free
the collection's "columns" or fields.

A collection is created when the first document is inserted.

Collection names should begin with letters or an underscore and may include numbers; is reserved. Collections can be organized in$
namespaces; these are named groups of collections defined using a dot notation. For example, you could define collections blog.posts and
blog.authors, both reside under "blog". Note that this is simply an organizational mechanism for the user -- the collection namespace is flat from
the database's perspective.

Programmatically, we access these collections using the dot notation. For example, using the :mongo shell

if(db.blog.posts.findOne())
 print();"blog.posts exists and is not empty."

The maximum size of a collection name is 128 characters (including the name of the db and indexes). It is probably best to keep it under 80/90
chars.

See also:

Capped Collections
Using a Large Number of Collections

Capped Collections

Capped collections are fixed sized collections that have a very high performance auto-FIFO age-out feature (age out is based on insertion order).

In addition, capped collections automatically, with high performance, maintain insertion order for the objects in the collection; this is very powerful
for certain use cases such as logging.

Creating a Fixed Size (capped) Collection

Unlike a standard collection, you must explicitly create a capped collection, specifying a collection size in bytes. The collection's data space is
then preallocated. Note that the size specified includes database headers.

db.createCollection(, {capped: , size:100000})"mycoll" true

Usage and Restrictions

You may insert new objects in the capped collection.
You may update the existing objects in the collection. However, the objects must not grow in size. If they do, the update will fail. (There
are some possible workarounds which involve pre-padding objects; contact us in the support forums for more information, if help is
needed.)
The database does not allow deleting objects from a capped collection. Use the method to remove all rows from the collection. drop()
Note: After the drop you must explicitly recreate the collection.
Maximum size for a capped collection is currently 1e9 bytes on a thirty-two bit machine. The maximum size of a capped collection on a
sixty-four bit machine is constrained only by system resources.

Behavior

Once the space is fully utilized, newly added objects will replace the oldest objects in the collection.
If you perform a on the collection with no ordering specified, the objects will always be returned in insertion order. Reverse orderfind()
is always retrievable with find().sort({$natural:-1}).

Applications

Logging. Capped collections provide a high-performance means for storing logging documents in the database. Inserting objects in an
unindexed capped collection will be close to the speed of logging to a filesystem. Additionally, with the built-in LRU mechanism, you are

not at risk of using excessive disk space for the logging.
Caching. If you wish to cache a small number of objects in the database, perhaps cached computations of information, the capped tables
provide a convenient mechanism for this. Note that for this application you will likely use an index on the capped table as there will be
more reads than writes.
Auto Archiving. If you know you want data to automatically "roll out" over time as it ages, a capped collection can be an easier way to
support than writing manual archival cron scripts.

Recommendations

For maximum performance, do not create indexes on a capped collection. If the collection will be written to much more than it is read
from, it is better to have no indexes. Note that you may create indexes on a capped collection; however, you are then moving from "log
speed" inserts to "database speed" inserts -- that is, it will still be quite fast by database standards.
Use to retrieve the most recently inserted elements from the collection efficiently. This is (somewhat) analogous to tail onnatural ordering
a log file.

Capping the Number of Objects

You may also cap the number of objects in the collection. Once the limit is reached, items roll out on a least recently inserted basis.

To cap on number of objects, specify a parameter on the call.max: createCollection()

Note: When specifying a cap on the number of objects, you must also cap on size. Be sure to leave enough room for your chosen number of
objects or items will roll out faster than expected. You can use the utility method to see how much space an existing collection uses,validate()
and from that estimate your size needs.

db.createCollection(, {capped: , size:100000, max:100});"mycoll" true
db.mycoll.validate();

Tip: When programming, a handy way to store the most recently generated version of an object can be a collection capped with .max=1

Preallocating space for a normal collection

The command may be used for non capped collections as well. For example:createCollection

db.createCollection(, {size:10000000});"mycoll"
db.createCollection(, {size:10000000, autoIndexId: });"mycoll" false

Explicitly creating a non capped collection via allows parameters of the new collection to be specified. For example,createCollection
specification of a collection size causes the corresponding amount of disk space to be preallocated for use by the collection. The autoIndexId
field may be set to true or false to explicitly enable or disable automatic creation of a unique key index on the object field. By default, such an_id
index is created for non capped collections but is not created for capped collections.

An index is not automatically created on _id for capped collections by default

See Also

The section of this GuideSorting and Natural Order

Using a Large Number of Collections

A technique one can use with MongoDB in certain situations is to have several collections to store information instead of a single collection. By
doing this, certain repeating data no longer needs to be stored in every object, and an index on that key may be eliminated. More importantly for
performance (depending on the problem), the data is then clustered by the grouping specified.

For example, suppose we are logging objects/documents to the database, and want to have M logs: perhaps a dev log, a debug log, an ops log,
etc. We could store them all in one collection 'logs' containing objects like:

{ log : 'dev', ts : ..., info : ... }

However, if the number of logs is not too high, it might be better to have a collection per log. We could have a 'logs.dev' collection, a 'logs.debug'
collection, 'logs.ops', etc.:

// logs.dev:
{ ts : ..., info : ... }

Of course, this only makes sense if we do not need to query for items from multiple logs at the same time.

Generally, having a large number of collections has no significant performance penalty, and results in very good performance.

Limits

By default MongoDB has a limit of approximately 24,000 per database. Each collection counts as a namespace, as does eachnamespaces
index. Thus if every collection had one index, we can create up to 12,000 collections. Use the --nssize parameter to set a higher limit.

Be aware that there is a certain minimum overhead per collection -- a few KB. Further, any index will require at least 8KB of data space as the
b-tree page size is 8KB.

--nssize

If more collections are required, run mongod with the --nssize parameter specified. This will make the <database>.ns file larger and support more
collections. Note that --nssize sets the size used for newly created .ns files -- if you have an existing database and wish to resize, after running
the db with --nssize, run the db.repairDatabase() command from the shell to adjust the size.

Maximum .ns file size is 2GB.

Data Types and Conventions

MongoDB (BSON) Data Types

Mongo uses special data types in addition to the basic JSON types of string, integer, boolean, double, null, array, and object. These types include
date, , binary data, regular expression, and code. Each driver implements these types in language-specific ways, see your object id driver's

 for details.documentation

See for a full list of database types.BSON

Internationalization

See Internationalized strings

Database References

See and Database References Schema Design

Internationalized Strings

MongoDB supports UTF-8 for strings in stored objects and queries. (Specifically, strings are UTF-8.)BSON

Generally, drivers for each programming language convert from the language's string format of choice to UTF-8 when serializing and deserializing
BSON. For example, the Java driver converts Java Unicode strings to UTF-8 on serialization.

In most cases this means you can effectively store most international characters in MongoDB strings. A few notes:

MongoDB regex queries support UTF-8 in the regex string.
Currently, sort() on a string uses strcmp: sort order will be reasonable but not fully international correct. Future versions of MongoDB
may support full UTF-8 sort ordering.

Object IDs

Documents in MongoDB are required to have a key, _id, which uniquely identifies them.

Document IDs: _id
The BSON ObjectId Datatype

BSON ObjectID Specification
Document Timestamps

Sequence Numbers

Document IDs: _id

Every MongoDB document has an _id field as its first attribute. This value usually a BSON ObjectId. Such an id must be unique for each
member of a collection; this is enforced if the collection has an index on _id, which is the case by default.

If a user tries to insert a document without providing an and store it the _id field.id, the database will automatically generate an _object id

Users are welcome to use their own conventions for creating ids; the _id value may be of any type so long as it is a unique.

The BSON ObjectId Datatype

Although _id values can be of any type, a special BSON datatype is provided for object ids. This type is a 12-byte binary value designed to have
a reasonably high probability of being unique when allocated. All of the officially-supported MongoDB drivers use this type by default for _id
values. Also, the Mongo database itself uses this type when assigning _id values on inserts where no _id value is present.

In the MongoDB shell, ObjectId() may be used to create ObjectIds. creates an object ID from the specified hex string.ObjectId()string

> x={ name: }"joe"
{ name : }"joe"
> db.people.save(x)
{ name : , _id : ObjectId() }"joe" "47cc67093475061e3d95369d"
> x
{ name : , _id : ObjectId() }"joe" "47cc67093475061e3d95369d"
> db.people.findOne({ _id: ObjectId() })"47cc67093475061e3d95369d"
{ _id : ObjectId() , name : }"47cc67093475061e3d95369d" "joe"
> db.people.findOne({ _id: ObjectId() })new "47cc67093475061e3d95369d"
{ _id : ObjectId() , name : }"47cc67093475061e3d95369d" "joe"

BSON ObjectID Specification

A BSON ObjectID is a 12-byte value consisting of a 4-byte timestamp (seconds since epoch), a 3-byte machine id, a 2-byte process id, and a
3-byte counter. Note that the timestamp and counter fields must be stored big endian unlike the rest of BSON. This is because they are compared
byte-by-byte and we want to ensure a mostly increasing order. Here's the schema:

0 1 2 3 4 5 6 7 8 9 10 11
time machine pid inc

Document Timestamps

One useful consequence of this specification is that it provides documents with a creation timestamp for free. All of the drivers implement methods
for extracting these timestamps; see the relevant api docs for details.

Sequence Numbers

Traditional databases often use monotonically increasing sequence numbers for primary keys. In MongoDB, the preferred approach is to use
Object IDs instead. Object IDs are more synergistic with sharding and distribution.

However, sometimes you may want a sequence number. The Insert if Not Present section of the page shows an example ofAtomic Operations
how to do this.

Database References

Simple Manual References
DBRef
DBRef in Different Languages / Drivers

C#
C++
Java
Javascript (mongo shell)
PHP
Python
Ruby

See Also

As MongoDB is non-relational (no joins), references ("foreign keys") between documents are generally resolved client-side by additional queries
to the server. Two conventions are common for references in MongoDB: first simple manual references, and second, the DBRef standard, which
many drivers support explicitly.

Note: Often embedding of objects eliminates the need for references, but sometimes references are still appropriate.

Simple Manual References

Generally, manually coded references work just fine. We simply store the value that is present in _id in some other document in the database.
For example:

> p = db.postings.findOne();
{
 : ObjectId(),"_id" "4b866f08234ae01d21d89604"
 : ,"author" "jim"
 : "title" "Brewing Methods"
}
> // get more info on author
> db.users.findOne({ _id : p.author })
{ : , : }"_id" "jim" "email" "jim@gmail.com"

DBRef

DBRef is a more formal specification for creating references between documents. DBRefs (generally) include a collection name as well as an
object id. Most developers only use DBRefs if the collection can change from one document to the next. If your referenced collection will always
be the same, the manual references outlined above are more efficient.

A DBRef is a reference from one document (object) to another within a database. A database reference is a standard embedded (JSON/BSON)
object: we are defining a convention, not a special type. By having a standard way to represent, drivers and data frameworks can add helper
methods which manipulate the references in standard ways.

DBRef's have the advantage of allowing optional automatic dereferencing with some drivers, although more features may be addedclient-side
later. In many cases, you can just get away with storing the _id as a reference then dereferencing manually as detailed in the "Simple Manual
References" section above.

Syntax for a DBRef reference value is

{ $ref : <collname>, $id : <idvalue>[, $db : <dbname>] }

where is the collection name referenced (without the database name), and is the value of the _id field for the object<collname> <idvalue>
referenced. is optional (currently unsupported by many of the drivers) and allows for references to documents in other databases (specified$db
by).<dbname>

The ordering for DBRefs does matter, fields must be in the order specified above.

The old DBRef datatype is deprecated.BSON

DBRef in Different Languages / Drivers

C#

Use the DBRef class. It takes the collection name and _id as parameters to the constructor. Then you can use the FollowReference method on
the Database class to get the referenced document.

C++

The C++ driver does not yet provide a facility for automatically traversing DBRefs. However one can do it manually of course.

Java

Java supports DB references using the .DBRef class

Javascript (mongo shell)

Example:

http://api.mongodb.org/java/current/com/mongodb/DBRef.html

> x = { name : 'Biology' }
{ : }"name" "Biology"
> db.courses.save(x)
> x
{ : , : ObjectId() }"name" "Biology" "_id" "4b0552b0f0da7d1eb6f126a1"
> stu = { name : 'Joe', classes : [DBRef('courses', x._id)] }new
// or we could write:
// stu = { name : 'Joe', classes : [{$ref:'courses',$id:x._id}] }
> db.students.save(stu)
> stu
{
 : ,"name" "Joe"
 : ["classes"
 {
 : ,"$ref" "courses"
 : ObjectId()"$id" "4b0552b0f0da7d1eb6f126a1"
 }
],
 : ObjectId()"_id" "4b0552e4f0da7d1eb6f126a2"
}
> stu.classes[0]
{ : , : ObjectId() }"$ref" "courses" "$id" "4b0552b0f0da7d1eb6f126a1"
> stu.classes[0].fetch()
{ : ObjectId(), : }"_id" "4b0552b0f0da7d1eb6f126a1" "name" "Biology"
>

PHP

PHP supports DB references with the , as well as creation and deferencing methods at the database (MongoDBRef class MongoDB::createDBRef
and) and collection (and) levels.MongoDB::getDBRef MongoCollection::createDBRef MongoCollection::getDBRef

Python

To create a DB reference in python use the class. You can also use the method on Database instances topymongo.dbref.DBRef dereference
make dereferencing easier.

Python also supports auto-ref and auto-deref - check out the .auto_reference example

Ruby

Ruby also supports DB references using the class and a method on DB instances. For example:DBRef dereference

@db = Connection. .db()new "blog"
@user = @db[].save({:name => })"users" "Smith"
@post = @db[].save({:title => , :user_id => @user.id})"posts" "Hello World"
@ref = DBRef. (, @post.user_id)new "users"
assert_equal @user, @db.dereference(@ref)

See Also

Schema Design

GridFS

GridFS is a specification for storing large files in MongoDB. All of the officially supported driver implement the .GridFS spec

Rationale
Implementation
Language Support
Command Line Tools
See also

Rationale

The database supports native storage of binary data within objects. However, BSON objects in MongoDB are limited to 4MB in size. TheBSON

http://us3.php.net/manual/en/class.mongodbref.php
http://us3.php.net/manual/en/mongodb.createdbref.php
http://us3.php.net/manual/en/mongodb.getdbref.php
http://us3.php.net/manual/en/mongocollection.createdbref.php
http://us3.php.net/manual/en/mongocollection.getdbref.php
http://api.mongodb.org/python/0.11.3/pymongo.dbref.DBRef-class.html
http://api.mongodb.org/python/0.11.3/pymongo.database.Database-class.html#dereference
http://github.com/mongodb/mongo-python-driver/blob/cd47b2475c5fe567e98696e6bc5af3c402891d12/examples/auto_reference.py
http://api.mongodb.org/ruby/0.8/classes/XGen/Mongo/Driver/DBRef.html
http://api.mongodb.org/ruby/0.8/classes/XGen/Mongo/Driver/DB.html#M000236

GridFS spec provides a mechanism for transparently dividing a large file among multiple documents. This allows us to efficiently store large
objects, and in the case of especially large files, such as videos, permits range operations (e.g., fetching only the first N bytes of a file).

Implementation

To facilitate this, a standard is specified for the chunking of files. Each file has a metadata object in a files collection, and one or more chunk
objects in a chunks collection. Details of how this is stored can be found in the ; however, you do not really need to read that,GridFS Specification
instead, just look at the GridFS API in each language's client driver or tool.mongofiles

Language Support

Most drivers include GridFS implementations; for languages not listed below, check the driver's API documentation. (If a language does not
include support, see the GridFS -- implementing a handler is usually quite easy.)specification

Command Line Tools

Command line tools are available to write and read GridFS files from and to the local filesystem.

See also

C++
A PHP GridFS Blog Article

When to use GridFS

This page is under construction

When to use GridFS

Lots of files. GridFS tends to handle large numbers (many thousands) of files better than many file systems.
User uploaded files. When users upload files you tend to have a lot of files, and want them replicated and backed up. GridFS is a perfect
place to store these as then you can manage them the same way you manage your data. You can also query by user, upload date, etc...
directly in the file store, without a layer of indirection
Files that often change. If you have certain files that change a lot - it makes sense to store them in GridFS so you can modify them in one
place and all clients will get the updates. Also can be better than storing in source tree so you don't have to deploy app to update files.

When not to use GridFS

Few small static files. If you just have a few small files for a website (js,css,images) its probably easier just to use the file system.

Indexes

Indexes enhance query performance, often dramatically. It's important to think about the kinds of queries your application will need so that you
can define relevant indexes. Once that's done, actually creating the indexes in MongoDB is relatively easy.

Indexes in MongoDB are conceptually similar to those in RDBMSes like MySQL. You will want an index in MongoDB in the same sort of situations
where you would have wanted an index in MySQL.

Basics
Default Indexes
Embedded Keys
Documents as Keys
Arrays

Compound Keys Indexes
Unique Indexes

Missing Keys
Duplicate Values

Background Index Building
Dropping Indexes
ReIndex
Additional Notes on Indexes

Index Performance
Using without an Indexsort()

Geospatial
Webinar

http://api.mongodb.org/cplusplus/0.9.2/classmongo_1_1_grid_f_s.html
http://www.snailinaturtleneck.com/blog/?p=271

Basics

An index is a data structure that collects information about the values of the specified fields in the documents of a collection. This data structure is
used by Mongo's query optimizer to quickly sort through and order the documents in a collection. Formally speaking, these indexes are
implemented as "B-Tree" indexes.

In , you can create an index by calling the function, and providing a document that specifies one or more keys to index.the shell ensureIndex()
Referring back to our database from , we can index on the 'j' field as follows:examples Mongo Usage Basics

db.things.ensureIndex({j:1});

The function only creates the index if it does not exist.ensureIndex()

Once a collection is indexed on a key, random access on query expressions which match the specified key are fast. Without the index, MongoDB
has to go through each document checking the value of specified key in the query:

db.things.find({j : 2}); // fast - uses index
db.things.find({x : 3}); // slow - has to check all because 'x' isn't indexed

You can run to see the existing indexes on the collection.db.things.getIndexes();

Default Indexes

An index is always created on . This index is special and cannot be deleted. The _id index enforces uniqueness for its keys. For _id Capped
 no index is created.Collections

Embedded Keys

With MongoDB you can even index on a key inside of an embedded document. For example:

db.things.ensureIndex({ : 1})"address.city"

Documents as Keys

Indexed fields may be of any type, including documents:

db.factories.insert({ name: , metro: { city: , state: } });"xyz" "New York" "NY"
db.factories.ensureIndex({ metro : 1 });
// query can use the above index:this
db.factories.find({ metro: { city: , state: } });"New York" "NY"

An alternative to documents as keys it to create a compound index such as:

db.factories.ensureIndex({ : 1, : 1 });"metro.city" "metro.state"
// these queries can use the above index:
db.factories.find({ : , : });"metro.city" "New York" "metro.state" "NY"
db.factories.find({ : });"metro.city" "New York"
db.factories.find().sort({ : 1, : 1 });"metro.city" "metro.state"
db.factories.find().sort({ : 1 })"metro.city"

There are pros and cons to the two approaches. When using the entire (sub-)document as a key, compare order is predefined and is ascending
key order in the order the keys occur in the document. With compound indexes reaching in, you can mix ascending and descending keys,BSON
and the query optimizer will then be able to use the index for queries on solely the first key(s) in the index too.

Arrays

When a document's stored value for a index key field is an array, MongoDB indexes each element of the array. See the page for moreMultikeys
information.

Compound Keys Indexes

In addition to single-key basic indexes, MongoDB also supports multi-key "compound" indexes. Just like basic indexes, you use the

 function in to create the index, but instead of specifying only a single key, you can specify several :ensureIndex() the shell

db.things.ensureIndex({j:1, name:-1});

When creating an index, the number associated with a key specifies the direction of the index, so it should always be 1 (ascending) or -1
(descending). Direction doesn't matter for single key indexes or for random access retrieval but is important if you are doing sorts or range queries
on compound indexes.

If you have a compound index on multiple fields, you can use it to query on the beginning subset of fields. So if you have an index on

a,b,c

you can use it query on

a

a,b

a,b,c

New in 1.6+
Now you can also use the compound index to service any combination of equality (and some inequality) queries from the
constitute fields.

Unique Indexes

MongoDB supports unique indexes, which guarantee that no documents are inserted whose values for the indexed keys match those of an
existing document. To create an index that guarantees that no two documents have the same values for both and youfirstname lastname
would do:

db.things.ensureIndex({firstname: 1, lastname: 1}, {unique: });true

Missing Keys

When a document is saved to a collection with unique indexes, any missing indexed keys will be inserted with null values. Thus, it won't be
possible to insert multiple documents missing the same indexed key.

db.things.ensureIndex({firstname: 1}, {unique: });true
 db.things.save({lastname: });"Smith"

 // Next operation will fail because of the unique index on firstname.
db.things.save({lastname: });"Jones"

Duplicate Values

A unique index cannot be created on a key that has duplicate values. If you would like to create the index anyway, keeping the first document the
database indexes and deleting all subsequent documents that have duplicate values, add the option.dropDups

db.things.ensureIndex({firstname : 1}, {unique : , dropDups : })true true

Background Index Building

By default, building an index blocks other database operations. v1.3.2 and higher has a .background index build option

Dropping Indexes

To delete all indexes on the specified collection:

db.collection.dropIndexes();

To delete a single index:

db.collection.dropIndex({x: 1, y: -1})

Running directly as a command without helper:

// note: command was , not , before MongoDB v1.3.2"deleteIndexes" "dropIndexes"
// remove index with key pattern {y:1} from collection foo
db.runCommand({dropIndexes:'foo', index : {y:1}})
// remove all indexes:
db.runCommand({dropIndexes:'foo', index : '*'})

ReIndex

The reIndex command will rebuild all indexes for a collection.

db.myCollection.reIndex()
// same as:
db.runCommand({ reIndex : 'myCollection' })

Usually this is unnecessary. You may wish to do this if the size of your collection has changed dramatically or the disk space used by indexes
seems oddly large.

Repair database recreates all indexes in the database.

Additional Notes on Indexes

MongoDB indexes (and string equality tests in general) are case sensitive.
When you an object, if the object fits in its previous allocation area, only those indexes whose keys have changed are updated.update
This improves performance. Note that if the object has grown and must move, all index keys must then update, which is slower.
Index information is kept in the system.indexes collection, run db.system.indexes.find() to see example data.

Index Performance

Indexes make retrieval by a key, including ordered sequential retrieval, very fast. Updates by key are faster too as MongoDB can find the
document to update very quickly.

However, keep in mind that each index created adds a certain amount of overhead for inserts and deletes. In addition to writing data to the base
collection, keys must then be added to the B-Tree indexes. Thus, indexes are best for collections where the number of reads is much greater than
the number of writes. For collections which are write-intensive, indexes, in some cases, may be counterproductive. Most collections are
read-intensive, so indexes are a good thing in most situations.

Using without an Indexsort()

You may use to return data in order without an index if the data set to be returned is small (less than four megabytes). For these cases itsort()
is best to use and together.limit() sort()

Geospatial

See page.Geospatial Indexing

Webinar

Indexing with MongoDB webinar video () and slides (). More detailed slides ().http://bit.ly/bQK1Op http://bit.ly/9qeMjC http://bit.ly/dAHrQk

Using Multikeys to Simulate a Large Number of Indexes

One way to work with data that has a high degree of options for queryability is to use the indexing feature where the keys are objects. multikey
For example:

http://bit.ly/bQK1Op
http://bit.ly/9qeMjC
http://bit.ly/dAHrQk

> x = {
> ... _id : ,"abc"
> ... cost : 33,
> ... attribs : [
> ... { color : 'red' },
> ... { shape : 'rect' },
> ... { color : 'blue' },
> ... { avail : }]true
> ... };
> db.foo.insert(x);
> db.foo.ensureIndex({attribs:1});
> db.foo.find({ attribs : {color:'blue'} }); // uses index
> db.foo.find({ attribs : {avail: } }); false // uses index

In addition to being able to have an unlimited number of attributes types, we can also add new types dynamically.

This is mainly useful for simply attribute lookups; the above pattern is not necessary helpful for sorting or certain other query types.

See Also

Discussion thread for a more complex real world example.MongoDB for a chemical property search engine

Geospatial Indexing

Creating the Index
Querying
Compound Indexes
geoNear Command
Bounds Queries
The Earth is Round but Maps are Flat

New Spherical Model
Sharded Environments
Implementation

v1.3.3+

MongoDB supports two-dimensional geospatial indexes. It is designed with location-based queries in mind, such as "find me the closest N items
to my location." It can also efficiently filter on additional criteria, such as "find me the closest N museums to my location."

In order to use the index, you need to have a field in your object that is either a sub-object or array where the first 2 elements are x,y coordinates
(or y,x - just be consistent; it might be advisible to use order-preserving dictionaries/hashes in your client code, to ensure consistency). Some
examples:

{ loc : [50 , 30] }
{ loc : { x : 50 , y : 30 } }
{ loc : { foo : 50 , y : 30 } }
{ loc : { lat : 40.739037, : 73.992964 } }long

Creating the Index

db.places.ensureIndex({ loc : })"2d"

By default, the index assumes you are indexing latitude/longitude and is thus configured for a [-180..180] value range.

If you are indexing something else, you can specify some options:

db.places.ensureIndex({ loc : } , { min : -500 , max : 500 })"2d"

that will scale the index to store values between -500 and 500. Currently geo indexing is limited to indexing squares with no "wrapping" at the
outer boundaries. You cannot insert values on the boundaries, for example, using the code above, the point could not to be(-500, -500)
inserted.

http://groups.google.com/group/mongodb-user/browse_thread/thread/de64676d2499f593/de232db0c81767a5

you can only have 1 geo2d index per collection right now

Querying

The index can be used for exact matches:

db.places.find({ loc : [50,50] })

Of course, that is not very interesting. More important is a query to find points near another point, but not necessarily matching exactly:

db.places.find({ loc : { $near : [50,50] } })

The above query finds the closest points to (50,50) and returns them sorted by distance (there is no need for an additional sort parameter). Use
limit() to specify a maximum number of points to return (a default limit of 100 applies if unspecified):

db.places.find({ loc : { $near : [50,50] } }).limit(20)

Compound Indexes

MongoDB geospatial indexes optionally support specification of secondary key values. If you are commonly going to be querying on both a
location and other attributes at the same time, add the other attributes to the index. The other attributes are annotated within the index to make
filtering faster. For example:

db.places.ensureIndex({ location : , category : 1 });"2d"
db.places.find({ location : { $near : [50,50] }, category : 'coffee' });

geoNear Command

While the find() syntax above is typically preferred, MongoDB also has a geoNear command which performs a similar function. The geoNear
command has the added benefit of returning the distance of each item from the specified point in the results, as well as some diagnostics for
troubleshooting.

> db.runCommand({ geoNear : , near : [50,50], num : 10 });"places"
> db.runCommand({geoNear: , near:[50,50]})"asdf"
{
 : ,"ns" "test.places"
 : ,"near" "1100110000001111110000001111110000001111110000001111"
 : ["results"
 {
 : 69.29646421910687,"dis"
 : {"obj"
 : ObjectId(),"_id" "4b8bd6b93b83c574d8760280"
 : ["y"
 1,
 1
],
 : "category" "Coffee"
 }
 },
 {
 : 69.29646421910687,"dis"
 : {"obj"
 : ObjectId(),"_id" "4b8bd6b03b83c574d876027f"
 : ["y"
 1,
 1
]
 }
 }
],
 : {"stats"
 : 0,"time"
 : 1,"btreelocs"
 : 1,"btreelocs"
 : 2,"nscanned"
 : 2,"nscanned"
 : 2,"objectsLoaded"
 : 2,"objectsLoaded"
 : 69.29646421910687"avgDistance"
 },
 : 1"ok"
}

The above command will return the 10 closest items to (50,50). (The field is automatically determined by checking for a 2d index on theloc
collection.)

If you want to add an additional filter, you can do so:

> db.runCommand({ geoNear : , near : [50 , 50], num : 10,"places"
... query : { type : } });"museum"

query can be any regular mongo query.

Bounds Queries

v1.3.4

$within can be used instead of to find items within a shape. At the moment, (rectangles) and (circles) are supported.$near $box $center

To query for all points within a rectangle, you must specify the lower-left and upper-right corners:

> box = [[40, 40], [60, 60]]
> db.places.find({ : { : { : box}}})"loc" "$within" "$box"

1.

2.

3.

A circle is specified by a center point and radius:

> center = [50, 50]
> radius = 10
> db.places.find({ : { : { : [center, radius]}}})"loc" "$within" "$center"

The Earth is Round but Maps are Flat

The current implementation assumes an idealized model of a flat earth, meaning that an arcdegree of latitude (y) and longitude (x) represent the
same distance everywhere. This is only true at the equator where they are both about equal to 69 miles or 111km. However, at the 10gen offices
at one arcdegree of longitude is about 52 miles or 83 km (latitude is unchanged). This means that something 1 mile to the{ x : -74 , y : 40.74 }
north would seem closer than something 1 mile to the east.

New Spherical Model

In 1.7.0 we added support for correctly using spherical distances by adding "Sphere" to the name of the query. For example, use $nearSphere
or (doesn't really make sense so it isn't supported). If you use the geoNear command to get distance along with$centerSphere $boxSphere
the results, you just need to add to the list of options.spherical:true

There are a few caveats that you must be aware of when using spherical distances:

The code assumes that you are using in (X,Y) / (longitude, latitude) order. This is the same order used for the decimal degrees GeoJSON
.spec

All distances use . This allows you to easily multiply by the (about 6371 km or 3959 miles) to get the distance inradians radius of the earth
your choice of units. Conversely, divide by the radius of the earth when doing queries.
We don't currently handle wrapping at the poles or at the transition from -180° to +180° longitude, however we detect when a search
would wrap and raise an error.

Sharded Environments

Support for geospatial in sharded collections is coming; please watch this ticket: .http://jira.mongodb.org/browse/SHARDING-83

In the meantime sharded clusters can use geospatial indexes for unsharded collections within the cluster.

Implementation

The current implementation encodes geographic hash codes atop standard MongoDB b-trees. Results of $near queries are exact. The problem
with geohashing is that prefix lookups don't give you exact results, especially around bit flip areas. MongoDB solves this by doing a grid by grid
search after the initial prefix scan. This guarantees performance remains very high while providing correct results.

Indexing as a Background Operation

Slaves and replica secondaries build all indexes in the foreground in certain releases (including the latest). Thus even when
using background:true on the primary, the slave/secondary will be unavailable to service queries while the index builds there.

By default the operation is blocking, and will stop other operations on the database from proceeding until completed. However,ensureIndex()
in v1.3.2+, a background indexing option is available.

To build an index in the background, add to your index options. Examples:background:true

> db.things.ensureIndex({x:1}, {background: });true
> db.things.ensureIndex({name:1}, {background: , unique: ,true true
... dropDups: });true

With background mode enabled, other operations, including writes, will not be obstructed during index creation. The index is not used for queries
until the build is complete.

Although the operation is 'background' in the sense that other operations may run concurrently, the command will not return to the shell prompt
until completely finished. To do other operations at the same time, open a separate mongo instance.shell

Please note that background mode building uses an incremental approach to building the index which is slower than the default foreground mode:
time to build the index will be greater.

While the build progresses, it is possible to see that the operation is still in progress with the command (will be shown as andb.currentOp()

http://maps.google.com/maps?q=17+w+18th+st+nyc
http://en.wikipedia.org/wiki/Decimal_degrees
http://geojson.org/geojson-spec.html#id2
http://geojson.org/geojson-spec.html#id2
http://en.wikipedia.org/wiki/Radians
http://en.wikipedia.org/wiki/Earth_radius
http://jira.mongodb.org/browse/SHARDING-83

insert to system.indexes). You may also use to terminate the build process.db.killOp()

While the build progresses, the index is visible in system.indexes, but it is not used for queries until building completes.

Notes

Only one index build at a time is permitted per collection.
Some administrative operations, such as , are disallowed while a background indexing job is in progress.repairDatabase
v1.4 and higher (for production usage)

Multikeys

MongoDB provides an interesting "multikey" feature that can automatically index arrays of an object's values. A good example is tagging.
Suppose you have an article tagged with some category names:

$ dbshell
> db.articles.save({ name: , author: , "Warm Weather" "Steve"
 tags: ['weather', 'hot', 'record', 'april'] })
> db.articles.find()
{ : , : , "name" "Warm Weather" "author" "Steve"
 : [, , ,] , : }"tags" "weather" "hot" "record" "april" "_id" "497ce4051ca9ca6d3efca323"

We can easily perform a query looking for a particular value in the array:tags

> db.articles.find({ tags: 'april' })
{ : , : , "name" "Warm Weather" "author" "Steve"
 : [, , ,] , : }"tags" "weather" "hot" "record" "april" "_id" "497ce4051ca9ca6d3efca323"

Further, we can index on the tags array. Creating an index on an array element indexes results in the database indexing each element of the
array:

> db.articles.ensureIndex({ tags : 1 })
true
> db.articles.find({ tags: 'april' })
{ : , : , "name" "Warm Weather" "author" "Steve"
 : [, , ,] , : }"tags" "weather" "hot" "record" "april" "_id" "497ce4051ca9ca6d3efca323"
> db.articles.find({ tags: 'april' }).explain()
{ : , : { : } , "cursor" "BtreeCursor tags_1" "startKey" "tags" "april"
 : { : } , : 1 , : 1 , : 0 }"endKey" "tags" "april" "nscanned" "n" "millis"

Embedded object fields in an array

Additionally the same technique can be used for fields in embedded objects:

> db.posts.find({ : })"comments.author" "julie"
{ : , "title" "How the west was won"
 : [{ : , : },"comments" "text" "great!" "author" "sam"
 { : , : }],"text" "ok" "author" "julie"
 : }"_id" "497ce79f1ca9ca6d3efca325"

Querying on all values in a given set

By using the $all query option, a set of values may be supplied each of which must be present in a matching object field. For example:

> db.articles.find({ tags: { $all: ['april', 'record'] } })
{ : , : , "name" "Warm Weather" "author" "Steve"
 : [, , ,] , : }"tags" "weather" "hot" "record" "april" "_id" "497ce4051ca9ca6d3efca323"
> db.articles.find({ tags: { $all: ['april', 'june'] } })
> // no matches

Parallel Arrays

When using a compound index, at most one of indexed values in any document can be an array. So if we have an index on { }, thea: 1, b: 1
following documents are both fine:

{a: [1, 2], b: 1}
{a: 1, b: [1, 2]}

This document, however, will fail to be inserted, with an error message "cannot index parallel arrays":

{a: [1, 2], b: [1, 2]}

The problem with indexing parallel arrays is that each value in the cartesian product of the compound keys would have to be indexed, which can
get out of hand very quickly.

See Also

The section of the Full Text Search in Mongo document for information about this feature.Multikeys

Indexing Advice and FAQ

We get a lot of questions about indexing. Here we provide answers to a number of these. There are a couple of points to keep in mind, though.
First, indexes in MongoDB work quite similarly to indexes in MySQL, and thus many of the techniques for building efficient indexes in MySQL
apply to MongoDB.

Second, and even more importantly, know that advice on indexing can only take you so far. The best indexes for your application should always
be based on a number of important factors, including the kinds of queries you expect, the ratio of reads to writes, and even the amount of free
memory on your system. This means that the best strategy for designing indexes will always be to profile a variety of index configurations with
data sets similar to the ones you'll be running in production, and see which perform best. There's no substitute for good empirical analyses.

Note: if you're brand new to indexing, you may want to .read this introductory article first

Indexing Strategies
Create indexes to match your queries.
One index per query.
Make sure your indexes can fit in RAM.
Be careful about single-key indexes with low selectivity.
Use .explain

Understanding 's output.explain
Pay attention to the read/write ratio of your application.
Indexing Properties

1. The sort column must be the last column used in the index.
2. The range query must also be the last column in an index. This is an axiom of 1 above.
3. Only use a range query or sort on one column.
4. Conserve indexes by re-ordering columns used on equality (non-range) queries.
5. MongoDB's $ne or $nin operator's aren't efficient with indexes.

FAQ
I've started building an index, and the database has stopped responding. What's going on? What do I do?
I'm using $ne or $nin in a query, and while it uses the index, it's still slow. What's happening?

Using Multikeys to Simulate a Large Number of Indexes

Indexing Strategies

Here are some general principles for building smart indexes.

Create indexes to match your queries.

http://kylebanker.com/blog/2010/09/21/the-joy-of-mongodb-indexes/

If you only query on a single key, then a single-key index will do. For instance, maybe you're searching for a blog post's slug:

db.posts.find({ slug : 'state-of-mongodb-2010' })

In this case, a unique index on a single key is best:

db.ensureIndex({ slug: 1 }, {unique: });true

However, it's common to query on multiple keys and to sort the results. For these situations, compound indexes are best. Here's an example for
querying the latest comments with a 'mongodb' tag:

db.comments.find({ tags : 'mongodb'}).sort({ created_at : -1 });

And here's the proper index:

db.comments.ensureIndex({tags : 1, created_at : -1});

Note that if we wanted to sort by ascending, this index would be less effective.created_at

One index per query.

It's sometimes thought that queries on multiple keys can use multiple indexes; this is not the case with MongoDB. If you have a query that selects
on multiple keys, and you want that query to use an index efficiently, then a compound-key index is necessary.

Make sure your indexes can fit in RAM.

The shell provides a command for returning the total index size on a given collection:

db.comments.totalIndexSize();
65443

If your queries seem sluggish, you should verify that your indexes are small enough to fit in RAM. For instance, if you're running on 4GB RAM and
you have 3GB of indexes, then your indexes probably aren't fitting in RAM. You may need to add RAM and/or verify that all the indexes you've
created are actually being used.

Be careful about single-key indexes with low selectivity.

Suppose you have a field called 'status' where the possible values are 'new' and 'processeed'. If you add an index on 'status' then you've created
a low-selectivity index, meaning that the index isn't going to be very helpful in locating records and might just be be taking up space.

A better strategy, depending on your queries, of course, would be to create a compound index that includes the low-selectivity field. For instance,
you could have a compound-key index on 'status' and 'created_at.'

Another option, again depending on your use case, might be to use separate collections, one for each status. As with all the advice here,
experimentation and benchmarks will help you choose the best approach.

Use .explain

MongoDB includes an command for determining how your queries are being processed and, in particular, whether they're using anexplain
index. can be used from of the drivers and also from the shell:explain

db.comments.find({ tags : 'mongodb'}).sort({ created_at : -1 }).explain();

This will return lots of useful information, including the number of items scanned, the time the query takes to process in milliseconds, which
indexes the query optimizer tried, and the index ultimately used.

If you've never used , now's the time to start.explain

Understanding 's output.explain

There are three main fields to look for when examining the command's output:explain

cursor: the value for cursor can be either or . The second of these indicates that the given query is usingBasicCursor BtreeCursor
an index.
nscanned: he number of documents scanned.
n: the number of documents returned by the query. You want the value of to be close to the value of . What you want ton nscanned
avoid is doing a collection scan, that is, where every document in the collection is accessed. This is the case when is equal tonscanned
the number of documents in the collection.
millis: the number of milliseconds require to complete the query. This value is useful for comparing indexing strategies, indexed vs.
non-indexed queries, etc.

Pay attention to the read/write ratio of your application.

This is important because, whenever you add an index, you add overhead to all insert, update, and delete operations on the given collection. If
your application is read-heavy, as are most web applications, the additional indexes are usually a good thing. But if your application is
write-heavy, then be careful when creating new indexes, since each additional index with impose a small write-performance penalty.

In general, . Indexes should be added to complement your queries. Always have a good reason fordon't be cavalier about adding indexes
adding a new index, and make sure you've benchmarked alternative strategies.

Indexing Properties

Here are a few properties of compound indexes worth keeping in mind (Thanks to Doug Green and Karoly Negyesi for their help on this).

These examples assume a compound index of three fields: a, b, c. So our index creation would look like this:

db.foo.ensureIndex({a: 1, b: 1, c: 1})

Here's some advice on using an index like this:

This information is no longer strictly correct in 1.6.0+; compound indexes can now be used to service queries where range or
filter fields are used within the compound index, not just fields used from left to right. Please run explain to see how the
compound index is used.

1. The sort column must be the last column used in the index.

Good:

find(a=1).sort(a)
find(a=1).sort(b)
find(a=1, b=2).sort(c)

Bad:

find(a=1).sort(c)
even though c is the last column used in the index, a is that last column used, so you can only sort on a or b.

2. The range query must also be the last column in an index. This is an axiom of 1 above.

Good:

find(a=1,b>2)
find(a>1 and a<10)
find(a>1 and a<10).sort(a)

Bad:

find(a>1, b=2)

3. Only use a range query or sort on one column.

Good:

find(a=1,b=2).sort(c)
find(a=1,b>2)
find(a=1,b>2 and b<4)
find(a=1,b>2).sort(b)

Bad:

find(a>1,b>2)
find(a=1,b>2).sort(c)

4. Conserve indexes by re-ordering columns used on equality (non-range) queries.

Imagine you have the following two queries:

find(a=1,b=1,d=1)
find(a=1,b=1,c=1,d=1)

A single index defined on a, b, c, and d can be used for both queries.
If, however, you need to sort on the final value, you might need two indexes

5. MongoDB's $ne or $nin operator's aren't efficient with indexes.

When excluding just a few documents, it's better to retrieve extra rows from MongoDB and do the exclusion on the client side.

FAQ

I've started building an index, and the database has stopped responding. What's going on? What do I do?

Building an index can be an IO-intensive operation, especially you have a large collection. This is true on any database system that supports
secondary indexes, including MySQL. If you'll need to build an index on a large collection in the future, you'll probably want to consider building
the index in the background, a feature available beginning with 1.3.2. See the for more info.docs on background indexing

As for the long-building index, you only have a few options. You can either wait for the index to finish building or kill the current operation (see
). If you choose the latter, the partial index will be deleted.killOp()

I'm using $ne or $nin in a query, and while it uses the index, it's still slow. What's happening?

The problem with $ne and $nin is that much of an index will match queries like these. If you need to use $nin, it's often best to make sure that an
additional, more selective criterion is part of the query.

Inserting

When we insert data into MongoDB, that data will always be in document-form. Documents are data structure analogous to JSON, Python
dictionaries, and Ruby hashes, to take just a few examples. Here, we discuss more about document-orientation and describe how to insert data
into MongoDB.

Document-Orientation
JSON
Mongo-Friendly Schema

Store Example

Document-Orientation

Document-oriented databases store "documents" but by document we mean a structured document – the term perhaps coming from the phrase
"XML document". However other structured forms of data, such as JSON or even nested dictionaries in various languages, have similar
properties.

The documents stored in Mongo DB are JSON-like. JSON is a good way to store object-style data from programs in a manner that is
language-independent and standards based.

To be efficient, MongoDB uses a format called which is a binary representation of this data. BSON is faster to scan for specific fields thanBSON
JSON. Also BSON adds some additional types such as a data data type and a byte-array (bindata) datatype. BSON maps readily to and from
JSON and also to various data structures in many programming languages.

Client drivers serialize data to BSON, then transmit the data over the wire to the db. Data is stored on disk in BSON format. Thus, on a retrieval,
the database does very little translation to send an object out, allowing high efficiency. The client driver unserialized a received BSON object to its
native language format.

JSON

For example the following "document" can be stored in Mongo DB:

{ author: 'joe',
 created : Date('03/28/2009'),new
 title : 'Yet another blog post',
 text : 'Here is the text...',
 tags : ['example', 'joe'],
 comments : [{ author: 'jim', comment: 'I disagree' },
 { author: 'nancy', comment: 'Good post' }
]
}

This document is a blog post, so we can store in a "posts" collection using the shell:

> doc = { author : 'joe', created : Date('03/28/2009'), ... }new
> db.posts.insert(doc);

MongoDB understands the internals of BSON objects -- not only can it store them, it can query on internal fields and index keys based upon
them. For example the query

> db.posts.find({ : })"comments.author" "jim"

is possible and means "find any blog post where at least one comment subjobject has author == 'jim'".

Mongo-Friendly Schema

Mongo can be used in many ways, and one's first instincts when using it are probably going to be similar to how one would write an application
with a relational database. While this work pretty well, it doesn't harness the real power of Mongo. Mongo is designed for and works best with a
rich object model.

Store Example

If you're building a simple online store that sells products with a relation database, you might have a schema like:

item
 title
 price
 sku
 item_features
 sku
 feature_name
 feature_value

You would probably normalize it like this because different items would have different features, and you wouldn't want a table with all possible
features. You could model this the same way in mongo, but it would be much more efficient to do

item : {
 : <title> ,"title"
 : <price> ,"price"
 : <sku> ,"sku"
 : {"features"
 : <value> ,"optical zoom"
 ...
 }
 }

This does a few nice things

you can load an entire item with one query
all the data for an item is on the same place on disk, thus only one seek is required to load

Now, at first glance there might seem to be some issues, but we've got them covered.

you might want to insert or update a single feature. mongo lets you operate on embedded files like:

db.items.update({ sku : 123 } , { : { : } })"$set" "features.zoom" "5"

Does adding a feature require moving the entire object on disk? No. mongo has a padding heuristic that adapts to your data so it will
leave some empty space for the object to grow. This will prevent indexes from being changed, etc.

Legal Key Names

Key names in inserted documents are limited as follows:

The '$' character must not be the first character in the key name.
The '.' character must not appear anywhere in the key name.

Schema Design

Introduction
Embed vs. Reference
Use Cases
Index Selection
How Many Collections?
See Also

Introduction

With Mongo, you do less "normalization" than you would perform designing a relational schema because there are no server-side "joins".
Generally, you will want one database collection for each of your top level objects.

You do not want a collection for every "class" - instead, embed objects. For example, in the diagram below, we have two collections, students and
courses. The student documents embed address documents and the "score" documents, which have references to the courses.

Compare this with a relational schema, where you would almost certainly put the scores in a separate table, and have a foreign-key relationship
back to the students.

Embed vs. Reference

The key question in Mongo schema design is "does this object merit its own collection, or rather should it embed in objects in other collections?"
In relational databases, each sub-item of interest typically becomes a separate table (unless denormalizing for performance). In Mongo, this is not
recommended - embedding objects is much more efficient. Data is then colocated on disk; client-server turnarounds to the database are
eliminated. So in general the question to ask is, "why would I not want to embed this object?"

So why are references slow? Let's consider our students example. If we have a student object and perform:

1.

1.

print(student.address.city);

This operation will always be fast as address is an embedded object, and is always in RAM if student is in RAM. However for

print(student.scores[0].for_course.name);

if this is the first access to , the shell or your driver must execute the queryscores[0]

// pseudocode driver or framework, not user codefor

student.scores[0].for_course = db.courses.findOne({_id:_course_id_to_find_});

Thus, each reference traversal is a query to the database. Typically, the collection in question is indexed on . The query will then be_id
reasonably fast. However, even if all data is in RAM, there is a certain latency given the client/server communication from appserver to database.
In general, expect 1ms of time for such a query on a ram cache hit. Thus if we were iterating 1,000 students, looking up one reference per student
would be quite slow - over 1 second to perform even if cached. However, if we only need to look up a single item, the time is on the order of 1ms,
and completely acceptable for a web page load. (Note that if already in db cache, pulling the 1,000 students might actually take much less than 1
second, as the results return from the database in large batches.)

Some general rules on when to embed, and when to reference:

"First class" objects, that are at top level, typically have their own collection.
Line item detail objects typically are embedded.
Objects which follow an object modelling "contains" relationship should generally be embedded.
Many to many relationships are generally by reference.
Collections with only a few objects may safely exist as separate collections, as the whole collection is quickly cached in application server
memory.
Embedded objects are harder to reference than "top level" objects in collections, as you cannot have a DBRef to an embedded object (at
least not yet).
It is more difficult to get a system-level view for embedded objects. For example, it would be easier to query the top 100 scores across all
students if Scores were not embedded.
If the amount of data to embed is huge (many megabytes), you may reach the limit on size of a single object.
If performance is an issue, embed.

Use Cases

Let's consider a few use cases now.

Customer / Order / Order Line-Item

orders should be a collection. a collection. line-items should be an array of line-items embedded in the object.customers order

Blogging system.

posts should be a collection. might be a separate collection, or simply a field within posts if only an email address. post author
 should be embedded objects within a post for performance.comments

Index Selection

A second aspect of schema design is index selection. As a general rule, where you want an index in a relational database, you want an index in
Mongo.

The _id field is automatically indexed.
Fields upon which keys are looked up should be indexed.
Sort fields generally should be indexed.

The MongoDB profiling facility provides useful information for where an index should be added that is missing.

Note that adding an index slows writes to a collection, but not reads. Use lots of indexes for collections with a high read : write ratio (assuming
one does not mind the storage overage). For collections with more writes than reads, indexes are very expensive.

How Many Collections?

As Mongo collections are polymorphic, one could have a collection and put everything in it! This approach is taken by some objectobjects
databases. For performance reasons, we do not recommend this approach. Data within a Mongo collection tends to be contiguous on disk. Thus,
table scans of the collection are possible, and efficient. Collections are very important for high throughput batch processing.

See Also

Schema Design talk from MongoNY
DBRef
Trees in MongoDB
MongoDB Data Modeling and Rails

 Next: Advanced Queries

Trees in MongoDB

Patterns
Full Tree in Single Document
Parent Links
Child Links
Array of Ancestors
Materialized Paths (Full Path in Each Node)
acts_as_nested_set

See Also

The best way to store a tree usually depends on the operations you want to perform; see below for some different options. In practice, most
developers find that one of the "Full Tree in Single Document", "Parent Links", and "Array of Ancestors" patterns works best.

Patterns

Full Tree in Single Document

{
 comments: [
 {by: , text: , replies: []}"mathias" "..."
 {by: , text: , replies: ["eliot" "..."
 {by: , text: , replies: []}"mike" "..."
]}
]
}

Pros:

Single document to fetch per page
One location on disk for whole tree
You can see full structure easily

Cons:

Hard to search
Hard to get back partial results
Can get unwieldy if you need a huge tree (there is a 4MB per doc limit)

Parent Links

Storing all nodes in a single collection, with each node having the id of its parent, is a simple solution. The biggest problem with this approach is
getting an entire subtree requires several query turnarounds to the database (or use of).db.eval

> t = db.tree1;

> t.find()
{ : 1 }"_id"
{ : 2, : 1 }"_id" "parent"
{ : 3, : 1 }"_id" "parent"
{ : 4, : 2 }"_id" "parent"
{ : 5, : 4 }"_id" "parent"
{ : 6, : 4 }"_id" "parent"

> // find children of node 4
> t.ensureIndex({parent:1})
> t.find({parent : 4 })
{ : 5, : 4 }"_id" "parent"
{ : 6, : 4 }"_id" "parent"

http://www.blip.tv/file/3704083

Child Links

Another option is storing the ids of all of a node's children within each node's document. This approach is fairly limiting, although ok if no
operations on entire subtrees are necessary. It may also be good for storing graphs where a node has multiple parents.

> t = db.tree2
> t.find()
{ : 1, : [2, 3] }"_id" "children"
{ : 2 }"_id"
{ : 3, : [4] }"_id" "children"
{ : 4 }"_id"

> // find immediate children of node 3
> t.findOne({_id:3}).children
[4]

> // find immediate parent of node 3
> t.ensureIndex({children:1})
> t.find({children:3})
{ : 1, : [2, 3] }"_id" "children"

Array of Ancestors

Here we store all the ancestors of a node in an array. This makes a query like "get all descendents of x" fast and easy.

> t = db.mytree;

> t.find()
{ : }"_id" "a"
{ : , : [], : }"_id" "b" "ancestors" "a" "parent" "a"
{ : , : [,], : }"_id" "c" "ancestors" "a" "b" "parent" "b"
{ : , : [,], : }"_id" "d" "ancestors" "a" "b" "parent" "b"
{ : , : [], : }"_id" "e" "ancestors" "a" "parent" "a"
{ : , : [,], : }"_id" "f" "ancestors" "a" "e" "parent" "e"
{ : , : [, ,], : }"_id" "g" "ancestors" "a" "b" "d" "parent" "d"

> t.ensureIndex({ ancestors : 1 })

> // find all descendents of b:
> t.find({ ancestors : 'b' })
{ : , : [,], : }"_id" "c" "ancestors" "a" "b" "parent" "b"
{ : , : [,], : }"_id" "d" "ancestors" "a" "b" "parent" "b"
{ : , : [, ,], : }"_id" "g" "ancestors" "a" "b" "d" "parent" "d"

> // get all ancestors of f:
> anc = db.mytree.findOne({_id:'f'}).ancestors
[,]"a" "e"
> db.mytree.find({ _id : { $in : anc } })
{ : }"_id" "a"
{ : , : [], : }"_id" "e" "ancestors" "a" "parent" "a"

ensureIndex and MongoDB's feature makes the above queries efficient.multikey

In addition to the ancestors array, we also stored the direct parent in the node to make it easy to find the node's immediate parent when that is
necessary.

Materialized Paths (Full Path in Each Node)

Materialized paths make certain query options on trees easy. We store the full path to the location of a document in the tree within each node.
Usually the "array of ancestors" approach above works just as well, and is easier as one doesn't have to deal with string building, regular
expressions, and escaping of characters. (Theoretically, materialized paths will be faster.)slightly

The best way to do this with MongoDB is to store the path as a string and then use regex queries. Simple regex expressions beginning with "^"
can be efficiently executed. As the path is a string, you will need to pick a delimiter character -- we use ',' below. For example:

http://en.wikipedia.org/wiki/Materialized_path

> t = db.tree
test.tree

> // get entire tree -- we use sort() to make the order nice
> t.find().sort({path:1})
{ : , : }"_id" "a" "path" "a,"
{ : , : }"_id" "b" "path" "a,b,"
{ : , : }"_id" "c" "path" "a,b,c,"
{ : , : }"_id" "d" "path" "a,b,d,"
{ : , : }"_id" "g" "path" "a,b,g,"
{ : , : }"_id" "e" "path" "a,e,"
{ : , : }"_id" "f" "path" "a,e,f,"
{ : , : }"_id" "g" "path" "a,b,g,"

> t.ensureIndex({path:1})

> // find the node 'b' and all its descendents:
> t.find({ path : /^a,b,/ })
{ : , : }"_id" "b" "path" "a,b,"
{ : , : }"_id" "c" "path" "a,b,c,"
{ : , : }"_id" "d" "path" "a,b,d,"
{ : , : }"_id" "g" "path" "a,b,g,"

// or its path not already known:if
> b = t.findOne({ _id : })"b"
{ : , : }"_id" "b" "path" "a,b,"
> t.find({ path : RegExp(+ b.path) })new "^"
{ : , : }"_id" "b" "path" "a,b,"
{ : , : }"_id" "c" "path" "a,b,c,"
{ : , : }"_id" "d" "path" "a,b,d,"
{ : , : }"_id" "g" "path" "a,b,g,"

Ruby example: http://github.com/banker/newsmonger/blob/master/app/models/comment.rb

acts_as_nested_set

See http://api.rubyonrails.org/classes/ActiveRecord/Acts/NestedSet/ClassMethods.html

This pattern is best for datasets that rarely change as modifications can require changes to many documents.

See Also

Sean Cribbs (source of several ideas on this page).blog post

Optimization

Additional Articles
Optimizing A Simple Example

Optimization #1: Create an index
Optimization #2: Limit results
Optimization #3: Select only relevant fields

Using the Profiler
Optimizing Statements that Use count()
Increment Operations
Circular Fixed Size Collections
Server Side Code Execution
Explain
Hint
See Also

Additional Articles

Optimizing Object IDs
Optimizing Storage of Small Objects

Optimizing A Simple Example

http://github.com/banker/newsmonger/blob/master/app/models/comment.rb
http://api.rubyonrails.org/classes/ActiveRecord/Acts/NestedSet/ClassMethods.html
http://seancribbs.com/tech/2009/09/28/modeling-a-tree-in-a-document-database/

This section describes proper techniques for optimizing database performance.

Let's consider an example. Suppose our task is to display the front page of a blog - we wish to display headlines of the 10 most recent posts. Let's
assume the posts have a timestamp field .ts

The simplest thing we could write might be:

articles = db.posts.find().sort({ts:-1}); // get blog posts in reverse time order

 (i=0; i< 10; i++) {for var
 print(articles[i].getSummary());
}

Optimization #1: Create an index

Our first optimization should be to create an index on the key that is being used for the sorting:

db.posts.ensureIndex({ts:1});

With an index, the database is able to sort based on index information, rather than having to check each document in the collection directly. This
is much faster.

Optimization #2: Limit results

MongoDB cursors return results in groups of documents that we'll call 'chunks'. The chunk returned might contain more than 10 objects - in some
cases, much more. These extra objects are a waste of network transmission and resources both on the app server and the database.

As we know how many results we want, and that we do not want all the results, we can use the method for our second optimization.limit()

articles = db.posts.find().sort({ts:-1}).limit(10); // 10 results maximum

Now, we'll only get 10 results returned to client.

Optimization #3: Select only relevant fields

The blog post object may be very large, with the post text and comments embedded. Much better performance will be achieved by selecting only
the fields we need:

articles = db.posts.find({}, {ts:1,title:1,author:1, :1}).sort({ts:-1}).limit(10);abstract
articles.forEach(function(post) { print(post.getSummary()); });

The above code assumes that the method only references the fields listed in the method.getSummary() find()

Note if you fetch only select fields, you have a partial object. An object in that form cannot be updated back to the database:

a_post = db.posts.findOne({}, Post.summaryFields);
a_post.x = 3;
db.posts.save(a_post); // error, exception thrown

Using the Profiler

MongoDB includes a database profiler which shows performance characteristics of each operation against the database. Using the profiler you
can find queries (and write operations) which are slower than they should be; use this information, for example, to determine when an index is
needed. See the page for more information.Database Profiler

Optimizing Statements that Use count()

To speed operations that rely on , create an index on the field involved in the count query expression.count()

db.posts.ensureIndex({author:1});
db.posts.find({author: }).count();"george"

Increment Operations

MongoDB supports simple object field increment operations; basically, this is an operation indicating "increment this field in this document at the
server". This can be much faster than fetching the document, updating the field, and then saving it back to the server and are particularly useful
for implementing real time counters. See the section of the for more information.Updates Mongo Developers' Guide

Circular Fixed Size Collections

MongoDB provides a special circular collection type that is pre-allocated at a specific size. These collections keep the items within well-ordered
even without an index, and provide very high-speed writes and reads to the collection. Originally designed for keeping log files - log events are
stored in the database in a circular fixed size collection - there are many uses for this feature. See the section of the Capped Collections Mongo

 for more information.Developers' Guide

Server Side Code Execution

Occasionally, for maximal performance, you may wish to perform an operation in process on the database server to eliminate client/server
network turnarounds. These operations are covered in the section of the .Server-Side Processing Mongo Developers' Guide

Explain

A great way to get more information on the performance of your database queries is to use the feature. This will display "explain plan"$explain
type info about a query from the database.

When using the , you can find out this "explain plan" via the function called on a cursor. The result willmongo - The Interactive Shell explain()
be a document that contains the "explain plan".

db.collection.find(query).explain();

provides information such as the following:

{
 : ,"cursor" "BasicCursor"
 : [],"indexBounds"
 : 57594,"nscanned"
 : 57594,"nscannedObjects"
 : 3 ,"n"
 : 108"millis"
}

This will tell you the type of cursor used (is another type – which will include a lower & upper bound), the number of records theBtreeCursor
DB had to examine as part of this query, the number of records returned by the query, and the time in milliseconds the query took to execute.

Hint

While the mongo query optimizer often performs very well, explicit "hints" can be used to force mongo to use a specified index, potentially
improving performance in some situations. When you have a collection indexed and are querying on multiple fields (and some of those fields are
indexed), pass the indexe as a hint to the query. You can do this in two different ways. You may either set it per query, or set it for the entire
collection.

To set the hint for a particular query, call the function on the cursor before accessing any data, and specify a document with the key to behint()
used in the query:

db.collection.find({user:u, foo:d}).hint({user:1});

Be sure to Index
For the above hints to work, you need to have run to index the collection on the user field.ensureIndex()

To force the query optimizer to not use indexes (do a table scan), use:

> db.collection.find().hint({$natural:1})

See Also

Query Optimizer
currentOp()
Sorting and Natural Order

Optimizing Object IDs

The _id field in MongoDB objects is very important and is always indexed. This page lists some recommendations.

Use the collections 'natural primary key' in the _id field.

_id's can be any type, so if your objects have a natural unique identifier, consider using that in _id to both save space and avoid an additional
index.

Use _id values that are roughly in ascending order.

If the _id's are in a somewhat well defined order, on inserts the entire b-tree for the _id index need not be loaded. are allocatedBSON ObjectIds
in a manner such that they have this property.

Store GUIDs as BinData, rather than as strings

BSON includes a binary data datatype for storing byte arrays. Using this will make the id values, and their respective keys in the _id index, twice
as small.

Note that unlike the BSON Object ID type (see above), most UUIDs do not have a rough ascending order, which creates additional caching needs
for their index.

> # mongo shell bindata info:
> help misc
 b = BinData(subtype,base64str) create a BSON BinData valuenew
 b.subtype() the BinData subtype (0..255)
 b.length() length of the BinData data in bytes
 b.hex() the data as a hex encoded string
 b.base64() the data as a base 64 encoded string
 b.toString()

Optimizing Storage of Small Objects

MongoDB records have a certain amount of overhead per object (document) in a collection. This overhead is normally insignificant, but ifBSON
your objects are tiny (just a few bytes, maybe one or two fields) it would not be. Below are some suggestions on how to optimize storage
efficiently in such situations.

Using the _id Field Explicitly

Mongo automatically adds an object ID to each document and sets it to a unique value. Additionally this field in indexed. For tiny objects this
takes up significant space.

The best way to optimize for this is to use _id explicitly. Take one of your fields which is unique for the collection and store its values in _id. By
doing so, you have explicitly provided IDs. This will effectively eliminate the creation of a separate _id field. If your previously separate field was
indexed, this eliminates an extra index too.

Using Small Field Names

Consider a record

{ last_name : , best_score: 3.9 }"Smith"

The strings "last_name" and "best_score" will be stored in each object's BSON. Using shorter strings would save space:

{ lname : , score : 3.9 }"Smith"

Would save 9 bytes per document. This of course reduces expressiveness to the programmer and is not recommended unless you have a
collection where this is of significant concern.

Field names are not stored in indexes as indexes have a predefined structure. Thus, shortening field names will not help the size of indexes. In

http://www.bsonspec.org/

general it is not necessary to use short field names.

Combining Objects

Fundamentally, there is a certain amount of overhead per document in MongoDB. One technique is combining objects. In some cases you may
be able to embed objects in other objects, perhaps as arrays of objects. If your objects are tiny this may work well, but will only make sense for
certain use cases.

Query Optimizer

The MongoDB query optimizer generates query plans for each query submitted by a client. These plans are executed to return results. Thus,
MongoDB supports ad hoc queries much like say, MySQL.

The database uses an interesting approach to query optimization though. Traditional approaches (which tend to be cost-based and statistical) are
not used, as these approaches have a couple of problems.

First, the optimizer might consistently pick a bad query plan. For example, there might be correlations in the data of which the optimizer is
unaware. In a situation like this, the developer might use a query hint.

Also with the traditional approach, query plans can change in production with negative results. No one thinks rolling out new code without testing
is a good idea. Yet often in a production system a query plan can change as the statistics in the database change on the underlying data. The
query plan in effect may be a plan that never was invoked in QA. If it is slower than it should be, the application could experience an outage.

The Mongo query optimizer is different. It is not cost based -- it does not model the cost of various queries. Instead, the optimizer simply tries
different query plans and learn which ones work well. Of course, when the system tries a really bad plan, it may take an extremely long time to
run. To solve this, . As soon as one finishes, it terminates the otherwhen testing new plans, MongoDB executes multiple query plans in parallel
executions, and the system has learned which plan is good. This works particularly well given the system is non-relational, which makes the
space of possible query plans much smaller (as there are no joins).

Sometimes a plan which was working well can work poorly -- for example if the data in the database has changed, or if the parameter values to
the query are different. In this case, if the query seems to be taking longer than usual, the database will once again run the query in parallel to try
different plans.

This approach adds a little overhead, but has the advantage of being much better at worst-case performance.

See Also

MongoDB hint() and explain() operators

Querying

One of MongoDB's best capabilities is its support for dynamic (ad hoc) queries. Systems that support dynamic queries don't require any special
indexing to find data; users can find data using any criteria. For relational databases, dynamic queries are the norm. If you're moving to MongoDB
from a relational databases, you'll find that many SQL queries translate easily to MongoDB's document-based query language.

Query Expression Objects
Query Options

Field Selection
Sorting
Skip and Limit
slaveOk

Cursors
More info
Quick Reference Card
See Also

Query Expression Objects

MongoDB supports a number of for fetching data. Queries are expressed as BSON documents which indicate a query pattern. Forquery objects
example, suppose we're using the MongoDB shell and want to return every document in the collection. Our query would look like this:users

db.users.find({})

In this case, our selector is an empty document, which matches every document in the collection. Here's a more selective example:

db.users.find({'last_name': 'Smith'})

Here our selector will match every document where the attribute is 'Smith.'last_name

MongoDB support a wide array of possible document selectors. For more examples, see the or the section on MongoDB Tutorial Advanced
. If you're working with MongoDB from a language driver, see the driver docs:Queries

Query Options

Field Selection

In addition to the query expression, MongoDB queries can take some additional arguments. For example, it's possible to request only certain
fields be returned. If we just wanted the social security numbers of users with the last name of 'Smith,' then from the shell we could issue this
query:

// retrieve ssn field documents where last_name == 'Smith':for
db.users.find({last_name: 'Smith'}, {'ssn': 1});

 // retrieve all fields *except* the thumbnail field, all documents:for
db.users.find({}, {thumbnail:0});

Note the field is always returned even when not explicitly requested._id

Sorting

MongoDB queries can return sorted results. To return all documents and sort by last name in ascending order, we'd query like so:

db.users.find({}).sort({last_name: 1});

Skip and Limit

MongoDB also supports and for easy paging. Here we skip the first 20 last names, and limit our result set to 10:skip limit

db.users.find().skip(20).limit(10);
db.users.find({}, {}, 10, 20); // same as above, but less clear

slaveOk

When querying a replica pair or replica set, drivers route their requests to the master mongod by default; to perform a query against an
(arbitrarily-selected) slave, the query can be run with the slaveOk option. Here's how to do so in the shell:

db.getMongo().setSlaveOk(); // enable querying a slave
db.users.find(...)

Note: some language drivers permit specifying the slaveOk option on each find(), others make this a connection-wide setting. See your
language's driver for details.

Cursors

Database queries, performed with the find() method, technically work by returning a . are then used to iteratively retrieve all thecursor Cursors
documents returned by the query. For example, we can iterate over a cursor in the like this:mongo shell

> cur = db.example.find();var
> cur.forEach(function(x) { print(tojson(x))});
{ : 1 , : }"n" "_id" "497ce96f395f2f052a494fd4"
{ : 2 , : }"n" "_id" "497ce971395f2f052a494fd5"
{ : 3 , : }"n" "_id" "497ce973395f2f052a494fd6"
>

More info

This was just an introduction to querying in Mongo. For the full details please look in at the pages in the "Querying" sub-section to the right of your
screen.

Quick Reference Card

Download the Query and Update Modifier Quick Reference Card

See Also

Queries and Cursors
Advanced Queries
Query Optimizer

Mongo Query Language

Queries in MongoDB are expressed as JSON (BSON). Usually we think of query object as the equivalent of a SQL "WHERE" clause:

> db.users.find({ x : 3, y : }).sort({x:1}); "abc" // select * from users where x=3 and y='abc'
order by x asc;

However, the MongoDB server actually looks at all the query parameters (ordering, limit, etc.) as a single object. In the above example from the
mongo shell, the shell is adding some syntactic sugar for us. Many of the drivers do this too. For example the above query could also be written:

> db.users.find({ $query : { x : 3, y : }, $orderby : { x : 1 } });"abc"

The possible specifies in the query object are:

$query - the evaluation or "where" expression
$orderby - sort order desired
$hint - hint to query optimizer
$explain - if true, return explain plan results instead of query results
$snapshot - if true, "snapshot mode"

Retrieving a Subset of Fields

By default on a find operation, the entire object is returned. However we may also request that only certain fields be returned. This is somewhat
analogous to the list of column specifiers in a SQL SELECT statement (projection). Regardless of what field specifiers are included, the field_id
is always returned.

// select z from things where x="john"
db.things.find({ x : }, { z : 1 });"john"

Field Negation

We can say "all fields except x" – for example to remove specific fields that you know will be large:

// get all posts about 'tennis' but without the comments field
db.posts.find({ tags : 'tennis' }, { comments : 0 });

Dot Notation

You can retrieve partial sub-objects via .Dot Notation

> t.find({})
{ : ObjectId(), : { : 1, : [1, 2, 3] } }"_id" "4c23f0486dad1c3a68457d20" "x" "y" "z"
> t.find({}, {'x.y':1})
{ : ObjectId(), : { : 1 } }"_id" "4c23f0486dad1c3a68457d20" "x" "y"

http://www.10gen.com/reference

Retrieving a Subrange of Array Elements

You can use the $slice operator to retrieve a subrange of elements in an array.

New in MongoDB 1.5.1

db.posts.find({}, {comments:{$slice: 5}}) // first 5 comments
db.posts.find({}, {comments:{$slice: -5}}) // last 5 comments
db.posts.find({}, {comments:{$slice: [20, 10]}}) // skip 20, limit 10
db.posts.find({}, {comments:{$slice: [-20, 10]}}) // 20 from end, limit 10

See Also

example slice1

Advanced Queries

Introduction
Retrieving a Subset of Fields

$slice operator
Conditional Operators

<, <=, >, >=
$ne
$in
$nin
$mod
$all
$size
$exists
$type
$or

Regular Expressions
Value in an Array

$elemMatch
Value in an Embedded Object
Meta operator: $not
Javascript Expressions and $where
Cursor Methods

sort()
limit()
skip()
snapshot()
count()

group()
Special operators
See Also

Introduction

MongoDB offers a rich query environment with lots of features. This page lists some of those features.

Queries in MongoDB are represented as JSON-style objects, very much like the documents we actually store in the database. For example:

// i.e., select * from things where x=3 and y="foo"
db.things.find({ x : 3, y : });"foo"

Note that any of the operators on this page can be combined in the same query document. For example, to find all document where j is not equal
to 3 and k is greater than 10, you'd query like so:

db.things.find({j: {$ne: 3}, k: {$gt: 10} });

Retrieving a Subset of Fields

By default on a find operation, the entire document/object is returned. However we may also request that only certain fields are returned. Note

http://github.com/mongodb/mongo/tree/master/jstests/slice1.js

that the _id field is always returned automatically.

// select z from things where x=3
db.things.find({ x : 3 }, { z : 1 });

You can also remove specific fields that you know will be large:

// get all posts about mongodb without comments
db.posts.find({ tags : 'mongodb' }, { comments : 0 });

$slice operator

New in MongoDB 1.5.1

You can use the $slice operator to retrieve a subset of elements in an array.

db.posts.find({}, {comments:{$slice: 5}}) // first 5 comments
db.posts.find({}, {comments:{$slice: -5}}) // last 5 comments
db.posts.find({}, {comments:{$slice: [20, 10]}}) // skip 20, limit 10
db.posts.find({}, {comments:{$slice: [-20, 10]}}) // 20 from end, limit 10

More examples at example slice1

Conditional Operators

<, <=, >, >=

Use these special forms for greater than and less than comparisons in queries, since they have to be represented in the query document:

db.collection.find({ : { $gt: value } }); "field" // greater than : field > value
db.collection.find({ : { $lt: value } }); "field" // less than : field < value
db.collection.find({ : { $gte: value } }); "field" // greater than or equal to : field >= value
db.collection.find({ : { $lte: value } }); "field" // less than or equal to : field <= value

For example:

db.things.find({j : {$lt: 3}});
db.things.find({j : {$gte: 4}});

You can also combine these operators to specify ranges:

db.collection.find({ : { $gt: value1, $lt: value2 } }); "field" // value1 < field < value

$ne

Use $ne for "not equals".

db.things.find({ x : { $ne : 3 } });

$in

The operator is analogous to the SQL modifier, allowing you to specify an array of possible matches.$in IN

db.collection.find({ : { $in : array } });"field"

http://github.com/mongodb/mongo/tree/master/jstests/slice1.js

Let's consider a couple of examples. From our collection, we could choose to get a subset of documents based upon the value of the 'j'things
key:

db.things.find({j:{$in: [2,4,6]}});

Suppose the collection is a list of social network style news items; we want to see the 10 most recent updates from our friends. Weupdates
might invoke:

db.updates.ensureIndex({ ts : 1 }); // ts == timestamp
 myFriends = myUserObject.friends; var // let's assume gives us an array of DBRef's of my friendsthis
 latestUpdatesForMe = db.updates.find({ user : { $in : myFriends } }).sort({ ts : -1 }var

).limit(10);

$nin

The operator is similar to except that it selects objects for which the specified field does not have any value in the specified array. For$nin $in
example

db.things.find({j:{$nin: [2,4,6]}});

would match { } but not { }.j:1,b:2 j:2,c:9

$mod

The operator allows you to do fast modulo queries to replace a common case for where clauses. For example, the following $where query:$mod

db.things.find()" .a % 10 == 1"this

can be replaced by:

db.things.find({ a : { $mod : [10 , 1] } })

$all

The operator is similar to , but instead of matching any value in the specified array all values in the array must be matched. For$all $in
example, the object

{ a: [1, 2, 3] }

would be matched by

db.things.find({ a: { $all: [2, 3] } });

but not

db.things.find({ a: { $all: [2, 3, 4] } });

An array can have more elements than those specified by the criteria. specifies a minimum set of elements that must be matched.$all $all

$size

The operator matches any array with the specified number of elements. The following example would match the object { },$size a:["foo"]
since that array has just one element:

db.things.find({ a : { $size: 1 } });

You cannot use to find a range of sizes (for example: arrays with more than 1 element). If you need to query for a range, create an extra $size

 field that you increment when you add elements.size

$exists

Check for existence (or lack thereof) of a field.

db.things.find({ a : { $exists : } }); true // object a is presentreturn if
db.things.find({ a : { $exists : } }); false // a is missingreturn if

Currently $exists is not able to use an index. Indexes on other fields are still used.

$type

The operator matches values based on their type.$type BSON

db.things.find({ a : { $type : 2 } }); // matches a is a stringif
db.things.find({ a : { $type : 16 } }); // matches a is an if int

Possible types are:

Type Name Type Number

Double 1

String 2

Object 3

Array 4

Binary data 5

Object id 7

Boolean 8

Date 9

Null 10

Regular expression 11

JavaScript code 13

Symbol 14

JavaScript code with scope 15

32-bit integer 16

Timestamp 17

64-bit integer 18

Min key 255

Max key 127

For more information on types and BSON in general, see .http://www.bsonspec.org

$or

The operator lets you use a boolean or expression to do queries. You give $or a list of expressions, any of which can satisfy the query.$or

New in MongoDB 1.5.3

http://bsonspec.org
http://www.bsonspec.org

Simple:

db.foo.find({ $or : [{ a : 1 } , { b : 2 }] })

With another field

db.foo.find({ name : , $or : [{ a : 1 } , { b : 2 }] })"bob"

The operator retrieves matches for each or clause individually and eliminates duplicates when returning results. A number of $or $or
optimizations are planned for 1.8. See for details.this thread

Regular Expressions

You may use regexes in database query expressions:

db.customers.find({ name : /acme.*corp/i });

For simple prefix queries (also called rooted regexps) like , the database will use an index when available and appropriate (much like/^prefix/
most SQL databases that use indexes for a expression). This only works if you don't have (case-insensitivity) in the flags.LIKE 'prefix%' i

While , , and are equivalent and will all use an index in the same way, the later two require scanning the/^a/ /^a.*/ /^a.*$/
whole string so they will be slower. The first format can stop scanning after the prefix is matched.

MongoDB uses for regular expressions. Valid flags are:PCRE

i - Case insensitive. Letters in the pattern match both upper and lower
case letters.
m - Multiline. By default, Mongo treats the subject string as consisting of a single line of characters (even if it actually contains newlines).
The "start of line" metacharacter (^) matches only at the start of the string, while the "end of line" metacharacter ($) matches only at the
end of the string, or before a terminating newline.
When it is set, the "start of line" and "end of line" constructs match immediately following or immediately before internal newlines in them
subject string, respectively, as well as at the very start and end. If there are no newlines in a subject string, or no occurrences of ^ or $ in
a pattern, setting has no effect.m
x - Extended. If set, whitespace data characters in the pattern are totally ignored except when escaped or inside a character class.
Whitespace does not include the VT character (code 11). In addition, characters between an unescaped # outside a character class and
the next newline, inclusive, are also ignored.
This option makes it possible to include comments inside complicated patterns. Note, however, that this applies only to data characters.
Whitespace characters may never appear within special character sequences in a pattern, for example within the sequence which(?(
introduces a conditional subpattern.

Value in an Array

To look for the value "red" in an array field :colors

db.things.find({ colors : });"red"

That is, when "colors" is inspected, if it is an array, each value in the array is checked. This technique with the embedded objectmay be mixed
technique below.

$elemMatch

Version 1.3.1 and higher.

Use $elemMatch to check if an element in an array matches the specified match expression.

> t.find({ x : { $elemMatch : { a : 1, b : { $gt : 1 } } } })
{ : ObjectId(),"_id" "4b5783300334000000000aa9"
 : [{ : 1, : 3 }, 7, { : 99 }, { : 11 }]"x" "a" "b" "b" "a"
}

Note that a single array element must match all the criteria specified; thus, the following query is semantically different in that each criteria can
match a different element in the x array:

http://groups.google.com/group/mongodb-user/browse_thread/thread/e5f73b489e52cc13#
http://www.pcre.org/pcre.txt

> t.find({ : 1, : { $gt : 1 } })"x.a" "x.b"

See the page for more.dot notation

Value in an Embedded Object

For example, to look in a postings collection with embedded author objects:author.name=="joe"

db.postings.find({ : });"author.name" "joe"

See the page for more.dot notation

Meta operator: $not

Version 1.3.3 and higher.

The $not meta operator can be used to negate the check performed by a standard operator. For example:

db.customers.find({ name : { $not : /acme.*corp/i } });

db.things.find({ a : { $not : { $mod : [10 , 1] } } });

$not is not supported for regular expressions specified using the { } syntax. When using $not, all regular$regex: ...
expressions should be passed using the native BSON type (e.g. { } in PyMongo)"$not": re.compile("acme.*corp")

Javascript Expressions and $where

In addition to the structured query syntax shown so far, you may specify query expressions as Javascript. To do so, pass a string containing a
Javascript expression to , or assign such a string to the query object member . The database will evaluate this expression forfind() $where
each object scanned. When the result is true, the object is returned in the query results.

For example, the following statements all do the same thing:

db.myCollection.find({ a : { $gt: 3 } });
db.myCollection.find({ $where: });" .a > 3"this
db.myCollection.find();" .a > 3"this
f = function() { .a > 3; } db.myCollection.find(f);return this

Javascript executes more slowly than the native operators listed on this page, but is very flexible. See the page for moreserver-side processing
information.

Cursor Methods

sort()

sort() is analogous to the ORDER BY statement in SQL - it requests that items be returned in a particular order. We pass a keysort()
pattern which indicates the desired order for the result.

db.myCollection.find().sort({ ts : -1 }); // sort by ts, descending order

sort() may be combined with the function. In fact, if you do not have a relevant index for the specified key pattern, islimit() limit()
recommended as there is a limit on the size of sorted results when an index is not used. Without a , or index, a full in-memory sort mustlimit()
be done but by using a it reduces the memory and increases the speed of the operation by using an optimized sorting algorithm.limit()

limit()

limit() is analogous to the LIMIT statement in MySQL: it specifies a maximum number of results to return. For best performance, use limit()
whenever possible. Otherwise, the database may return more objects than are required for processing.

db.students.find().limit(10).forEach(function(student) { print(student.name +); });"<p>"

In the shell (and most drivers), a limit of is equivalent to setting no limit at all.0

skip()

The expression allows one to specify at which object the database should begin returning results. This is often useful for implementingskip()
"paging". Here's an example of how it might be used in a JavaScript application:

function printStudents(pageNumber, nPerPage) {
 print(+ pageNumber);"Page: "
 db.students.find().skip((pageNumber-1)*nPerPage).limit(nPerPage).forEach(function(student) {
print(student.name +); });"<p>"
}

snapshot()

Indicates use of snapshot mode for the query. Snapshot mode assures no duplicates are returned, or objects missed, which were present at both
the start and end of the query's execution (even if the object were updated). If an object is new during the query, or deleted during the query, it
may or may not be returned, even with snapshot mode.

Note that short query responses (less than 1MB) are always effectively snapshotted.

Currently, snapshot mode may not be used with sorting or explicit hints.

count()

The method returns the number of objects matching the query specified. It is specially optimized to perform the count in the MongoDBcount()
server, rather than on the client side for speed and efficiency:

nstudents = db.students.find({'address.state' : 'CA'}).count();

Note that you can achieve the same result with the following, but the following is slow and inefficient as it requires all documents to be put into
memory on the client, and then counted. Don't do this:

nstudents = db.students.find({'address.state' : 'CA'}).toArray().length; // VERY BAD: slow and uses
excess memory

On a query using skip() and limit(), count ignores these parameters by default. Use count(true) to have it consider the skip and limit values in the
calculation.

n = db.students.find().skip(20).limit(10).count();true

group()

The method is analogous to GROUP BY in SQL. is more flexible, actually, allowing the specification of arbitrary reductiongroup() group()
operations. See the section of the for more information.Aggregation Mongo Developers' Guide

Special operators

Only return the index key:

db.foo.find()._addSpecial(,)"$returnKey" true

Limit the number of items to scan:

db.foo.find()._addSpecial(, 50)"$maxScan"

Set the query:

db.foo.find()._addSpecial(: {x : {$lt : 5}})"$query"
// same as
db.foo.find({x : {$lt : 5}})

Sort results:

db.foo.find()._addSpecial(, {x : -1})"$orderby"
// same as
db.foo.find().sort({x:-1})

Explain the query instead of actually returning the results:

db.foo.find()._addSpecial(,)"$explain" true
// same as
db.foo.find().explain()

Snapshot query:

db.foo.find()._addSpecial(,)"$snapshot" true
// same as
db.foo.find().snapshot()

Set index bounds (see for details):min and max Query Specifiers

db.foo.find()._addSpecial(, {x: -20})._addSpecial(, { x : 200 })"$min" "$max"

Show disk location of results:

db.foo.find()._addSpecial(,)"$showDiskLoc" true

Force query to use the given index:

db.foo.find()._addSpecial(, {_id : 1})"$hint"

See Also

* (including explain() and hint())Optimizing Queries

Dot Notation (Reaching into Objects)

Dot Notation vs. Subobjects
Array Element by Position
Matching with $elemMatch

MongoDB is designed for store JSON-style objects. The database understands the structure of these objects and can reach into them to evaluate

query expressions.

Let's suppose we have some objects of the form:

> db.persons.findOne()
{ name: , address: { city: , state: } ,"Joe" "San Francisco" "CA"
 likes: ['scuba', 'math', 'literature'] }

Querying on a top-level field is straightforward enough using Mongo's JSON-style query objects:

> db.persons.find({ name : })"Joe"

But what about when we need to reach into embedded objects and arrays? This involves a bit different way of thinking about queries than one
would do in a traditional relational DBMS. To reach into embedded objects, we use a "dot notation":

> db.persons.find({ : })"address.state" "CA"

Reaching into arrays is implicit: if the field being queried is an array, the database automatically assumes the caller intends to look for a value
within the array:

> db.persons.find({ likes : })"math"

We can mix these styles too, as in this more complex example:

> db.blogposts.findOne()
{ title : , author: ,"My First Post" "Jane"
 comments : [{ by: , text: },"Abe" "First"
 { by : , text : }]"Ada" "Good post"
}
> db.blogposts.find({ : })"comments.by" "Ada"

We can also create indexes of keys on these fields:

db.persons.ensureIndex({ : 1 });"address.state"
db.blogposts.ensureIndex({ : 1 });"comments.by"

Dot Notation vs. Subobjects

Suppose there is an author id, as well as name. To store the author field, we can use an object:

> db.blog.save({ title : , author: {name : , id : 1}})"My First Post" "Jane"

If we want to find any authors named Jane, we use the notation above:

> db.blog.findOne({ : })"author.name" "Jane"

To match only objects with these exact keys and values, we use an object:

db.blog.findOne({ : { : , : 1}})"author" "name" "Jane" "id"

Note that

db.blog.findOne({ : { : }})"author" "name" "Jane"

will not match, as subobjects have to match exactly (it would match an object with one field: { }). Note that the embedded"name" : "Jane"
document must also have the same key order, so:

db.blog.findOne({ : { : 1, : }})"author" "id" "name" "Jane"

will not match, either. This can make subobject matching unwieldy in languages whose default document representation is unordered.

Array Element by Position

Array elements also may be accessed by specific array position:

// i.e. comments[0].by == "Abe"
> db.blogposts.find({ : })"comments.0.by" "Abe"

(The above examples use the mongo shell's Javascript syntax. The same operations can be done in any language for which Mongo has a driver
available.)

Matching with $elemMatch

Using the $elemMatch query operator (mongod >= 1.3.1), you can match an entire document within an array. This is best illustrated with an
example. Suppose you have the following two documents in your collection:

// Document 1
{ : ["foo"
 {
 : ,"shape" "square"
 : ,"color" "purple"
 : "thick" false
 },
 {
 : ,"shape" "circle"
 : ,"color" "red"
 : "thick" true
 }
] }

// Document 2
{ : ["foo"
 {
 : ,"shape" "square"
 : ,"color" "red"
 : "thick" true
 },
 {
 : ,"shape" "circle"
 : ,"color" "purple"
 : "thick" false
 }
] }

You want to query for a purple square, and so you write the following:

db.foo.find({ : , : })"foo.shape" "square" "foo.color" "purple"

The problem with this query is that it will match the second in addition to matching the first document. In other words, the standard query syntax
won't restrict itself to a single document within the array. As mentioned above, subobjects have to match exactly, sofoo

db.foo.find({foo: { : , : } })"shape" "square" "color" "purple"

won't help either, since there's a third attribute specifying thickness.

To match an entire document within the foo array, you need to use $elemMatch. To properly query for a purple square, you'd use $elemMatch like
so:

db.foo.find({foo: { : {shape: , color: }}})"$elemMatch" "square" "purple"

The query will return the first document, which contains the purple square you're looking for.

Full Text Search in Mongo

Introduction
Multikeys (Indexing Values in an Array)
Text Search
Comparison to Full Text Search Engines
Real World Examples

Introduction

Mongo provides some functionality that is useful for text search and tagging.

Multikeys (Indexing Values in an Array)

The Mongo multikey feature can automatically index arrays of values. Tagging is a good example of where this feature is useful. Suppose you
have an article object/document which is tagged with some category names:

obj = {
 name: ,"Apollo"
 text: ,"Some text about Apollo moon landings"
 tags: [, ,]"moon" "apollo" "spaceflight"
}

and that this object is stored in . The commanddb.articles

db.articles.ensureIndex({ tags: 1 });

will index all the tags on the document, and create index entries for "moon", "apollo" and "spaceflight" for that document.

You may then query on these items in the usual way:

> print(db.articles.findOne({ tags: }).name);"apollo"
Apollo

The database creates an index entry for each item in the array. Note an array with many elements (hundreds or thousands) can make inserts very
expensive. (Although for the example above, alternate implementations are equally expensive.)

Text Search

It is fairly easy to implement basic full text search using multikeys. What we recommend is having a field that has all of the keywords in it,
something like:

{ title : ," is fun"this
 _keywords : [, ,]" "this "is" "fun"
}

Your code must split the title above into the keywords before saving. Note that this code (which is not part of Mongo DB) could do stemming, etc.
too. (Perhaps someone in the community would like to write a standard module that does this...)

Comparison to Full Text Search Engines

MongoDB has interesting functionality that makes certain search functions easy. That said, it is not a dedicated full text search engine.

For example, dedicated engines provide the following capabilities:

built-in text stemming
ranking of queries matching various numbers of terms (can be done with MongoDB, but requires user supplied code to do so)
bulk index building

Bulk index building makes building indexes fast, but has the downside of not being realtime. MongoDB is particularly well suited for problems
where the search should be done in realtime. Traditional tools are often not good for this use case.

Real World Examples

The Business Insider web site uses MongoDB for its blog search function in production.

Mark Watson's opinions on Java, Ruby, Lisp, AI, and the Semantic Web - A recipe example in Ruby.

min and max Query Specifiers

The and functions may be used in conjunction with an index to constrain query matches to those having index keys between themin() max()
min and max keys specified. The and functions may be used individually or in conjunction. The index to be used may be specifiedmin() max()
with a or one may be inferred from pattern of the keys passed to and/or .hint() min() max()

db.f.find().min({name: }}.max({name: }).hint({name:1});"barry" "larry"
db.f.find().min({name: }}.max({name: });"barry" "larry"
db.f.find().min({last_name: ,first_name: }};"smith" "john"

If you're using the standard query syntax, you must distinguish between the and keys and the query selector itself. See here:$min $max

db.f.find({$min: {name: }, $max: {name: }, $query:{}});"barry" "larry"

The min() value is in the range and the max() value is .included excluded

Normally, it is much preferred to use rather than to use min and max, as min and max require a corresponding index. Min and max$gte and $lt
are primarily useful for compound keys: it is difficult to express the last_name/first_name example above without this feature (it can be done using

).$where

min and max exist primarily to support the mongos (sharding) process.

OR operations in query expressions

Query objects in Mongo by default AND expressions together. Before 1.5.3 MongoDB did not include an "$or" operator for such queries, however
there are ways to express such queries.

$in

The $in operator indicates a "where value in ..." expression. For expressions of the form x == a OR x == b, this can be represented as

{ x : { $in : [a, b] } }

$where

We can provide arbitrary Javascript expressiosn to the server via the $where operator. This provides a means to perform OR operations. For
example in the mongo shell one might invoke:

db.mycollection.find({ $where : function() { .a == 3 || .b == 4; } });return this this

The following syntax is briefer and also works; however, if additional structured query components are present, you will need the $where form:

db.mycollection.find(function() { .a == 3 || .b == 4; });return this this

$or

The operator lets you use a boolean or expression to do queries. You give $or a list of expressions, any of which can satisfy the query.$or

http://www.businessinsider.com/
http://markwatson.com/blog/2009/11/mongodb-has-good-support-for-indexing.html

New in MongoDB 1.5.3

Simple:

db.foo.find({ $or : [{ a : 1 } , { b : 2 }] })

With another field

db.foo.find({ name : , $or : [{ a : 1 } , { b : 2 }] })"bob"

The operator retrieves matches for each or clause individually and eliminates duplicates when returning results.$or

See Also

Advanced Queries

Queries and Cursors

Queries to MongoDB return a cursor, which can be iterated to retrieve results. The exact way to query will vary with language driver. Details below
focus on queries from the (i.e. the process).MongoDB shell mongo

The shell method returns a cursor object which we can then iterate to retrieve specific documents from the result. We use find() hasNext()
and methods for this purpose.next()

for(c = db.parts.find(); c.hasNext();) {var
 print(c.next());
}

Additionally in the shell, may be used with a cursor:forEach()

db.users.find().forEach(function(u) { print(+ u.name); });"user: "

Array Mode in the Shell

Note that in some languages, like JavaScript, the driver supports an "array mode". Please check your driver documentation for specifics.

In the db shell, to use the cursor in array mode, use array index [] operations and the property.length

Array mode will load all data into RAM up to the highest index requested. Thus it should be used for any query which can return very largenot
amounts of data: you will run out of memory on the client.

You may also call on a cursor. will load all objects queries into RAM.toArray() toArray()

Getting a Single Item

The shell method fetches a single item. Null is returned if no item is found.findOne()

findOne() is equivalent in functionality to:

function findOne(coll, query) {
 cursor = coll.find(query).limit(1);var
 cursor.hasNext() ? cursor.next() : ;return null
}

Tip: If you only need one row back and multiple match, is efficient, as it performs the operation, which limits the objectsfindOne() limit()
returned from the database to one.

Querying Embedded Objects

To find an exact match of an entire embedded object, simply query for that object:

db.order.find({ shipping: { carrier: } });"usps"

The above query will work if { carrier: "usps" } is an exact match for the entire contained shipping object. If you wish to match any sub-object with
, use this syntax:shipping.carrier == "usps"

db.order.find({ : });"shipping.carrier" "usps"

See the docs for more information.dot notation

Greater Than / Less Than

db.myCollection.find({ a : { $gt : 3 } });
db.myCollection.find({ a : { $gte :3 } });
db.myCollection.find({ a : { $lt :3 } });
db.myCollection.find({ a : { $lte :3 } }); // a <= 3

Latent Cursors and Snapshotting

A latent cursor has (in addition to an initial access) a latent access that occurs after an intervening write operation on the database collection (i.e.,
an insert, update, or delete). Under most circumstances, the database supports these operations.

Conceptually, a cursor has a current position. If you delete the item at the current position, the cursor automatically skips its current position
forward to the next item.

Mongo DB cursors do not provide a snapshot: if other write operations occur during the life of your cursor, it is unspecified if your application will
see the results of those operations or not. See the docs for more information.snapshot

Auditing allocated cursors

Information on allocated cursors may be obtained using the { } command.cursorInfo:1

db.runCommand({cursorInfo:1})

See Also

Advanced Queries
Multikeys in the HowTo

Tailable Cursors

Tailable cursors are only allowed on capped collections and can only return objects in .natural order

If the field you wish to "tail" is indexed, simply requerying for { : { $gt : } } is already quite efficient. Tailable will befield value
slightly faster in situations such as that. However, if the field is not indexed, tailable provides a huge improvement in
performance. Situations without indexes are the real use case for a tailable cursor.

MongoDB has a feature known as tailable cursors which are similar to the Unix "tail -f" command.

Tailable means the cursor is not closed once all data is retrieved. Rather, the cursor marks the last known object's position and you can resume
using the cursor later, from where that object was located, provided more data is available.

The cursor may become invalid if, for example, the last object returned is at the end of the collection and is deleted. Thus, you should be
prepared to requery if the cursor is "dead". You can determine if a cursor is dead by checking its id. An id of zero indicates a dead cursor (use
isDead in the c++ driver).

In addition, the cursor may be dead upon creation if the initial query returns no matches. In this case a requery is required to create a persistent
tailable cursor.

MongoDB replication uses this feature to follow the end of the master server's replication op log collection -- the tailable feature eliminates the

need to create an index for the oplog at the master, which would slow log writes.

C++ example:

#include "client/dbclient.h"

using namespace mongo;

/* the namespace, outputting elements as they are added."tail"
 For to work something field -- _id in -- should be increasingthis this case
 when items are added.
*/
void tail(DBClientBase& conn, *ns) {const char
 // minKey is smaller than any other possible value
BSONElement lastId = minKey.firstElement();
 // { $natural : 1 } means in forward capped collection insertion order
Query query = Query().sort(); "$natural"
 (1) {while
 auto_ptr<DBClientCursor> c =
 conn.query(ns, query, 0, 0, 0, QueryOption_CursorTailable);
 (1) {while
 (!c->more()) {if
 (c->isDead()) {if
 // we need to requery

;break
 }
 sleepsecs(1); // all data (so far) exhausted, wait morefor

; continue // we will more() againtry
}
 BSONObj o = c->next();
 lastId = o[];"_id"
 cout << o.toString() << endl;
 }

 // prepare to requery from where we left off
query = QUERY(<< GT << lastId).sort();"_id" "$natural"
 }
}

See Also

http://github.com/mongodb/mongo-snippets/blob/master/cpp-examples/tailable_cursor.cpp

Server-side Code Execution

 Clauses and Functions in Queries$where
Restrictions

Map/Reduce
Using db.eval()

Examples
Limitations of eval

Write locks
Sharding

Storing functions server-side
Notes on Concurrency
Running .js files via a mongo shell instance on the server

Mongo supports the execution of code inside the database process.

$where Clauses and Functions in Queries

In addition to the regular document-style query specification for operations, you can also express the query either as a string containing afind()
SQL-style WHERE predicate clause, or a full JavaScript function.

When using this mode of query, the database will call your function, or evaluate your predicate clause, for each object in the collection.

In the case of the string, you must represent the object as "this" (see example below). In the case of a full JavaScript function, you use the normal
JavaScript function syntax.

http://github.com/mongodb/mongo-snippets/blob/master/cpp-examples/tailable_cursor.cpp

The following four statements in are equivalent:mongo - The Interactive Shell

db.myCollection.find({ a : { $gt: 3 } });
db.myCollection.find({ $where: });" .a > 3"this
db.myCollection.find();" .a > 3"this
db.myCollection.find({ $where: function() { .a > 3;}});return this

The first statement is the preferred form. It will be at least slightly faster to execute because the query optimizer can easily interpret that query and
choose an index to use.

You may mix data-style find conditions and a function. This can be advantageous for performance because the data-style expression will be
evaluated first, and if not matched, no further evaluation is required. Additionally, the database can then consider using an index for that
condition's field. To mix forms, pass your evaluation function as the field of the query object. For example:$where

db.myCollection.find({ active: , $where: function() { obj.credits - obj.debits < 0; } });true return

You may mix data-style find conditions and a function. This can be advantageous for performance because the data-style expression will be
evaluated first, and if not matched, no further evaluation is required. Additionally, the database can then consider using an index for that
condition's field. For example:

db.myCollection.find({ active: , $where: });true " .credits - .debits < 0"this this

Restrictions

Do not write to the collection being inspected from the expression.$where

Map/Reduce

MongoDB supports Javascript-based map/reduce operations on the server. See the for more information.map/reduce documentation

Using db.eval()

Use map/reduce instead of db.eval() for long running jobs. db.eval blocks other operations!

db.eval() is used to evaluate a function (written in JavaScript) at the database server.
This is useful if you need to touch a lot of data lightly. In that scenario, network transfer of the data could be a bottleneck.

db.eval() returns the return value of the function that was invoked at the server. If invocation fails an exception is thrown.

For a trivial example, we can get the server to add 3 to 3:

> db.eval(function() { 3+3; });return
6
>

Let's consider an example where we wish to erase a given field, , in every single document in a collection. A naive client-side approach wouldfoo
be something like

function my_erase() {
 db.things.find().forEach(function(obj) {
 delete obj.foo;
 db.things.save(obj);
 });
}

my_erase();

Calling on the client will require the entire contents of the collection to be transmitted from server to client and back again.my_erase()

Instead, we can pass the function to , and it will be called in the runtime environment of the server. On the server, the variable is set toeval() db
the current database:

db.eval(my_erase);

Examples

> myfunc = function(x){ x; };return

> db.eval(myfunc, {k: });"asdf"
{ k : }"asdf"

> db.eval(myfunc,);"asdf"
"asdf"

> db.eval(function(x){ x; }, 2);return
2.0

If an error occurs on the evaluation (say, a null pointer exception at the server), an exception will be thrown of the form:

{ dbEvalException: { errno : -3.0 , errmsg : , ok : 0.0 } }"invoke failed"

Example of using to do equivalent of the Mongo function:eval() count()

function mycount(collection) {
 db.eval(function(){ db[collection].find({},{_id:ObjId()}).length();});return return
}

Example of using for doing an atomic increment, plus some calculations:db.eval()

function inc(name , howMuch){
 db.eval(return
 function(){
 t = db.things.findOne({ name : name });var
 t = t || { name : name , num : 0 , total : 0 , avg : 0 };
 t.num++;
 t.total += howMuch;
 t.avg = t.total / t.num;
 db.things.save(t);
 t;return
 }
);
}

db.things.remove({});
print(tojson(inc(, 2)));"eliot"
print(tojson(inc(, 3)));"eliot"

Limitations of eval

Write locks

It's important to be aware that takes a write lock. This means that you can't use to run other commands that themselves take a writeeval eval
lock. To take an example, suppose you're running a replica set and want to add a new member. You may be tempted to do something like this
from a driver:

db.eval();"rs.add('ip-address:27017')"

As we just mentioned, will take a write lock on the current node. Therefore, this won't work because you can't add a new replica set membereval
if any of the existing nodes is write-locked.

The proper approach is to run the commands to add a node manually. simply queries the collection, updatesrs.add local.system.replSet
the config object, and run the command. You can do this from the driver, which, in addition to not taking out the writereplSetReconfig eval

lock, manages to more directly perform the operation.

Sharding

Note also that doesn't work with sharding. If you expect your system to be sharded eventually, it's probably best to avoid altogether.eval eval

Storing functions server-side

in version 1.1.1 and above

There is a special system collection called that can store JavaScript function to be re-used. To store a function, you would do:system.js

db.system.js.save({ _id : , value : function(x , y){ x + y; } });"foo" return

_id is the name of the function, and is unique per database.

Once you do that, you can use from any JavaScript context (db.eval, $where, map/reduce)foo

See for a full examplehttp://github.com/mongodb/mongo/tree/master/jstests/storefunc.js

Notes on Concurrency

eval() blocks the entire mongod process while running. Thus, its operations are atomic but prevent other operations from processing.

When more concurrency is needed consider using map/reduce instead of eval().

Running .js files via a mongo shell instance on the server

This is a good technique for performing batch administrative work. Run on the server, connecting via the interface. Themongo localhost
connection is then very fast and low latency. This is friendlier than db.eval() as db.eval() blocks other operations.

Sorting and Natural Order

"Natural order" is defined as the database's native ordering of objects in a collection.

When executing a with no parameters, the database returns objects in forward natural order.find()

For standard tables, natural order is not particularly useful because, although the order is often close to insertion order, it is not to be.guaranteed
However, for , natural order is guaranteed to be the insertion order. This can be very useful.Capped Collections

In general, the natural order feature is a very efficient way to store and retrieve data in insertion order (much faster than say, indexing on a
timestamp field). But remember, the collection must be capped for this to work.

In addition to forward natural order, items may be retrieved in reverse natural order. For example, to return the 50 most recently inserted items
(ordered most recent to less recent) from a capped collection, you would invoke:

> c=db.cappedCollection.find().sort({$natural:-1}).limit(50)

Sorting can also be done on arbitrary keys in any collection. For example, this sorts by 'name' ascending, then 'age' descending:

> c=db.collection.find().sort({name : 1, age : -1})

See Also

The section of this GuideCapped Collections
Advanced Queries
The starting point for all Home

Aggregation

Mongo includes utility functions which provide server-side and operations. More advanced aggregate functionscount, distinct, group by
can be crafted using .MapReduce

Count

http://github.com/mongodb/mongo/tree/master/jstests/storefunc.js

Distinct
Group

Examples
Using Group from Various Languages

Map/Reduce
See Also

Count

count() returns the number of objects in a collection or matching a query. If a document selector is provided, only the number of matching
documents will be returned.

size() is like but takes into consideration any limit() or skip() specified for the query.count()

db.collection.count(selector);

For example:

print(+ db.mycollection.count());"# of objects: "
print(db.mycollection.count({active: });true

count is faster if an index exists for the condition in the selector. For example, to make the count on fast, invokeactive

db.mycollection.ensureIndex({active:1});

Distinct

The distinct command returns returns a list of distinct values for the given across a collection. key

Command is of the form:

{ distinct : <collection_name>, key : <key>[, query : <query>] }

although many drivers have a helper function for distinct.

> db.addresses.insert({ : 10010})"zip-code"
> db.addresses.insert({ : 10010})"zip-code"
> db.addresses.insert({ : 99701})"zip-code"

> // shell helper:
> db.addresses.distinct();"zip-code"
[10010, 99701]

> // running as a command manually:
> db.runCommand({ distinct: 'addresses', key: 'zip-code' })
{ : [10010, 99701], : 1 }"values" "ok"

distinct may also reference a nested key:

> db.comments.save({ : { : 25}})"user" "points"
> db.comments.save({ : { : 31}})"user" "points"
> db.comments.save({ : { : 25}})"user" "points"

> db.comments.distinct();"user.points"
[25, 31]

You can add an optional query parameter to distinct as well

> db.address.distinct(, { age : 30 })"zip-code"

Note: the distinct command results are returned as a single BSON object. If the results could be large (> 4 megabytes), use map/reduce instead.

Group

Note: currently one must use map/reduce instead of group() in sharded MongoDB configurations.

group returns an array of grouped items. The command is similar to SQL's group by. The SQL statement

select a,b,sum(c) csum from coll where active=1 group by a,b

corresponds to the following in MongoDB:

db.coll.group(
 {key: { a: , b: },true true
 cond: { active:1 },
 reduce: function(obj,prev) { prev.csum += obj.c; },
 initial: { csum: 0 }
 });

Note: the result is returned as a single BSON object and for this reason must be fairly small – less than 10,000 keys, else you will get an
exception. For larger grouping operations without limits, please use .map/reduce

group takes a single object parameter containing the following fields:

key: Fields to group by.
reduce: The function aggregates (reduces) the objects iterated. Typical operations of a reduce function include summing andreduce
counting. takes two arguments: the current document being iterated over and the aggregation counter object. In the examplereduce
above, these arguments are named and .obj prev
initial: initial value of the aggregation counter object.
keyf: An optional function returning a "key object" to be used as the grouping key. Use this instead of to specify a key that is not ankey
existing member of the object (or, to access embedded members). Set in lieu of .key
cond: An optional condition that must be true for a row to be considered. This is essentially a query expression object. If null, thefind()
reduce function will run against all rows in the collection.
finalize: An optional function to be run on each item in the result set just before the item is returned. Can either modify the item (e.g.,
add an average field given a count and a total) or return a replacement object (returning a new object with just _id and average fields).
See jstests/group3.js for examples.

To order the grouped data, simply sort it client-side upon return. The following example is an implementation of using .count() group()

function gcount(collection, condition) {
 res =var
 db[collection].group(
 { key: {},
 initial: {count: 0},
 reduce: function(obj,prev){ prev.count++;},
 cond: condition });
 // group() returns an array of grouped items. here, there will be a single
// item, as key is {}.

 res[0] ? res[0].count : 0;return
}

Examples

The examples assume data like this:

{ domain: "www.mongodb.org"
, invoked_at: {d: , t: }"2009-11-03" "17:14:05"
, response_time: 0.05
, http_action: "GET /display/DOCS/Aggregation"
}

Show me stats for each http_action in November 2009:

db.test.group(
 { cond: { : {$gte: , $lt: }}"invoked_at.d" "2009-11" "2009-12"
 , key: {http_action: }true
 , initial: {count: 0, total_time:0}
 , reduce: function(doc, out){ out.count++; out.total_time+=doc.response_time }
 , finalize: function(out){ out.avg_time = out.total_time / out.count }
 });

[
 {
 : ,"http_action" "GET /display/DOCS/Aggregation"
 : 1,"count"
 : 0.05,"total_time"
 : 0.05"avg_time"
 }
]

Show me stats for each domain for each day in November 2009:

db.test.group(
 { cond: { : {$gte: , $lt: }}"invoked_at.d" "2009-11" "2009-12"
 , key: {domain: , invoked_at.d: }true true
 , initial: {count: 0, total_time:0}
 , reduce: function(doc, out){ out.count++; out.total_time+=doc.response_time }
 , finalize: function(out){ out.avg_time = out.total_time / out.count }
 });

[
 {
 : ,"http_action" "GET /display/DOCS/Aggregation"
 : 1,"count"
 : 0.05,"total_time"
 : 0.05"avg_time"
 }
]

Using Group from Various Languages

Some language drivers provide a group helper function. For those that don't, one can manually issue the db command for group. Here's an
example using the Mongo shell syntax:

> db.foo.find()
{ : ObjectId() , : 1}"_id" "4a92af2db3d09cb83d985f6f" "x"
{ : ObjectId() , : 3}"_id" "4a92af2fb3d09cb83d985f70" "x"
{ : ObjectId() , : 3}"_id" "4a92afdab3d09cb83d985f71" "x"

> db.$cmd.findOne({group : {
... ns : ,"foo"
... cond : {},
... key : {x : 1},
... initial : {count : 0},
... $reduce : function(obj,prev){prev.count++;}}})
{ : [{ : 1 , : 1},{ : 3 , : 2}] , : 3 , : 2 , : 1}"retval" "x" "count" "x" "count" "count" "keys" "ok"

If you use the database command with (instead of) it must be prefixed with a $. For example:keyf key

db.$cmd.findOne({group : {
... ns : ,"foo"
... $keyf : function(doc) { { : doc.x}; },return "x"
... initial : {count : 0},
... $reduce : function(obj,prev) { prev.count++; }}})

Map/Reduce

MongoDB provides a facility for more advanced aggregation needs. CouchDB users: please note that basic queries in MongoDB doMapReduce
not use map/reduce.

See Also

jstests/eval2.js for an example of group() usage
Advanced Queries

Removing

Removing Objects from a Collection

To remove objects from a collection, use the function in the . (Other drivers offer a similarremove() mongo shell
function, but may call the function "delete". Please check your).driver's documentation

remove() is like in that it takes a JSON-style query document as an argument to select which documents are removed. If you call find()
 without a document argument, or with an empty document { , it will remove all documents in the collection. Some examples :remove() }

db.things.remove({}); // removes all
db.things.remove({n:1}); // removes all where n == 1

If you have a document in memory and wish to delete it, the most efficient method is to specify the item's document _id value as a criteria:

db.things.remove({_id: myobject._id});

You may be tempted to simply pass the document you wish to delete as the selector, and this will work, but it's inefficient.

References
If a document is deleted, any existing to the document will still exist in the database. These references will return nullreferences
when evaluated.

Concurrency and Remove

v1.3+ supports concurrent operations while a remove runs. If a simultaneous update (on the same collection) grows an object which matched the
remove criteria, the updated object may not be removed (as the operations are happening at approximately the same time, this may not even be
surprising). In situations where this is undesireable, pass {$atomic : true} in your filter expression:

db.videos.remove({ rating : { $lt : 3.0 }, $atomic : })true

The remove operation is then completely atomic – however, it will also block other operations while executing.

Updating

MongoDB supports atomic, in-place updates as well as more traditional updates for replacing an entire document.

update()
 in the mongo shellsave()

Modifier Operations
$inc
$set
$unset
$push
$pushAll
$addToSet
$pop
$pull
$pullAll
$rename

The $ positional operator
Upserts with Modifiers

Pushing a Unique Value
Checking the Outcome of an Update Request
Notes

Object Padding
Blocking

See Also

update()

update() replaces the document matching criteria entirely with objNew. If you only want to modify some fields, you should use the atomic
modifiers below.

Here's the MongoDB shell syntax for :update()

db.collection.update(, , ,)criteria objNew upsert multi

Arguments:

criteria - query which selects the record to update;
objNew - updated object or $ operators (e.g., $inc) which manipulate the object
upsert - if this should be an "upsert"; that is, if the record does not exist, insert it
multi - if all documents matching should be updatedcriteria

If you are coming from SQL, be aware that by default, update() only modifies the first matched object. If you want to modify all
matched objects you need to use the multi flag

save() in the mongo shell

The save() command in the provides a shorthand syntax to perform a single object update with upsert:mongo shell

// x is some JSON style object
db.mycollection.save(x); // updates exists; inserts if if new

save() does an upsert if has an _id field and an insert if it does not. Thus, normally, you will not need to explicitly request upserts, just use x
.save()

Upsert means "update if present; insert if missing".

myColl.update({ name: }, { name: , age: 20 },);"Joe" "Joe" true

Modifier Operations

Modifier operations are highly-efficient and useful when updating existing values; for instance, they're great for incrementing a number.

So, while a conventional implementation does work:

var j=myColl.findOne({ name: });"Joe"
j.n++;
myColl.save(j);

a modifier update has the advantages of avoiding the latency involved in querying and returning the object. The modifier update also features
operation and very little network data transfer.atomicity

To perform an atomic update, simply specify any of the special update operators (which always start with a '$' character) with a relevant update
document:

db.people.update({ name: }, { $inc: { n : 1 } });"Joe"

The preceding example says, "Find the first document where 'name' is 'Joe' and then increment 'n' by one."

While not shown in the examples, most modifier operators will accept multiple field/value pairs when one wishes to modify
multiple fields. For example, the following operation would set x to 1 and y to 2:

{ $set : { x : 1 , y : 2 } }

Also, multiple operators are valid too:

{ $set : { x : 1 }, $inc : { y : 1 } }

$inc

{ $inc : { field : value } }

increments by the number if is present in the object, otherwise sets to the number .field value field field value

$set

{ $set : { field : value } }

sets to . All datatypes are supported with .field value $set

$unset

{ $unset : { field : 1} }

Deletes a given field. v1.3+

$push

{ $push : { field : value } }

appends to , if is an existing array, otherwise sets to the array [] if is not present. If is presentvalue field field field value field field
but is not an array, an error condition is raised.

$pushAll

{ $pushAll : { field : value_array } }

appends each value in to , if is an existing array, otherwise sets to the array if is notvalue_array field field field value_array field
present. If is present but is not an array, an error condition is raised.field

$addToSet

{ $addToSet : { field : value } }

Adds value to the array only if its not in the array already, if is an existing array, otherwise sets to the array if is notfield field value field
present. If is present but is not an array, an error condition is raised.field

To add many valuest.update

{ $addToSet : { a : { $each : [3 , 5 , 6] } } }

$pop

{ $pop : { field : 1 } }

removes the last element in an array (ADDED in 1.1)

{ $pop : { field : -1 } }

removes the first element in an array (ADDED in 1.1) |

$pull

{ $pull : { field : _value } }

removes all occurrences of from , if is an array. If is present but is not an array, an error condition is raised.value field field field

$pullAll

{ $pullAll : { field : value_array } }

removes all occurrences of each value in from , if is an array. If is present but is not an array, an errorvalue_array field field field
condition is raised.

$rename

Version 1.7.2+ only.

{ $rename : { old_field_name : new_field_name } }

Renames the field with name 'old_field_name' to 'new_field_name'. Does not expand arrays to find a match for 'old_field_name'.

The $ positional operator

Version 1.3.4+ only.

The $ operator (by itself) means "position of the matched array item in the query". Use this to find an array member and then manipulate it. For
example:

> t.find()
{ : ObjectId(), : ,"_id" "4b97e62bf1d8c7152c9ccb74" "title" "ABC"
 : [{ : , : 3 }, { : , : 7 }] }"comments" "by" "joe" "votes" "by" "jane" "votes"

> t.update({'comments.by':'joe'}, {$inc:{'comments.$.votes':1}}, ,)false true

> t.find()
{ : ObjectId(), : ,"_id" "4b97e62bf1d8c7152c9ccb74" "title" "ABC"
 : [{ : , : 4 }, { : , : 7 }] }"comments" "by" "joe" "votes" "by" "jane" "votes"

Currently the $ operator only applies to the matched item in the query. For example:first

> t.find();
{ : ObjectId(), : [1, 2, 3, 2] }"_id" "4b9e4a1fc583fa1c76198319" "x"
> t.update({x: 2}, {$inc: { : 1}}, ,);"x.$" false true
> t.find();
{ : ObjectId(), : [1, 3, 3, 2] }"_id" "4b9e4a1fc583fa1c76198319" "x"

The positional operator cannot be combined with an since it requires a matching array element. If your update results in an insert thenupsert
the "$" will literally be used as the field name.

Using "$unset" with an expression like this "array.$" will result in the array item becoming , not being removed. You cannull
issue an update with "{$pull:{x:null}}" to remove all nulls.

> t.insert({x: [1,2,3,4,3,2,3,4]})
> t.find()
{ : ObjectId(), : [1, 2, 3, 4, 3, 2, 3, 4] }"_id" "4bde2ad3755d00000000710e" "x"
> t.update({x:3}, {$unset:{ :1}})"x.$"
> t.find()
{ : ObjectId(), : [1, 2, , 4, 3, 2, 3, 4] }"_id" "4bde2ad3755d00000000710e" "x" null

Upserts with Modifiers

You may use upsert with a modifier operation. In such a case, the modifiers will be applied to the update member and the resultingcriteria
object will be inserted. The following upsert example may insert the object { }.name:"Joe",x:1,y:1

db.people.update({ name: }, { $inc: { x:1, y:1 } },);"Joe" true

There are some restrictions. A modifier may not reference the field, and two modifiers within an update may not reference the same field, for_id
example the following is not allowed:

db.people.update({ name: }, { $inc: { x: 1 }, $set: { x: 5 } });"Joe"

Pushing a Unique Value

To add a value to an array only if not already present:

Starting in 1.3.3, you can do

update({_id:'joe'},{ : { tags : } });"$addToSet" "baseball"

For older versions, add $ne : <value> to your query expression:

update({_id:'joe', tags: { : }},"$ne" "baseball"
 { : { tags : } });"$push" "baseball"

Checking the Outcome of an Update Request

As described above, a non-upsert update may or may not modify an existing object. An upsert will either modify an existing object or insert a new
object. The client may determine if its most recent message on a connection updated an existing object by subsequently issuing a

 command (). If the result of the command contains an getlasterror db.runCommand("getlasterror") getlasterror
 field, the last message on the connection was an update request. If the field's value is true, that updateupdatedExisting updatedExisting

request caused an existing object to be updated; if is false, no existing object was updated. An field will containupdatedExisting upserted
the new value if an insert is performed (new as of 1.5.4)._id

Notes

Object Padding

When you update an object in MongoDB, the update occurs in-place if the object has not grown in size. This is good for insert performance if the
collection has many indexes.

Mongo adaptively learns if objects in a collection tend to grow, and if they do, it adds some padding to prevent excessive movements. This
statistic is tracked separately for each collection.

Blocking

1.
2.
3.

Staring in 1.5.2, multi updates yield occasionally so you can safely update large amounts of data. If you want a multi update to be truly atomic,
you can use the $atomic flag.

See Also

findandmodify Command
Atomic Operations

Atomic Operations

Modifier operations
"Update if Current"

The ABA Nuance
"Insert if Not Present"
Find and Modify (or Remove)
Applying to Multiple Objects At Once

MongoDB supports atomic operations . MongoDB does not support traditional locking and complex transactions for aon single documents
number of reasons:

First, in sharded environments, distributed locks could be expensive and slow. Mongo DB's goal is to be lightweight and fast.
We dislike the concept of deadlocks. We want the system to be simple and predictable without these sort of surprises.
We want Mongo DB to work well for realtime problems. If an operation may execute which locks large amounts of data, it might stop
some small light queries for an extended period of time. (We don't claim Mongo DB is perfect yet in regards to being "real-time", but we
certainly think locking would make it even harder.)

MongoDB does support several methods of manipulating single documents atomically, which are detailed below.

Modifier operations

The Mongo DB update command supports several , all of which atomically update an element in a document. They include:modifiers

$set - set a particular value
$unset - set a particular value (since 1.3.0)
$inc - increment a particular value by a certain amount
$push - append a value to an array
$pushAll - append several values to an array
$pull - remove a value(s) from an existing array
$pullAll - remove several value(s) from an existing array

These modifiers are convenient ways to perform certain operations atomically.

"Update if Current"

Another strategy for atomic updates is "Update if Current". This is what an OS person would call Compare and Swap. For this we

Fetch the object.
Modify the object locally.
Send an update request that says "update the object to this new value if it still matches its old value".

Should the operation fail, we might then want to try again from step 1.

For example, suppose we wish to fetch one object from inventory. We want to see that an object is available, and if it is, deduct it from the
inventory. The following code demonstrates this using mongo shell syntax (similar functions may be done in any language):

> t=db.inventory
> s = t.findOne({sku:'abc'})
{ : , : , : 30}"_id" "49df4d3c9664d32c73ea865a" "sku" "abc" "qty"
> qty_old = s.qty;
> --s.qty;
> t.update({_id:s._id, qty:qty_old}, s); db.$cmd.findOne({getlasterror:1});
{ : , : , : 1 , : 1} "err" "updatedExisting" true "n" "ok" // it worked

For the above example, we likely don't care the exact sku quantity as long as it is as least as great as the number to deduct. Thus the following
code is better, although less general -- we can get away with this as we are using a predefined modifier operation ($inc). For more general
updates, the "update if current" approach shown above is recommended.

1.
2.
3.
4.

> t.update({sku: ,qty:{$gt:0}}, { $inc : { qty : -1 } }) ; db.$cmd.findOne({getlasterror:1})"abc"
{ : , : , : 1 , : 1} "err" "updatedExisting" true "n" "ok" // it worked
> t.update({sku: ,qty:{$gt:0}}, { $inc : { qty : -1 } }) ; db.$cmd.findOne({getlasterror:1})"abcz"
{ : , : , : 0 , : 1} "err" "updatedExisting" false "n" "ok" // did not work

The ABA Nuance

In the first of the examples above, we basically did "update object if is unchanged". However, what if since our read, had been modified? qty sku
We would then overwrite that change and lose it!

There are several ways to avoid this ; it's mainly just a matter of being aware of the nuance.problem

Use the entire object in the update's query expression, instead of just the _id and qty field.
Use $set to set the field we care about. If other fields have changed, they won't be effected then.
Put a version variable in the object, and increment it on each update.
When possible, use a $ operator instead of an update-if-current sequence of operations.

"Insert if Not Present"

Another optimistic concurrency scenario involves inserting a value when not already there. When we have a unique index constraint for the
criteria, we can do this. The following example shows how to insert monotonically increasing _id values into a collection using optimistic
concurrency:

function insertObject(o) {
 x = db.myCollection;
 (1) {while
 // determine next _id value to try

 c = x.find({},{_id:1}).sort({_id:-1}).limit(1);var
 i = c.hasNext() ? c.next()._id + 1 : 1;var
 o._id = i;
 x.insert(o);
 err = db.getLastErrorObj();var
 (err && err.code) {if
 (err.code == 11000 /* dup key */)if
 ;continue
 else
 print(+ tojson(err));"unexpected error inserting data: "
 }
 ;break
 }
}

Find and Modify (or Remove)

See the for more information.findandmodify Command documentation

Applying to Multiple Objects At Once

You can use multi-update to apply the same modifier to every relevant object. By default a multi-update will allow some other operations (which
could be writes) to interleave. Thus, tthis will only be pseudo-atomic (pseudo-isolated). To make it fullly isolated you can use the $atomic motifier:

not isolated:

db.foo.update({ x : 1 } , { $inc : { y : 1 } } , ,);false true

isolated:

db.foo.update({ x : 1 , $atomic : 1 } , { $inc : { y : 1 } } , ,);false true

findandmodify Command

http://en.wikipedia.org/wiki/ABA_problem
http://en.wikipedia.org/wiki/ABA_problem

Find and Modify (or Remove)

v1.3.0 and higher

MongoDB 1.3+ supports a "find, modify, and return" command. This command can be used to atomically (at most one) andmodify a document
return it. Note that, by default, the document returned will not include the modifications made on the update.

If you don't need to return the document, you can use (which can affect multiple documents, as well).Update

The general form is

db.runCommand({ findandmodify : <collection>,
 <options> })

The MongoDB shell includes a helper method, findAndModify(), for executing the command. Some drivers provide helpers also.

At least one of the or parameters is required; the other arguments are optional.update remove

Argument Description Default

query a filter for the query {}

sort if multiple docs match, choose the first one in the specified sort order as the object to manipulate {}

remove set to a true to remove the object before returning N/A

update a modifier object N/A

new set to true if you want to return the modified object rather than the original. Ignored for remove. false

fields see (1.5.0+)Retrieving a Subset of Fields All fields

upsert create object if it doesn't exist. (1.5.4+)examples false

The option is useful when storing queue-like data. Let's take the example of fetching the highest priority job that hasn't been grabbed yet andsort
atomically marking it as grabbed:

job = db.jobs.findAndModify({
 query: {inprogress: },false
 sort:{priority:-1},
 update: {$set: {inprogress: , started: Date()}}true new
});

You could also simply remove the object to be returned, but be careful. If the client crashes before processing the job, the document will be lost
forever.

job = db.jobs.findAndModify({sort:{priority:-1}, remove: }}});true

See the for more examples.tests

If your driver doesn't provide a helper function for this command, run the command directly with something like this:

job = db.runCommand({ findandmodify : "jobs",
 sort : { priority : -1 },
 remove : true
 }).value;

Sharding limitations

findandmodify will behave the same when called through a as long as the collection it is modifying is unsharded. If the collection ismongos
sharded, then the query must contain the shard key. This is the same as regular sharded updates.

http://github.com/mongodb/mongo/blob/master/jstests/find_and_modify4.js
http://github.com/mongodb/mongo/blob/master/jstests/find_and_modify.js

See Also

Atomic Operations

Updating Data in Mongo

Updating a Document in the mongo Shell with save()
Embedding Documents Directly in Documents
Database References

Updating a Document in the mongo Shell with save()

As shown in the previous section, the method may be used to save a new document to a collection. We can also use to updatesave() save()
an existing document in a collection.

Continuing with the database from the last section, lets add new information to the document { } that already is in theexample name:"mongo"
collection.

> mongo = db.things.findOne({name: });var "mongo"
> print(tojson(mongo));
{ : , : }"_id" "497dab624ee47b3a675d2d9c" "name" "mongo"
> mongo.type = ;"database"
database
> db.things.save(mongo);
> db.things.findOne({name: });"mongo"
{ : , : , : }"_id" "497dab624ee47b3a675d2d9c" "name" "mongo" "type" "database"
>

This was a simple example, adding a string valued element to the existing document. When we called , the method saw that thesave()
document already had an "_id" field, so it simply performed an update on the document.

In the next two sections, we'll show how to embed documents within documents (there are actually two different ways), as well as show how to
query for documents based on values of embedded documents.

Embedding Documents Directly in Documents

As another example of updating an existing document, lets embed a document within an existing document in the collection. We'll keep working
with the original { } document for simplicity.name:"mongo"

> mongo = db.things.findOne({name: });var "mongo"
> print(tojson(mongo));
{ : , : , : }"_id" "497da93d4ee47b3a675d2d9b" "name" "mongo" "type" "database"
> mongo.data = { a:1, b:2};
{ : 1 , : 2}"a" "b"
> db.things.save(mongo);
> db.things.findOne({name: });"mongo"
{ : , : , : , : { : 1 , "_id" "497da93d4ee47b3a675d2d9b" "name" "mongo" "type" "database" "data" "a" "b"
: 2}}
>

As you can see, we added new data to the mongo document, adding { } under the key "data".a:1, b:2

Note that the value of "data" is a document itself - it is embedded in the parent mongo document. With , you may nest and embedBSON
documents to any level. You can also query on embedded document fields, as shown here:

> db.things.findOne({ : 1});"data.a"
{ : , : , : { : 1 , : 2}}"_id" "497da93d4ee47b3a675d2d9b" "name" "mongo" "data" "a" "b"
> db.things.findOne({ : 2});"data.a"
>

Note that the second doesn't return anything, because there are no documents that match.findOne()

Database References

Alternatively, a document can reference other documents which are not embedded via a , which is analogous to a foreign keydatabase reference

in a relational database. A database reference (or "DBRef" for short), is a reference implemented according to the . MostDatabase References
drivers support helpers for creating DBRefs. Some also support additional functionality, like dereference helpers and auto-referencing. See
specific driver documentation for examples / more information

Lets repeat the above example, but create a document and place in a different collection, say , and embed that as a reference in ourotherthings
favorite "mongo" object under the key "otherdata":

// first, save a doc in the 'otherthings' collectionnew

> other = { s : , n : 1};var "other thing"
> db.otherthings.save(other);
> db.otherthings.find();
{ : , : , : 1}"_id" "497dbcb36b27d59a708e89a4" "s" "other thing" "n"

// now get our mongo object, and add the 'other' doc as 'otherthings'

> mongo = db.things.findOne();var
> print(tojson(mongo));
{ : , : , : , : { : 1 , "_id" "497dab624ee47b3a675d2d9c" "name" "mongo" "type" "database" "data" "a" "b"
: 2}}
> mongo.otherthings = DBRef('otherthings' , other._id);new
{ : , : 1 , : }"s" "other thing" "n" "_id" "497dbcb36b27d59a708e89a4"
> db.things.save(mongo);
> db.things.findOne().otherthings.fetch();
{ : , : , : , : { : 1 , "_id" "497dab624ee47b3a675d2d9c" "name" "mongo" "type" "database" "data" "a" "b"
: 2} , : { : , : , : 1}}"otherthings" "_id" "497dbcb36b27d59a708e89a4" "s" "other thing" "n"

// now, lets modify our 'other' document, save it again, and see that when the dbshell
// gets our mongo object and prints it, follows the dbref and we have the valueif new

> other.n = 2;
2
> db.otherthings.save(other);
> db.otherthings.find();
{ : , : , : 2}"_id" "497dbcb36b27d59a708e89a4" "s" "other thing" "n"
> db.things.findOne().otherthings.fetch();
{ : , : , : , : { : 1 , "_id" "497dab624ee47b3a675d2d9c" "name" "mongo" "type" "database" "data" "a" "b"
: 2} , : { : , : , : 2}}"otherthings" "_id" "497dbcb36b27d59a708e89a4" "s" "other thing" "n"
>

MapReduce

Map/reduce in MongoDB is useful for batch manipulation of data and aggregation operations. It is similar in spirit to using something like Hadoop
with all input coming from a collection and output going to a collection. Often, in a situation where you would have used GROUP BY in SQL,
map/reduce is the right tool in MongoDB.

Indexing and standard queries in MongoDB are separate from map/reduce. If you have used CouchDB in the past, note this is a
big difference: MongoDB is more like MySQL for basic querying and indexing. See the and documentation forqueries indexing
those operations.

Overview
Map Function
Reduce Function
Finalize Function

Sharded Environments
Examples

Shell Example 1
Shell Example 2
More Examples
Note on Permanent Collections

Parallelism
Presentations
See Also

Overview

Version 1.1.1 and above

map/reduce is invoked via a database . The database creates a temporary collection to hold output of the operation. The collection iscommand
cleaned up when the client connection closes, or when explicitly dropped. Alternatively, one can specify a permanent output collection name. map
and functions are written in JavaScript and execute on the server.reduce

Command syntax:

db.runCommand(
 { mapreduce : <collection>,
 map : <mapfunction>,
 reduce : <reducefunction>
 [, query : <query filter object>]
 [, sort : <sort the query. useful optimization>]for
 [, limit : <number of objects to from collection>]return
 [, out : <output-collection name>]
 [, keeptemp: < | >]true false
 [, finalize : <finalizefunction>]
 [, scope : <object where fields go into javascript global scope >]
 [, verbose :]true
 }
);

keeptemp - if true, the generated collection is not treated as temporary. Defaults to false. When is specified, the collection isout
automatically made permanent.
finalize - function to apply to all the results when finished
verbose - provide statistics on job execution time
scope - can pass in variables that can be access from map/reduce/finalize example mr5

Result:

{ result : <collection_name>,
 counts : {
 input : <number of objects scanned>,
 emit : <number of times emit was called>,
 output : <number of items in output collection>
 } ,
 timeMillis : <job_time>,
 ok : <1_if_ok>,
 [, err : <errmsg_if_error>]
}

A command helper is available in the MongoDB :shell

db.collection.mapReduce(mapfunction,reducefunction[,options]);

map, , and functions are written in JavaScript.reduce finalize

Map Function

The function references the variable to inspect the current object under consideration. A map function must call atmap this emit(key,value)
least once, but may be invoked any number of times, as may be appropriate.

function map(void) -> void

Reduce Function

The function receives a key and an array of values. To use, reduce the received values, and return a result.reduce

http://github.com/mongodb/mongo/tree/master/jstests/mr5.js

function reduce(key, value_array) -> value

The MapReduce engine may invoke reduce functions iteratively; thus, these functions must be idempotent. That is, the following must hold for
your reduce function:

for all k,vals : reduce(k, [reduce(k,vals)]) == reduce(k,vals)

If you need to perform an operation only once, use a finalize function.

The output of emit (the 2nd param) and reduce should be the same format to make iterative reduce possible. If not, there will be
weird bugs that are hard to debug.

Currently, the return value from a reduce function cannot be an array (it's typically an object or a number).

Finalize Function

A function may be run after reduction. Such a function is optional and is not necessary for many map/reduce cases. The finalizefinalize
function takes a key and a value, and returns a finalized value.

function finalize(key, value) -> final_value

Sharded Environments

In sharded environments, data processing of map/reduce operations runs in parallel on all shards.

Examples

Shell Example 1

The following example assumes we have an collection with objects of the form:events

{ time : <time>, user_id : <userid>, type : <type>, ... }

We then use MapReduce to extract all users who have had at least one event of type "sale":

> m = function() { emit(.user_id, 1); }this
> r = function(k,vals) { 1; }return
> res = db.events.mapReduce(m, r, { query : {type:'sale'} });
> db[res.result].find().limit(2)
{ : 8321073716060 , : 1 }"_id" "value"
{ : 7921232311289 , : 1 }"_id" "value"

If we also wanted to output the number of times the user had experienced the event in question, we could modify the reduce function like so:

> r = function(k,vals) {
... sum=0;var
... (i in vals) sum += vals[i];for var
... sum;return
... }

Note, here, that we cannot simply return , as the reduce may be called multiple times.vals.length

Shell Example 2

$./mongo
> db.things.insert({ _id : 1, tags : ['dog', 'cat'] });
> db.things.insert({ _id : 2, tags : ['cat'] });
> db.things.insert({ _id : 3, tags : ['mouse', 'cat', 'dog'] });
> db.things.insert({ _id : 4, tags : [] });

> // map function
> m = function(){
... .tags.forEach(this
... function(z){
... emit(z , { count : 1 });
... }
...);
...};

> // reduce function
> r = function(key , values){
... total = 0;var
... (i=0; i<values.length; i++)for var
... total += values[i].count;
... { count : total };return
...};

> res = db.things.mapReduce(m,r);
> res
{ : 9 , : ,"timeMillis.emit" "result" "mr.things.1254430454.3"
 : 4 , : 9 , : ok" : 0}"numObjects" "timeMillis" "errmsg" "" , "

> db[res.result].find()
{ : , : { : 3}}"_id" "cat" "value" "count"
{ : , : { : 2}}"_id" "dog" "value" "count"
{ : , : { : 1}}"_id" "mouse" "value" "count"

> db[res.result].drop()

More Examples

example mr1
Finalize example: example mr2

Note on Permanent Collections

Even when a permanent collection name is specified, a temporary collection name will be used during processing. At map/reduce completion, the
temporary collection will be renamed to the permanent name atomically. Thus, one can perform a map/reduce job periodically with the same
target collection name without worrying about a temporary state of incomplete data. This is very useful when generating statistical output
collections on a regular basis.

Parallelism

As of right now, MapReduce jobs on a single mongod process are single threaded. This is due to a design limitation in current JavaScript engines.
We are looking into alternatives to solve this issue, but for now if you want to parallelize your MapReduce jobs, you will need to either use
sharding or do the aggregation client-side in your code.

Presentations

Map/reduce, geospatial indexing, and other cool features - Kristina Chodorow at MongoSF (April 2010)

See Also

Aggregation
Kyle's Map/Reduce basics

Data Processing Manual

DRAFT - TO BE COMPLETED.

http://github.com/mongodb/mongo/tree/master/jstests/mr1.js
http://github.com/mongodb/mongo/tree/master/jstests/mr2.js
http://www.10gen.com/event_mongosf_10apr30#cool
http://kylebanker.com/blog/2009/12/mongodb-map-reduce-basics/

This guide provides instructions for using MongoDB batch data processing oriented features including .map/reduce

By "data processing", we generally mean operations performed on large sets of data, rather than small interactive operations.

Import

One can always write a program to load data of course, but the utility also works for some situations. mongoimport supportsmongoimport
importing from json, csv, and tsv formats.

A common usage pattern would be to use mongoimport to load data in a relatively raw format and then use a server-side script (or db.eval()
) to reduce the data to a more clean format.map/reduce

See Also

Import/Export Tools
Server-Side Code Execution
Map/Reduce

mongo - The Interactive Shell

Introduction
More Information
Some Notes on Datatypes in the Shell

Numbers
Dates
BinData

Presentations

Introduction

The MongoDB includes , the MongoDB interactive shell. This utility is a JavaScript shell that allows you to issuedistribution bin/mongo
commands to MongoDB from the command line. (Basically, it is an extended shell.)SpiderMonkey

The shell is useful for:

inspecting a database's contents
testing queries
creating indices
other administrative functions.

When you see sample code in this wiki and it looks like JavaScript, assume it is a shell example. See the for a chart that candriver syntax table
be used to convert those examples to any language.

More Information

Shell Overview

Shell Reference

Shell APIDocs

Some Notes on Datatypes in the Shell

Numbers

The shell treats all numbers as floating-point values. If you have long/integer data from the database you may see something like this:BSON

"bytes" : {
 "floatApprox" : 575175
}

or something like this for larger numbers:

https://developer.mozilla.org/En/SpiderMonkey/Introduction_to_the_JavaScript_shell
http://api.mongodb.org/js/index.html

"bytes" : {
 "floatApprox" : 5284376243087482000,
 "top" : 1230364721,
 "bottom" : 4240317554
}

In addition, setting/incrementing any number will (most likely) change the data type to a floating point value

Dates

The Date() function returns a string and a " Date()" will return an object (which is what you should use to store values).new

> Date()
Sun May 02 2010 19:07:40 GMT-0700 (Pacific Daylight Time)
> Date()new
"Sun May 02 2010 19:07:43 GMT-0700 (Pacific Daylight Time)"
> typeof(Date())new
object
> typeof(Date())
string

BinData

The BinData datatype is represented via class BinData in the shell. Run for more information.BSON help misc

Presentations

CRUD and the JavaScript Shell - Presentation by Mike Dirolf at MongoSF (April 2010)

Overview - The MongoDB Interactive Shell

Starting the Shell

The interactive shell is included in the standard MongoDB distribution. To start the shell, go into the root directory of the distribution and type

./bin/mongo

It might be useful to add to your so you can just type from anywhere./binmongo_distribution_root PATH mongo

If you start with no parameters, it connects to a database named "test" running on your local machine on the default port (27017). You can see the
db to which you are connecting by typing :db

./mongo
type help"help" for
> db
test

You can pass an optional argument specifying the address, port and even the database to initially connect to:mongo

./mongo foo connects to the database on your local machinefoo

./mongo 192.168.13.7/foo connects to the database on 192.168.13.7foo

./mongo dbserver.mydomain.com/foo connects to the database on dbserver.mydomain.comfoo

./mongo 192.168.13.7:9999/foo connects to the database on 192.168.13.7 on port 9999foo

Connecting

http://www.10gen.com/event_mongosf_10apr30#crud

If you have not connected via the command line, you can use the following commands:

conn = Mongo(host);new
db = conn.getDB(dbname);
db.auth(username,password);

where is a string that contains either the name or address of the machine you want to connect to (e.g. "192.168.13.7") or the machine andhost
port (e.g. "192.168.13.7:9999"). Note that host in an optional argument, and can be omitted if you want to connect to the database instance
running on your local machine. (e.g.)conn = new Mongo()

Alternatively you can use the helper method:connect

> db = connect(); "localhost:27020/mytestdb" // example with a nonstandard port #

Basics Commands

The following are three basic commands that provide information about the available databases, and collections in a given database.

show dbs displays all the databases on the server you are connected to

use db_name switches to on the same serverdb_name

show collections displays a list of all the collections in the current database

Querying

mongo uses a JavaScript API to interact with the database. Because is also a complete JavaScript shell, is the variable that is themongo db
current database connection.

To query a collection, you simply specify the collection name as a property of the object, and then call the method. For example:db find()

db.foo.find();

This will display the first 10 objects from the collection. Typing after a find() will display the next 10 subsequent objects.foo it

By setting the shellBatchSize you can change this:

DBQuery.shellBatchSize = #

If the shell does not accept the collection name (for example if it starts with a number, contains a space etc), use

db['foo'].find()

instead.

Inserting Data

In order to insert data into the database, you can simply create a JavaScript object, and call the method. For example, to save an object {save()
} in a collection called , type:name: "sara" foo

db.foo.save({ name : });"sara"

Note that MongoDB will implicitly create any collection that doesn't already exist.

Modifying Data

Let's say you want to change someone's address. You can do this using the following commands:mongo

person = db.people.findOne({ name : });"sara"
person.city = ;"New York"
db.people.save(person);

Deleting Data

db. .drop()foo drop the entire collectionfoo

db. .remove()foo remove all objects from the collection

db. .remove({ name : "sara" })foo remove objects from the collection where is name sara

Indexes

db. .getIndexKeys()foo get all fields that have indexes on them

db. .ensureIndex({ _field_ : 1 })foo create an index on if it doesn't existfield

Line Continuation

If a line contains open '(' or '{' characters, the shell will request more input before evaluating:

> function f() {
... x = 1;
... }
>

You can press Ctrl-C to escape from "..." mode and terminate line entry.

See Also

MongoDB Shell Reference

dbshell Reference

Command Line
Special Command Helpers
Basic Shell Javascript Operations
Queries
Error Checking
Administrative Command Helpers
Opening Additional Connections
Miscellaneous
Examples

Command Line

--help Show command line options

--nodb Start without a db, you can connect later with or new Mongo() connect()

--shell After running a .js file from the command line, stay in the shell rather than terminating

Special Command Helpers

Non-javascript convenience macros:

help Show help

db.help() Show help on db methods

db. .help()myColl Show help on collection methods

show dbs Print a list of all databases on this server

use dbname Set the db variable to represent usage of on the serverdbname

show collections Print a list of all collections for current database

show users Print a list of users for current database

show profile Print most recent profiling operations that took >= 1ms

Basic Shell Javascript Operations

db The variable that references the current database object / connection. Already defined for you in your
instance.

db.auth(user,pass) Authenticate with the database (if running in secure mode).

coll = db.collection Access a specific within the database.collection

cursor = coll.find(); Find all objects in the collection. See .queries

coll.remove(objpattern
);

Remove matching objects from the collection.
 is an object specifying fields to match. E.g.: objpattern coll.remove({ name: "Joe" });

coll.save()object Save an object in the collection, or update if already there.
If your object has a presave method, that method will be called before the object is saved to the db (before
both updates and inserts)

 coll.insert(object) Insert object in collection. No check is made (i.e., no upsert) that the object is not already present in the
collection.

 coll.update(...) Update an object in a collection. See the documentation; update() has many options. Updating

coll.ensureIndex({
 : 1 })name

Creates an index on . Does nothing if index already exists.tab.name

coll.update(...)

coll.drop() Drops the collection coll

db.getSisterDB(name) Return a reference to another database using this same connection. Usage example:
db.getSisterDB('production').getCollectionNames()

Queries

coll.find() Find all.

it Continue iterating the last cursor returned from find().

coll.find(
);criteria

Find objects matching in the collection. E.g.: criteria coll.find({ name: "Joe" });

coll.findOne(
);criteria

Find and return a single object. Returns null if not found. If you want only one object returned, this is more efficient
than just as is implied. You may use regular expressions if the element type is a string, number,find() limit(1)
or date: coll.find({ name: /joe/i });

coll.find(
criteria, fields
);

Get just specific fields from the object. E.g.: coll.find({}, {name:true});

coll.find().sort(
{ :1[, field field
:1] });

Return results in the specified order (field ASC). Use -1 for DESC.

coll.find(
).sort(criteria

{ : 1 })field

Return the objects matching , sorted by .criteria field

coll.find(...
).limit()n

Limit result to rows. Highly recommended if you need only a certain number of rows for best performance.n

http://mongodb.onconfluence.com/display/DOCS/Queries+and+Cursors

coll.find(...
).skip()n

Skip results.n

coll.count() Returns total number of objects in the collection.

coll.find(...
).count()

Returns the total number of objects that match the query. Note that the number ignores limit and skip; for example if
100 records match but the limit is 10, will return 100. This will be faster than iterating yourself, but still takecount()
time.

More information: see .queries

Error Checking

db.getLastError() Returns error from the last operation.

db.getPrevError() Returns error from previous operations.

db.resetError() Clear error memory.

Administrative Command Helpers

db.cloneDatabase(fromhost) Clone the current database from the other host specified. fromhost database must be in
noauth mode.

db.copyDatabase(fromdb, todb,
fromhost)

Copy fromhost/fromdb to todb on this server. fromhost must be in noauth mode.

db.repairDatabase() Repair and compact the current database. This operation can be very slow on large
databases.

db.addUser(user,pwd) Add user to current database.

db.getCollectionNames() get list of all collections.

db.dropDatabase() Drops the current database.

Opening Additional Connections

db =
connect("<host>:<port>/<dbname>")

Open a new database connection. One may have multiple connections within a single shell,
however, automatic getLastError reporting by the shell is done for the 'db' variable only. See

 for an example of connect().here

conn = new Mongo("hostname") Open a connection to a new server. Use to select a database thereafter.getDB()

db = conn.getDB("dbname") Select a specific database for a connection

Miscellaneous

Object.bsonsize(db.foo.findOne()) prints the bson size of a db object (mongo version 1.3 and greater)

db.foo.findOne().bsonsize() prints the bson size of a db object (mongo versions predating 1.3)

For a full list of functions, see the .shell API

Examples

The MongoDB source code includes a directory with many mongo shell scripts.jstests/

Developer FAQ

What's a "namespace"?
How do I copy all objects from one database collection to another?
If you remove an object attribute is it deleted from the store?
Are null values allowed?
Does an update fsync to disk immediately?
How do I do transactions/locking?
How do I do equivalent of SELECT count * and GROUP BY?

http://mongodb.onconfluence.com/display/DOCS/Queries+and+Cursors
http://mongodb.onconfluence.com/display/DOCS/getlasterror
http://api.mongodb.org/js/index.html
http://github.com/mongodb/mongo/tree/master/jstests/

What are so many "Connection Accepted" messages logged?
What RAID should I use?
Can I run on Amazon EBS? Any issues?
Why are my data files so large?

Do I Have to Worry About SQL Injection
How does concurrency work
SQL to Mongo Mapping Chart
What is the Compare Order for BSON Types

Also check out Markus Gattol's excellent FAQ on .his website

What's a "namespace"?

MongoDB stores objects in . The concatenation of the database name and the collection name (with a period in between) isBSON collections
called a .namespace

For example, is a namespace, where is the database name, and is the collection name. Note that periods can occur inacme.users acme users
collection names, so a name such as is legal too (in that case is the collection name.acme.blog.posts blog.posts

How do I copy all objects from one database collection to another?

See below. The code below may be ran server-side for high performance with the eval() method.

db.myoriginal.find().forEach(function(x){db.mycopy.save(x)});

If you remove an object attribute is it deleted from the store?

Yes, you remove the attribute and then re- the object.save()

Are null values allowed?

For members of an object, yes. You cannot add null to a database collection though as null isn't an object. You can add {}, though.

Does an update fsync to disk immediately?

No, writes to disk are lazy by default. A write may hit disk a couple of seconds later. For example, if the database receives a thousand increments
to an object within one second, it will only be flushed to disk once. (Note fsync options are available though both at the command line and via

.)getLastError

How do I do transactions/locking?

MongoDB does not use traditional locking or complex transactions with rollback, as it is designed to be lightweight and fast and predictable in its
performance. It can be thought of as analogous to the MySQL MyISAM autocommit model. By keeping transaction support extremely simple,
performance is enhanced, especially in a system that may run across many servers.

The system provides alternative models for atomically making updates that are sufficient for many common use cases. See the wiki page
 for detailed information.Atomics Operations

How do I do equivalent of SELECT count * and GROUP BY?

See .aggregation

What are so many "Connection Accepted" messages logged?

If you see a tremendous number of connection accepted messages in the mongod log, that means clients are repeatedly connecting and
disconnected. This works, but is inefficient.

With CGI this is normal. If you find the speed acceptable for your purposes, run mongod with --quiet to suppress these messages in the log. If
you need better performance, switch to a solution where connections are pooled -- such as an Apache module.

What RAID should I use?

We recommend not using RAID-5, but rather, RAID-10 or the like. Both will work of course.

Can I run on Amazon EBS? Any issues?

Works fine in our experience; more information .here

http://sunoano.name/ws/public_xhtml/mongodb.html

Why are my data files so large?

MongoDB does aggressive preallocation of reserved space to avoid file system fragmentation. This is configurable. More info here.

Do I Have to Worry About SQL Injection

Generally, with MongoDB we are not building queries from strings, so traditional attacks are not a problem. More details and someSQL Injection
nuances are covered below.

MongoDB queries are represented as objects. Typically the programming language gives a convenient way to build these objects that isBSON
injection free. For example in C++ one would write:

BSONObj my_query = BSON(<< a_name);"name"
auto_ptr<DBClientCursor> cursor = c.query(, my_query);"tutorial.persons"

my_query then will have a value such as { name : "Joe" }. If my_query contained special characters such as ", :, {, etc., nothing bad happens, they
are just part of the string.

Javascript

Some care is appropriate when using server-side Javascript. For example when using the statement in a query, do not concatenate user$where
supplied data to build Javascript code; this would be analogous to a SQL injection vulnerability. Fortunately, most queries in MongoDB can be
expressed without Javascript. Also, we can mix the two modes. It's a good idea to make all the user-supplied fields go straight to a BSON field,
and have your Javascript code be static and passed in the $where field.

If you need to pass user-supplied values into a $where clause, a good approach is to escape them using the CodeWScope mechanism. By
setting the user values as variables in the scope document you will avoid the need to have them eval'ed on the server-side.

If you need to use db.eval() with user supplied values, you can either use a CodeWScope or you can supply extra arguments to your function.
Something like: db.eval(function(userVal){...}, user_value); This will ensure that user_value gets sent as data rather than code.

User-Generated Keys

Sometimes it is useful to build a BSON object where the key is user-provided. In these situations, keys will need to have substitutions for the
reserved $ and . characters. If you are unsure what characters to use, the Unicode full width equivalents aren't a bad choice: U+FF04 () and
U+FFOE ()

For example:

BSONObj my_object = BSON(a_key << a_name);

The user may have supplied a $ value within a_key. my_object could be { $where : "things" }. Here we can look at a few cases:

Inserting. Inserting into the the database will do no harm. We are not executing this object as a query, we are inserting the data in the
database.
Note: properly written MongoDB client drivers check for reserved characters in keys on inserts.
Update. update(query, obj) allows $ operators in the obj field. $where is not supported in update. Some operators are possible that
manipulate the single document only -- thus, the keys should be escaped as mentioned above if reserved characters are possible.
Querying. Generally this is not a problem as for { x : user_obj }, dollar signs are not top level and have no effect. In theory one might let
the user build a query completely themself and provide it to the database. In that case checking for $ characters in keynames is
important. That however would be a highly unusual case.

One way to handle user-generated keys is to always put them in sub-objects. Then they are never at top level (where $operators live) anyway.

See Also

http://groups.google.com/group/mongodb-user/browse_thread/thread/b4ef57912cbf09d7

How does concurrency work

mongos
mongod

v1.0-v1.2 Concurrency
Viewing Operations in Progress
Read/Write Lock
Operations
On Javascript

http://en.wikipedia.org/wiki/SQL_injection
http://groups.google.com/group/mongodb-user/browse_thread/thread/b4ef57912cbf09d7

1.
2.
3.

Multicore

mongos

For environments, mongos can perform any number of operations concurrently. This results in downstream operations to mongodsharded
instances. Execution of operations at each mongod is independent; that is, one mongod does not block another.

mongod

The original mongod architecture is concurrency friendly; however, some work with respect to granular locking and latching is not yet done. This
means that some operations can block others. This is particular true in versions < 1.3. Version 1.3+ has improvements to concurrency, although
future work will make things even better.

v1.0-v1.2 Concurrency

In these versions of mongod, most operations prevent concurrent execution of other operations. In many circumstances, this worked reasonably
as most operations can be executed very quickly.

The following operations do have concurrent support in v1.2 and below:

db.currentOp() and db.killOp() commands
map/reduce
queries returning large amounts of data do interleave with other operations (but does block when scanning data that is not returned)

The rest of this document focuses on concurrency for v1.3+.

Viewing Operations in Progress

Use to view operations in progress, and to terminate an operation.db.currentOp() db.killOp()

You can also see operations in progress from the adminstrative .Http Interface

Read/Write Lock

mongod uses a read/write lock for many operations. Any number of concurrent read operations are allowed, but typically only one write operation
(although some write operations and in the future more concurrency will be added). The write lock acquisition is greedy: a pending write lockyield
acquisition will prevent further read lock acquisitions until fulfilled.

Operations

Operation Lock type Notes

 () OP_QUERY query Acquires read lock see also: SERVER-517

 (get more from)OP_GETMORE cursor Acquires read lock

OP_INSERT ()insert Acquires write lock Inserts are normally fast and short-lived operations

OP_DELETE () remove Acquires write lock Yields while running to allow other operations to interleave.

OP_UPDATE () update Acquires write lock Will yield for interleave (1.5.2+)

map/reduce At times locked Allows substantial concurrent operation.

 create index See notes Batch build acquires write lock. But a is available.background build option

db.eval() Acquires write lock

 command getLastError Non-blocking

 command ismaster Non-blocking

 commandserverStatus Non-blocking

On Javascript

http://jira.mongodb.org/browse/SERVER-517

Only one thread in the mongod process executes Javascript at a time (other database operations are often possible concurrent with this).

Multicore

With read operations, it is easy for mongod 1.3+ to saturate all cores. However, because of the read/write lock above, write operations will not yet
fully utilize all cores. This will be improved in the future.

SQL to Mongo Mapping Chart

This page not done. Please help us finish it!

MySQL Program Mongo Program

 mysqld mongod

 mysql mongo

MongoDB queries are expressed as JSON () objects. This quick reference chart shows examples as both SQL and in Mongo QueryBSON
Language syntax.

The query expression in MongoDB (and other things, such as index key patterns) is represented as JSON. However, the actual verb (e.g. "find")
is done in one's regular programming language. The exact forms of these verbs vary by language. The examples below are Javascript and can
be executed from the .mongo shell

SQL Statement Mongo Query Language Statement

CREATE TABLE USERS (a , b)Number Number

implicit; can be done explicitly

INSERT INTO USERS VALUES(1,1) db.users.insert({a:1,b:1})

SELECT a,b FROM users db.users.find({}, {a:1,b:1})

SELECT * FROM users db.users.find()

SELECT * FROM users WHERE age=33 db.users.find({age:33})

SELECT a,b FROM users WHERE age=33 db.users.find({age:33}, {a:1,b:1})

SELECT * FROM users WHERE age=33 ORDER BY
name

db.users.find({age:33}).sort({name:1})

SELECT * FROM users WHERE age>33 db.users.find({'age':{$gt:33}})})

SELECT * FROM users WHERE age<33 db.users.find({'age':{$lt:33}})})

SELECT * FROM users ORDER BY name DESC db.users.find().sort({name:-1})

CREATE INDEX myindexname ON users(name) db.users.ensureIndex({name:1})

SELECT * FROM users WHERE a=1 and b='q' db.users.find({a:1,b:'q'})

SELECT * FROM users LIMIT 10 SKIP 20 db.users.find().limit(10).skip(20)

SELECT * FROM users LIMIT 1 db.users.findOne()

EXPLAIN SELECT * FROM users WHERE z=3 db.users.find({z:3}).explain()

SELECT DISTINCT last_name FROM users db.users.distinct('last_name')

SELECT COUNT(*y)
FROM users

db.users.count()

SELECT COUNT(*y)
FROM users where AGE > 30

db.users.find({age: {'$gt': 30}}).count()

SELECT COUNT(AGE) from users db.users.find({age: {'$exists': true
}}).count()

UPDATE users SET a=1 WHERE b='q' db.users.update({b:'q'}, {$set:{a:1}},
,)false true

What is the Compare Order for BSON Types

MongoDB allows objects in the same collection which have values which may differ in type. When comparing values from different types, a
convention is utilized as to which value is less than the other. This (somewhat arbitary but well defined) ordering is listed below.

Note that some types are treated as equivalent for comparison purposes -- specifically numeric types which undergo conversion before
comparison.

See also the .BSON specification

Null
Numbers (ints, longs, doubles)
Symbol, String
Object
Array
BinData
ObjectID
Boolean
Date, Timestamp
Regular Expression

Example (using the mongo):shell

> t = db.mycoll;
> t.insert({x:3});
> t.insert({x : 2.9});
> t.insert({x : Date()});new
> t.insert({x : })true
> t.find().sort({x:1})
{ : ObjectId(), : 2.9 }"_id" "4b03155dce8de6586fb002c7" "x"
{ : ObjectId(), : 3 }"_id" "4b03154cce8de6586fb002c6" "x"
{ : ObjectId(), : }"_id" "4b031566ce8de6586fb002c9" "x" true
{ : ObjectId(), : }"_id" "4b031563ce8de6586fb002c8" "x" "Tue Nov 17 2009 16:28:03 GMT-0500 (EST)"

MinKey and MaxKey

In addition to the above types MongoDB internally uses a special type for MinKey and MaxKey which are less than, and greater than all other
possible BSON element values, respectively.

From the mongo Javascript Shell

For example we can continue our example from above adding two objects which have x key values of MinKey and MaxKey respectively:

> t.insert({ x : MaxKey })
> t.insert({ x : MinKey })
> t.find().sort({x:1})
{ : ObjectId(), : { $minKey : 1 } }"_id" "4b04094b7c65b846e2090112" "x"
{ : ObjectId(), : 2.9 }"_id" "4b03155dce8de6586fb002c7" "x"
{ : ObjectId(), : 3 }"_id" "4b03154cce8de6586fb002c6" "x"
{ : ObjectId(), : }"_id" "4b031566ce8de6586fb002c9" "x" true
{ : ObjectId(), : }"_id" "4b031563ce8de6586fb002c8" "x" "Tue Nov 17 2009 16:28:03 GMT-0500 (EST)"
{ : ObjectId(), : { $maxKey : 1 } }"_id" "4b0409487c65b846e2090111" "x"

From C++

See also the page for an example of using MinKey from C++. See also minKey and maxKey definitions in .Tailable Cursors jsobj.h

Admin Zone
Production Notes
Replication
Sharding
Hosting Center
Monitoring and Diagnostics
Backups
Durability and Repair
Security and Authentication
Admin UIs
Starting and Stopping Mongo
GridFS Tools
DBA Operations from the Shell
Architecture and Components
Troubleshooting

Community Admin-Related Articles

boxedice.com - notes from a production deployment

Survey of Admin UIs for MongoDB

MongoDB Nagios Check

MongoDB Cacti Graphs

See Also

Commands in Developer Zone

Production Notes

Architecture
Production Options
Backups

Recommended Unix System Settings
TCP Port Numbers
File Systems
Tips
See Also

Architecture

Production Options

Master Slave
1 master, slaves - failover is handled manuallyN

Version 1.6: Replica Sets
N servers, 1 is always primary, auto-failover, auto-recovery

Backups

Import Export Tools

Recommended Unix System Settings

Turn off atime
Set file descriptor limit to 4k+ (see and)etc/limits ulimit
Do not use large VM pages with Linux ()more info

TCP Port Numbers

http://github.com/mongodb/mongo/blob/master/db/jsobj.h
http://blog.boxedice.com/2010/02/28/notes-from-a-production-mongodb-deployment/
http://blog.timgourley.com/post/453680012/tuesday-night-tech-mongodb-ui-edition
http://tag1consulting.com/blog/mongodb-nagios-check
http://tag1consulting.com/blog/mongodb-cacti-graphs
http://linuxgazette.net/155/krishnakumar.html

Default TCP port numbers for MongoDB processes:

Standalone – 27017mongod
mongos – 27017
shard server () – 27018mongod --shardsvr
config server () – 27019mongod --configsvr
web stats page for – add 1000 to port number (28017, by default)mongod

File Systems

MongoDB uses large files for storing data, and preallocates these. Some filesystems are much better at this
ext4
xfs

Tips

Handling Halted Replication

See Also

Starting and Stopping the Database

Replication

MongoDB supports asynchronous replication of data between servers for failover and redundancy. Only one server (in the set/shard) is active for
writes (the primary, or master) at a given time. With a single active master at any point in time, strong consistency semantics are available. One
can optionally send read operations to the slaves/secondaries when semantics are acceptable.eventual consistency

Master-Slave Replication
Replica Sets

Which should I use?

if using <v1.6 : master/slave
if need automatic fail-over and recovery (easy administration): replica sets
if using (security) or : , master/slave--auth --slavedelay for now
if using sharding : either, but replica sets are best for clusters that are not small
if risk averse : master/slave (replica sets are new to v1.6.0)

Verifying propagation of writes with getlasterror

A client can block until a write operation has been replicated to N servers -- .read more here

Presentations

Replication Video

http://blog.mongodb.org/post/498145601/on-distributed-consistency-part-2-some-eventual
http://jira.mongodb.org/browse/SERVER-1567
http://lacantine.ubicast.eu/videos/21-06-2010-130932-partie-6/

Replication Slides Only

Verifying Propagation of Writes with getLastError

v1.5+.

A client can block until a write operation has been replicated to N servers. Use the getlasterror command with a new parameter :w

db.runCommand({ getlasterror : 1 , w : 2 })

If is not set, or equals 1, the command returns immediately, implying the data is on 1 server (itself). If w is 2, then the data is on the currentw
server and 1 other server (a secondary).

The higher is, the longer acknowledgement may take. A recommended way of using this feature in a web context is to do all the writew
operations for a page, then call this once if needed. That way you're only paying the cost once.

There is an optional parameter that allows you to timeout after a certain number of milliseconds and perhaps return an error orwtimeout
warning to a user. For example, the following will wait for 3 seconds before giving up:

> db.runCommand({getlasterror : 1, w : 40, wtimeout : 3000})
{
 : ,"err" null
 : 0,"n"
 : ,"wtimeout" true
 : 3006,"waited"
 : ,"errmsg" "timed out waiting slaves"for
 : 0"ok"
}

Note: the current implementation returns when the data has been delivered to w servers. Future versions will provide more options for delivery
vs. say, physical fsync at the server.

See also for information on how to change the getlasterror default parameters.replica set configuration

Replica Sets

v1.6.0 and higher.

Replica sets are an elaboration on the existing master/slave , adding automatic failover and automatic recovery of member nodes.replication

Replica Sets are "Replica Pairs version 2" and are available in MongoDB version 1.6. Replica Pairs will be deprecated.

Features

Supports 1-7 servers in the cluster
Automatic failover and recovery
Data center aware (v1.6.1) (rack aware too, eventually)
Supports passive set members (slaves) that are never primary

Docs

To get started:

Try it out
Learn how to configure your set

If you would like to start using replica sets with an existing system:

Learn how to migrate your existing setup
Upgrade your client code to use replica set connections (see also your driver's documentation for details)

When running replica sets, it is important to know about:

http://www.slideshare.net/mongodb/replica-sets

The admin UI
Administrative commands

More Docs

Sample Replica Set Config Session.pdf
Limits
Design Concepts
HowTo

Resyncing a Very Stale Replica Set Member
Adding a New Set Member
Adding an Arbiter
About the local database
Reconfiguring when members are up
Reconfiguring when members are down
Data Center Awareness

See Also

Replication Video
Replica Sets Slides

About the local database

mongod reserves the database for special functionality. It is special in that its contents are never replicated.local

Using the database for end-user data

You may place end user application data in local, if you would like it to not replicate to other servers. Put your collections under .local.usr.*

Replica Sets

Replica sets use the following collections in :local

local.system.replset the replica set's configuration object is stored here. (View via the helper in the – or query itrs.conf() shell
directly.)
local.oplog.rs is a capped collection that is the . You can use the command line parameter to set the size ofoplog --oplogSize
this collection.
local.replset.minvalid sometimes contains an object used internally by replica sets to track sync status

Master/Slave Replication

Master
local.oplog.$main the "oplog"
local.slaves

Slave
local.sources

Other
local.me
local.pair.* (replica pairs, which are deprecated)

Data Center Awareness

The 1.6.0 build of replica sets does not support much in terms of data center awareness. However additional functionality will be added in the
future. Below are some suggestions configurations which work today.

Primary plus DR site

Use one site, with one or more set members, as primary. Have a member at a remote site with priority=0. For example:

{ _id: 'myset',
 members: [
 { _id:0, host:'sf1', priority:1 },
 { _id:1, host:'sf2', priority:1 },
 { _id:2, host:'ny1', priority:0 }
]
}

http://www.mongodb.org/download/attachments/9830402/mongodb+replica+sets+intro.pdf
http://lacantine.ubicast.eu/videos/21-06-2010-130932-partie-6/
http://www.slideshare.net/mongodb/mongodb-replica-sets

1.
2.
3.

4.

1.
2.
3.
4.
5.
6.

1.
2.
3.
4.
5.
6.
7.

Multi-site with local reads

Another configuration would be to have one member in each of three data centers. One node arbitrarily becomes primary, the others though are
secondaries and can process reads locally.

{ _id: 'myset',
 members: [
 { _id:0, host:'sf1', priority:1 },
 { _id:1, host:'ny1', priority:1 },
 { _id:2, host:'uk1', priority:1 }
]
}

Reconfiguring a replica set when members are down

One may modify a set when some members are down as long as a majority is established. In that case, simply send the reconfig command to the
current primary.

If there is no primary (and this condition is not transient), no majority is available. Reconfiguring a minority partition would be dangerous as two
sides of a network partition won't both be aware of the reconfiguration. Thus, this is not allowed.

However, in some administrative circumstances we will want to take action even though there is no majority. Suggestions on how to deal with this
are outlined below.

Example 1

A replica set has three members, which in the past were healthy. Two of the servers are permanently destroyed. We wish to bring the remaining
member online immediately.

One option is to make the last standing mongod a standalone server and not a set member:

stop the surviving mongod
consider doing a backup...
delete the datafiles in the data directory. this will prevent potential future confusion if it is ever restarted with --replSet in thelocal.*
future.
restart without the parameter.mongod --replSet

We are now back online with a single node that is not a replica set member. Clients can use it for both reads and writes.

Example 2

A replica set has three members, which in the past were healthy. Two of the servers are permanently destroyed. We wish to bring the remaining
member online and add a new member to its set.

We cannot reconfigure the existing set with only 1 of 3 members available. However, we can "break the mirror" and start a new set:

stop the surviging mongod
consider doing a backup...
delete the datafiles in the data directory.local.*
restart the with a new replica set namemongod
initiate this new set
then, add the new second member

Example 3

A replica set has five members, which in the past were healthy. Three of the servers are permanently destroyed. We wish to bring the remaining
members online.

As in example 2 we will use the "break the mirror" technique. Unfortunately one of the two members must be re-synced.

stop the surviging 'smongod
consider doing a backup...
delete the datafiles on server 1local.*
delete (ideally just move to a backup location) all the datafiles from server 2
restart both 's with the new replica set name on the command line for eachmongod
initiate this new set on server 1
then, add the new second member (server 2)

See Also

Reconfiguring when Members are Up

Reconfiguring when Members are Up

Use the rs.reconfig() helper in the shell. You can also do this from other languages/drivers using the replSetReconfig command directly. (Run
"rs.reconfig" in the shell with no parenthesis to see what it does.)

$ mongo
> // example : give 1st set member 2 votes
> cfg = rs.conf();
> cfg.members[0].votes = 2;
> rs.reconfig(cfg);

Requirements:

You must connect to the current primary.
A majority of members of the set must be up.

Note that you may experience a short downtime period while the set renegotiates master after a reconfiguration. This typically is 10-20 seconds.
As always, it is best to do admin work during planned maintenance windows regardless just to be safe.

See Also

Reconfiguring when members are down

Replica Set Design Concepts

1.

A write is only truly committed once it has replicated to a majority of members of the set. For important writes, the client should request
acknowledgement of this with a call.getLastError({w:...})

2.

Writes which are committed at the primary of the set may be visible before the true cluster-wide commit has occurred. This property, which is
more relaxed than some traditional RDBMS products, makes theoretically achievable performance and availability higher.

3.

On a failover, if there is data which has not replicated from the primary, the data is dropped (thus the use of getlasterror in #1 above).

Data is now backed up on rollback, although the assumption is that in most cases this data is never recovered as that would
require operator intervention: .http://jira.mongodb.org/browse/SERVER-1512

Replica Sets Troubleshooting
can't get local.system.replset config from self or any seed (EMPTYCONFIG)

Set needs to be initiated. Run from the shell.rs.initiate()

If the set is already initiated and this is a new node, verify it is present in the replica set's configuration and there are no typos in the host names:

> // send to a working node in the set:
> rs.conf()

Replica Set Tutorial

This tutorial will guide you through the basic configuration of a replica set on a single machine. If you're attempting to deploy replica sets in
production, be sure to read the . Also, do keep in mind that comprehensive replica set documentation replica sets are production-ready as of

.MongoDB 1.6

http://jira.mongodb.org/browse/SERVER-1512

Introduction
Starting the nodes
Initializing the set
Replication
Failing Over
Changing the replica set configuration
Running with two nodes
Drivers

Introduction

A replica set is group of nodes that work together to provide automated failover.N mongod

Setting up a replica set is a two-step process that requires starting each node and then formally initiating the set. Here, we'll be configuring a set
of three nodes, which is standard.

Once the nodes are started, we'll issue a command to properly initialize the set. After a few seconds, one node will be elected master,mongod
and you can begin writing to and querying the set.

Starting the nodes

First, create a separate data directory for each of the nodes in the set:

 mkdir -p /data/r0
 mkdir -p /data/r1
 mkdir -p /data/r2

Next, start each process with the parameter. The parameter requires that you specify the name of the replica set. Let's callmongod --replSet
our replica set "foo." We'll launch our first node like so:

 mongod --replSet foo --port 27017 --dbpath /data/r0

The second node gets launched on port 27018:

Let's start the second node on port 27018:

 mongod --replSet foo --port 27018 --dbpath /data/r1

And, finally, we'll start a third node on port 27019.

 mongod --replSet foo --port 27019 --dbpath /data/r2

You should now have three nodes running. At this point, each node should be printing the following warning:

Mon Aug 2 11:30:19 [startReplSets] replSet can't get local.system.replset config from self or any
seed (EMPTYCONFIG)

We can't use the replica set until we've initialized it, which we'll do next.

Initializing the set

We can initiate the replica set by connecting to one of the members and running the replSetInitiate command. This command takes a
configuration object that specifies the name of the set and each of the members.

mongo localhost:27017
[kyle@arete ~$]$ mongo localhost:27017
MongoDB shell version: 1.5.7
connecting to: localhost:27017/test
> config = {_id: 'foo', members: [
 {_id: 0, host: 'localhost:27017'},
 {_id: 1, host: 'localhost:27018'},
 {_id: 2, host: 'localhost:27019'}]
 }

> rs.initiate(config);
{
 : ,"info" "Config now saved locally. Should come online in about a minute."
 : 1"ok"
}

We specify the config object and then pass it to . Then, if everything is in order, we get a response saying that the replica set willrs.initiate()
be online in a minute. During this time, one of the nodes will be elected master.

To check the status of the set, run :rs.status

> rs.status()
{
 : ,"set" "foo"
 : ,"date" "Mon Aug 02 2010 11:39:08 GMT-0400 (EDT)"
 : 1,"myState"
 : ["members"
 {
 : ,"name" "arete.local:27017"
 : ,"self" true
 },
 {
 : ,"name" "localhost:27019"
 : 1,"health"
 : 101,"uptime"
 : ,"lastHeartbeat" "Mon Aug 02 2010 11:39:07 GMT-0400"
 },
 {
 : ,"name" "localhost:27018"
 : 1,"health"
 : 107,"uptime"
 : ,"lastHeartbeat" "Mon Aug 02 2010 11:39:07 GMT-0400"
 }
],
 : 1"ok"
}

You'll see that both of the other members of the set are up. You may also notice that the value is 1, indicating that we're connected tomyState
the master node; a value of 2 indicates a slave.

You can also check the set's status in the .HTTP Admin UI

Replication

Go ahead and write something to the master node:

 db.messages.save({name: });"ReplSet Tutorial"

If you pay attention to the logs on the slave nodes, you'll see the write being replicated. This initial replication is essential for failover; the system
.won't fail over to a new master until an initial sync between nodes is complete

Failing Over

Now, the purpose of a replica set is to provide automated failover. This means that, if the master node is killed, a slave node can take over. To
see how this works in practice, go ahead and kill the master node with ^C:

^CMon Aug 2 11:50:16 got kill or ctrl c or hup signal 2 (Interrupt), will terminate after current cmd
ends
Mon Aug 2 11:50:16 [interruptThread] now exiting
Mon Aug 2 11:50:16 dbexit:

If you look at the logs on the slave nodes, you'll see a series of messages indicating failover. On our first slave, we see this:

Mon Aug 2 11:50:16 [ReplSetHealthPollTask] replSet info localhost:27017 is now down (or slow to
respond)
Mon Aug 2 11:50:17 [conn1] replSet info voting yea 2for
Mon Aug 2 11:50:17 [rs Manager] replSet not trying to elect self as responded yea to someone else
recently
Mon Aug 2 11:50:27 [rs_sync] replSet SECONDARY

And on the second, this:

Mon Aug 2 11:50:17 [ReplSetHealthPollTask] replSet info localhost:27017 is now down (or slow to
respond)
Mon Aug 2 11:50:17 [rs Manager] replSet info electSelf 2
Mon Aug 2 11:50:17 [rs Manager] replSet PRIMARY
Mon Aug 2 11:50:27 [initandlisten] connection accepted from 127.0.0.1:61263 #5

Both nodes notice that the master has gone down and, as a result, a new primary node is elected. In this case, the node at port 27019 is
promoted. If we bring the failed node on 27017 back online, it will come up as a slave.

Changing the replica set configuration

There are times when you'll want to change the replica set configuration. Suppose, for instance, that you want to adjust the number of votes
available to each node. To do this, you need to pass a new configuration object to the database's command. Here's how.replSetReconfig

First, define the new configuation:

new_config = {_id: 'foo', members: [
 {_id: 0, host: 'localhost:27017', votes: 1},
 {_id: 1, host: 'localhost:27018', votes: 2},
 {_id: 2, host: 'localhost:27019', votes: 3}]
 }

Then, add the version to the config object. To do this, you'll need to increment the old config version.

use local
old_config = db.system.replset.findOne();
new_config.version = old_config.version + 1;

Finally, reconfigure:

use admin
db.runCommand({replSetReconfig: new_config});

Running with two nodes

Suppose you want to run replica sets with just two database servers. This is possible as long as you also use an arbiter on a separate node; most
likely, running the arbiter on one or more application servers will be ideal. With an arbiter in place, the replica set will behave appropriately,
recovering automatically during both network partitions and node failures (e.g., machine crashes).

You start up an arbiter just as you would a standard replica set node, with the option. However, when initiating, you need to include--replSet
the option in the config document. arbiterOnly
With an arbiter, the configuration presented above would look like this instead:

config = {_id: 'foo', members: [
 {_id: 0, host: 'localhost:27017'},
 {_id: 1, host: 'localhost:27018'},
 {_id: 2, host: 'localhost:27019', arbiterOnly: }]true
 }

The other requirement here is that the total number of votes for the database nodes needs to consist of a majority. This means that if you have
two database nodes and ten arbiters, there's a total of twelve votes. So the best bet in this case it to give each database node enough votes so
that even if all but a single arbiter goes down, the master still has enough votes to stay up. In that situation, each database node would need at
least three votes.

For more information on arbiters and other interesting config options, see the .replica set configuration docs

Drivers

All of the MongoDB drivers are designed to take any number of replica set seed hosts from a replica set and then cache the hosts of any other
known members.

With this complete set of potential master nodes, the driver can automatically find the new master if the current master fails. See your driver's
documentation for details. If you happen to be using the Ruby driver, check out .Replica Sets in Ruby

Replica Set Configuration

Command Line
Initial Setup
The Replica Set Config Object
Shell Example 1
Shell Example 2
See Also

Command Line

Each participating in the set should have a parameter on its command line. The syntax ismongod --replSet

mongod --replSet setname

setname is the logical name of the set.

The --rest command line parameter is also recommended when using replica sets, as the web admin interface of mongod
(normally at port 28017) shows status information on the set.

Initial Setup

We use the initiate command for initial configuration of a replica set. Send the initiate command to a single server with the set to christen the set.
The member being initiated may have initial data; the other servers in the set should be empty.

> db.runCommand({ replSetInitiate : <config_object> })

A shorthand way to type the above is via a helper method in the shell:

> rs.initiate(<config_object>)

A quick way to initiate a set is to leave out the config object parameter. The initial set will then consist of the member to which the shell is
communicating, along with all the seeds that member knows of. However, see the configuration object details below for more options.

> rs.initiate()

The Replica Set Config Object

local.system.replset holds a singleton object which contains the replica set configuration. The config object automatically propagates among
members of the set. The object is not directly manipulated, but rather changed via commands (such as replSetInitiate).

The config object has the form:

{
 _id : <setname>,

 members: [
 {
 _id : <ordinal>,
 host : <hostname[:port]>,
 [, priority: <priority>]
 [, arbiterOnly :]true
 [, votes : <n>]
 [, hidden :]true
 [, slaveDelay : <n>]
 [, buildIndexes : <bool>]
 }
 , ...
],

 settings: {
 [getLastErrorDefaults: <lasterrdefaults>]
 [, heartbeatSleep : <seconds>]
 [, heartbeatTimeout : <seconds>]
 [, heartbeatConnRetries : <n>]
 }
}

_id - the set name. must match command line setting.
members - an array of servers in the set.

_id - each member has an _id ordinal, typically beginning with zero and numbered in increasing order. when a node is retired
(removed from the config), its _id should not be reused.
host - host name and optionally the port for the member
priority - priority a server has for potential election as primary. The highest priority member which is up will become primary.
Default 1.0. Priority zero means server can never be primary.
arbiterOnly - participates in consensus, but receives no data.
votes - number of votes this set member gets in elections. Default 1.
hidden - when true, do not advertise the member's existence to clients in isMaster command responses. (v1.7+)
slaveDelay - how far behind this slave's replication should be (in seconds). Defaults to 0 (as up-to-date as possible). Can be
used to recover from human errors (accidentally dropping a database, etc.). This option can only be set on passive members.
(v1.6.3+)
buildIndexes - boolean, defaults to . If the priority is 0, you can set to to prevent indexes fromtrue buildIndexes false
being created on this member. This could be useful on a machine which is for backup-only as there is less overhead on writes if
there are no secondary indexes. Note: the _id index is always created.

settings for the replica set as a whole. Heartbeat params are optional as reasonable settings are predefined.
getLastErrorDefaults specifies defaults for the command. If the client calls getLastError with no parameters,getlasterror
the default object specified here is used. (v1.6.2+)
heartbeatSleep how frequently nodes should send a heartbeat to each other (default: 2 seconds, must be greater than 10
milliseconds).
heartbeatTimeout indicates how long a node needs to fail to send data before we note a problem (default: 10 seconds, must
be greater than 10 milliseconds).
heartbeatConnRetries is how many times after to try connecting again and getting a new heartbeatheartbeatTimeout
(default: 3 tries).

Shell Example 1

> // all at once method
> cfg = {
... _id : ,"acme_a"
... members : [
... { _id : 0, host : },"sf1.acme.com"
... { _id : 1, host : },"sf2.acme.com"
... { _id : 2, host : }] }"sf3.acme.com"
> rs.initiate(cfg)
> rs.status()

Shell Example 2

$ # incremental configuration method
$ mongo sf1.acme.com/admin
> rs.initiate();
> rs.add();"sf2.acme.com"
> rs.add();"sf3.acme.com"
> rs.status();

See Also

Adding a New Set Member

Adding a New Set Member

Adding a new node to an existing replica set is easy. The new node should either have an empty data directory or a recent copy of the data from
another set member. When we start the new node, we only need to provide the replica set name:

$./mongod --replSet foo

After bringing up the new server (we'll call it) we need to add it to the set - we connect to our primary server using the shell:broadway:27017

$./mongo
MongoDB shell version: ...
connecting to: test
> rs.add();"broadway:27017"
{ : 1 }"ok"

After adding the node it will perform a full resync and come online as a secondary. If the node is started with a recent copy of data from another
node in the set it won't need a full resync.

See also:
Adding an Arbiter

Adding an Arbiter

Arbiters are nodes in a replica set that only participate in elections: they don't have a copy of the data and will never become the primary node (or
even a readable secondary). They are mainly useful for breaking ties during elections (e.g. if a set only has two members).

To add an arbiter, bring up a new node and point it at the replica set using the flag - this part is identical to when --replSet Adding a New Set
. To start as an arbiter, we'll use instead of . While connected to the current primary:Member rs.addArb() rs.add()

> rs.addArb();"broadway:27017"
{ : 1 }"ok"

See Also

Adding a New Set Member

Upgrading to Replica Sets

Upgrading From a Single Server
Upgrading From Replica Pairs or Master/Slave
Upgrading Drivers

Upgrading From a Single Server

If you're running MongoDB on a single server, upgrading to replica sets is trivial (and a good idea!). First, we'll initiate a new replica set with a
single node. We need a name for the replica set - in this case we're using . Start by shutting down the server and restarting with the foo

 option, and our set name:--replSet

$./mongod --replSet foo

Add the --rest option too (just be sure that port is secured): the <host>:28017/_replSet diagnostics page is incredibly useful.

The server will allocate new data files before starting back up. Consider those files if you need to minimize downtime.local pre-allocating

Next we'll connect to the server from the shell and initiate the replica set:

$./mongo
MongoDB shell version: ...
connecting to: test
> rs.initiate();
{
 : ,"info2" "no configuration explicitly specified -- making one"
 : ,"info" "Config now saved locally. Should come online in about a minute."
 : 1"ok"
}

The server should now be operational again, this time as the primary in a replica set consisting of just a single node. The next step is to add some
 to the set.additional nodes

Upgrading From Replica Pairs or Master/Slave

Version 1.6.1 will have more seamless support for upgrading, track this case for details: .http://jira.mongodb.org/browse/SERVER-1553

With 1.6.0 the best way to upgrade is to simply restart the current master as a single server replica set, and then add any slaves after wiping their
data directory. To find the master in a replica pair, use the command.ismaster

Once you know the master, the process will look like this:

http://jira.mongodb.org/browse/SERVER-1553

m$ # shutdown mongod master and slave
m$ killall mongod
s$ killall mongod

m$ # backup your /data/db directory on the master
m$ cp /data/db/* /to_somewhere_backup/

s$ # we start empty on the slave. so let's save the old data (assuming drive large enough)
s$ mv /data/db /data/old_slave_data
s$ mkdir /data/db
s$ # /data/db is now empty

m$ mongod -- --replSet mysetnamerest
m$ mongo
m> rs.initiate()
m> // these:try
m> db.isMaster()
m> rs.help()
m> rs.status()
m> rs.conf()
m> // see also http://localhost:28017/_replSet

s$ # start replica set member on the old slave.
s$ # it has no data and will a full sync initiallydo
s$ mongod -- --replSet mysetnamerest
s$ mongo m/admin

m> // still in the mongo shell on the master
m> rs.add() "s" // is your slave host name"s"
m> rs.status(); // see also http://localhost:28017/_replSet

arb$ # we should now add an arbiter so ties on elections andbreak
arb$ # know who is up in a network partition.
arb$ # arbiter is very lightweight and can run on about any server
arb$ # including 32 bit servers.
arb$ # we use different directories and ports here so that the server
arb$ # is still available as a mongod server that is"normal" if
arb$ # desired and also to avoid confusion. the /data/arb directory
arb$ # will be very light in content.
arb$ mkdir /data/arb
arb$ mongod -- --replSet mysetname --dbpath /data/arb --port 30000 --oplogSize 8rest

m> rs.addArb(); "arb:30000" // replace 'arb' with your arb host name
m> rs.status()

Upgrading Drivers

There are new versions of most MongoDB which support replica sets elegantly. See the documentation pages for the specific driver ofDrivers
interest.

Replica Set Admin UI

The process includes a simple administrative UI for checking the status of a replica set.mongod

To use, first enable from the command line. The rest port is the db port plus 1000 (thus, the default is 28017). Be sure this port--rest mongod
is secure before enabling this.

Then you can navigate to in your web browser. Once there, click Replica Set Status () to move to thehttp://<hostname>:28017/ /_replSet
Replica Set Status page.

http://127.0.0.1:28017/_replSet

See Also

Http Interface

Replica Set Commands

Shell Helpers
Commands

{ isMaster : 1 }
{ replSetGetStatus : 1 }
{ replSetInitiate : <config> }
{ replSetStepDown : true }
{ replSetFreeze : <bool> }
{ replSetReconfig: <config> }

Shell Helpers

rs.help() show help
rs.status() { replSetGetStatus : 1 }
rs.initiate() { replSetInitiate : } initiatenull
 with settingsdefault
rs.initiate(cfg) { replSetInitiate : cfg }
rs.add(hostportstr) add a member to the setnew
rs.add(membercfgobj) add a member to the setnew
rs.addArb(hostportstr) add a member which is arbiterOnly:new true
rs.stepDown() { replSetStepDown : }true
rs.conf() configuration from local.system.replsetreturn
db.isMaster() check who is primary

Commands

{ : 1 }isMaster

Checks if the node to which we are connecting is currently primary. Most drivers do this check automatically and then send requires to the current
primary.

Returns an object that looks like:

http://localhost:28017/isMaster?text

{
 : ,"ismaster" false
 : ,"secondary" true
 : ["hosts"
 ,"sf1.example.com"
 ,"sf4.example.com"
 "ny3.example.com"
],
 : ["passives"
 ,"sf3.example.com"
 ,"sf2.example.com"
 ,"ny2.example.com"
],
 : ["arbiters"
 ,"ny1.example.com"
]
 : ,"primary" "sf4.example.com"
 : 1"ok"
}

The array lists primary and secondary servers, the array lists passive servers, and the array lists arbiters.hosts passives arbiters

If the " " field is , there will be a " " field that indicates which server is primary.ismaster false primary

{ : 1 }replSetGetStatus

Status information on the replica set from this node's point of view.

The output looks like:

{
 : ,"set" "florble"
 : ,"date" "Wed Jul 28 2010 15:01:01 GMT-0400 (EST)"
 : 1,"myState"
 : ["members"
 {
 : ,"name" "dev1.example.com"
 : ,"self" true
 : """errmsg"
 },
 {
 : ,"name" "dev2.example.com"
 : 1,"health"
 : 13777,"uptime"
 : ,"lastHeartbeat" "Wed Jul 28 2010 15:01:01 GMT-0400 (EST)"
 : "errmsg" "initial sync done"
 }
],
 : 1"ok"
}

The field indicates the state of this server. Valid states are:myState

0 Starting up, phase 1

1 Primary

2 Secondary

3 Recovering

4 Fatal error

5 Starting up, phase 2

http://localhost:28017/replSetGetStatus?text

6 Unknown state

7 Arbiter

8 Down

The field is 1 if the server is up and 0 if it is down.health

The field can contain informational messages, as shown above.errmsg

{ replSetInitiate : <config> }

Initiate a replica set. Run this command at one node only, to initiate the set. Whatever data is on the initiating node becomes the initial data for the
set. This is a one time operation done at cluster creation. See also .Configuration

{ replSetStepDown : true }

Step down as primary. Node will become eligible to be primary again after 1 minute. (Presumably, another node will take over by then if it were
eligible.)

This command will be enhanced later to allow specification of a min duration of the step-down.

{ replSetFreeze : <bool> }

Freezing a replica set prevents failovers from occurring. This can be useful during maintenance.

Note: As of v1.6.0, replSetFreeze is not yet implemented.

{ replSetReconfig: <config> }

Adjust configuration of a replica set (just like initialize)

db._adminCommand({replSetReconfig: cfg })

Note: db._adminCommand is short-hand for db.getSisterDB("admin").runCommand();

Replica Set FAQ
How long does failover take?

Failover thresholds are configurable. With the defaults, it may take 20-30 seconds for the primary to be declared down by the other members and
a new primary elected. During this window of time, the cluster is down for "primary" operations – that is, writes and strong consistent reads.
However, you may execute eventually consistent queries to secondaries at any time, including during this window.

Should I use replica sets or replica pairs?

After 1.6, use .Replica Sets

Connecting to Replica Sets from Clients

Most drivers have been updated to provide ways to connect to a replica set. In general, this is very similar to how the drivers support connecting
to a replica pair.

Instead of taking a pair of hostnames, the drivers will typically take a comma separated list of host[:port] names. This is a ; it needseed host list
not be every member of the set. The driver then looks for the primary from the seeds. The seed members will report back other members of the
set that the client is not aware of yet. Thus we can add members to a replica set without changing client code.

With Sharding

With sharding, the client connects to a process. The process will then automatically find the right member(s) of the set.mongos mongos

See Also

Driver authors should review .Connecting Drivers to Replica Sets

Replica Sets Limits

v1.6

Authentication mode not supported. JIRA
Limits on config changes to sets at first. Especially when a lot of set members are down.
Map/reduce writes new collections to the server. Because of this, for now it may only be used on the primary. This will be enhanced
later.

Resyncing a Very Stale Replica Set Member

Error RS102

MongoDB writes operations to an oplog. For replica sets this data is stored in collection local.oplog.rs. This is a capped collection and wraps
when full "RRD"-style. Thus, it is important that the oplog collection is large enough to buffer a good amount of writes when some members of a
replica set are down. If too many writes occur, the down nodes, when they resume, cannot catch up. In that case, a full resync would be
required.

Sizing the oplog

The command line parameter sets the oplog size. A good rule of thumb is 5 to 10% of total disk space. On 64 bit builds, the--oplogSize
default is large and similar to this percentage. You can check your existing oplog sizes from the :mongo shell

> use local
> db.oplog.rs.stats()

What to do on a sync error

If one of your members has been offline and is now too far behind to catch up, you will need to resync. There are a number of ways to do this.

1. Delete all data. If you stop the failed , delete all data, and restart it, it will automatically resynchronize itself. Of course this may be slowmongod
if the database is huge or the network slow.

2. Copy data from another member. You can copy all the data files from another member of the set IF you have a snapshot of that member's data
file's. This can be done in a number of ways. The simplest is to stop on the source member, copy all its files, and then restart onmongod mongod
both nodes. The Mongo feature is another way to achieve this. On a slow network, snapshotting all the datafiles from anotherfsync and lock
(inactive) member to a gziped tarball is a good solution. Also similar strategies work well when using SANs and services such as Amazon Elastic
Block Service snapshots.

3. Find a member with older data. Each member of the replica set has an oplog. It is possible that a member has a larger oplog than the current
primary.

Replica Set Internals

Design Concepts
Configuration

Command Line
Node Types
local.system.replset
Set Initiation (Initial Setup)

Design
Server States
Applying Operations
OpOrdinal
Picking Primary
Heartbeat Monitoring
Assumption of Primary
Failover
Resync (Connecting to a New Primary)
Consensus
Increasing Durability
Reading from Secondaries and Staleness

Example
Administration
Future Versions

Design Concepts

Check out the for some of the core concepts underlying MongoDB Replica Sets.Replica Set Design Concepts

Configuration

http://jira.mongodb.org/browse/SERVER-1567

1.
2.
3.
4.

Command Line

We specify --replSet / on the command line. is a (partial) list of some members of the set. Theset_name seed_hostname_list seed_hostname_list
system then fetches full configuration information from the collection local.system.replset. is specified to help the system catchset_name
misconfigurations.

Node Types

Conceptually, we have some different types of nodes:

Standard - a standard node as described above. Can transition to and from being a or a over time. There is only oneprimary secondary
primary (master) server at any point in time.
Passive - a server can participate as if it were a member of the replica set, but be specified to never be Primary.
Arbiter - member of the cluster for consensus purposes, but receives no data. Arbiters cannot be seed hosts.

Each node in the set has a setting. On a resync (see below), the rule is: choose as master the node with highest priority that is healthy. Ifpriority
multiple nodes have the same priority, pick the node with the freshest data. For example, we might use 1.0 priority for Normal members, 0.0 for
passive (0 indicates cannot be primary no matter what), and 0.5 for a server in a less desirable data center.

local.system.replset

This collection has one document storing the replica set's configuration. See the page for details.configuration

Set Initiation (Initial Setup)

For a new cluster, on negotiation the max is zero everywhere. We then know we have a new replica set with no data yet. A specialOpOrdinal
command

{replSetInitiate:1}

is sent to a (single) server to begin things.

Design

Server States

Primary - Can be thought of as "master" although which server is primary can vary over time. Only 1 server is primary at a given point in
time.
Secondary - Can be thought of as a slave in the cluster; varies over time.
Recovering - getting back in sync before entering Secondary mode.

Applying Operations

Secondaries apply operations from the Primary. Each applied operation is also written to the secondary's local oplog. We need only apply from
the current primary (and be prepared to switch if that changes).

OpOrdinal

We use a monotonically increasing ordinal to represent each operation.

These values appear in the oplog (local.oplog.$main). maxLocalOpOrdinal() returns the largest value logged. This value represents how
up-to-date we are. The first operation is logged with ordinal 1.

Note two servers in the set could in theory generate different operations with the same ordinal under some race conditions. Thus for full
uniqueness we must look at the combination of server id and op ordinal.

Picking Primary

We use a consensus protocol to pick a primary. Exact details will be spared here but that basic process is:

get maxLocalOpOrdinal from each server.
if a majority of servers are not up (from this server's POV), remain in Secondary mode and stop.
if the last op time seems very old, stop and await human intervention.
else, using a consensus protocol, pick the server with the highest maxLocalOpOrdinal as the Primary.

Any server in the replica set, when it fails to reach master, attempts a new election process.

Heartbeat Monitoring

All nodes monitor all other nodes in the set via heartbeats. If the current primary cannot see half of the nodes in the set (including itself), it will fall
back to secondary mode. This monitoring is a way to check for network partitions. Otherwise in a network partition, a server might think it is still
primary when it is not.

Assumption of Primary

When a server becomes primary, we assume it has the latest data. Any data newer than the new primary's . Any discarded datawill be discarded
is backed up to a flat file as raw , to allow for the possibility of manual recovery (see). In general, manualBSON this case for some details
recovery will not be needed - if data must be guaranteed to be committed it should be .written to a majority of the nodes in the set

Failover

We renegotiate when the primary is unavailable, see .Picking Primary

Resync (Connecting to a New Primary)

When a secondary connects to a new primary, it must resynchronize its position. It is possible the secondary has operations that were never
committed at the primary. In this case, we roll those operations back. Additionally we may have new operations from a previous primary that never
replicated elsewhere. The method is basically:

for each operation in our oplog that DNE at the primary, (1) remove from oplog and (2) resync the document in question by a query to the
primary for that object. update the object, deleting if it does not exist at the primary.

We can work our way back in time until we find a few operations that are consistent with the new primary, and then stop.

Any data that is removed during the rollback is stored offline (see , so one can manually recover it. It can't be doneAssumption of Primary
automatically because there may be conflicts.

Reminder: you can use w= to ensure writes make it to a majority of slaves before returning to the user, to ensure no writes need to be rolled back.

Consensus

Fancier methods would converge faster but the current method is a good baseline. Typically only ~2 nodes will be jockeying for primary status at
any given time so there isn't be much contention:

query all others for their maxappliedoptime
try to elect self if we have the highest time and can see a majority of nodes

if a tie on highest time, delay a short random amount first
elect (selfid,maxoptime) msg -> others

if we get a msg and our time is higher, we send back NO
we must get back a majority of YES
if a YES is sent, we respond NO to all others for 1 minute. Electing ourself counts as a YES.
repeat as necessary after a random sleep

Increasing Durability

We can trade off durability versus availability in a replica set. When a primary fails, a secondary will assume primary status with whatever data it
has. Thus, we have some desire to see that things replicate quickly. Durability is guaranteed once a majority of servers in the replica set have an
operation.

To improve durability clients can call getlasterror and wait for acknowledgement until replication of a an operation has occurred. The client can
then selectively call for a blocking, somewhat more synchronous operation.

Reading from Secondaries and Staleness

Secondaries can report via a command how far behind the primary they are. Then, a read-only client can decide if the server's data is too stale or
close enough for usage.

Example

server-a: secondary oplog: ()
server-b: secondary oplog: ()
server-c: secondary oplog: ()
…
server-a: primary oplog: (a1,a2,a3,a4,a5)
server-b: secondary oplog: ()
server-c: secondary oplog: ()
…
server-a: primary oplog: (a1,a2,a3,a4,a5)
server-b: secondary oplog: (a1)
server-c: secondary oplog: (a1,a2,a3)
…

http://jira.mongodb.org/browse/SERVER-1512

// server-a goes down
…
server-b: secondary oplog: (a1)
server-c: secondary oplog: (a1,a2,a3)
...
server-b: secondary oplog: (a1)
server-c: primary oplog: (a1,a2,a3) // c has highest ord and becomes primary
...
server-b: secondary oplog: (a1,a2,a3)
server-c: primary oplog: (a1,a2,a3,c4)
...
server-a resumes
...
server-a: recovering oplog: (a1,a2,a3,a4,a5)
server-b: secondary oplog: (a1,a2,a3)
server-c: primary oplog: (a1,a2,a3,c4)
…
server-a: recovering oplog: (a1,a2,a3,c4)
server-b: secondary oplog: (a1,a2,a3,c4)
server-c: primary oplog: (a1,a2,a3,c4)
…
server-a: secondary oplog: (a1,a2,a3,c4)
server-b: secondary oplog: (a1,a2,a3,c4)
server-c: primary oplog: (a1,a2,a3,c4,c5,c6,c7,c8)
…
server-a: secondary oplog: (a1,a2,a3,c4,c5,c6,c7,c8)
server-b: secondary oplog: (a1,a2,a3,c4,c5,c6,c7,c8)
server-c: primary oplog: (a1,a2,a3,c4,c5,c6,c7,c8)

In the above example, server-c becomes primary after server-a fails. Operations (a4,a5) are lost. c4 and c5 are new operations with the same
ordinals.

Administration

See the page for full info.Replica Set Commands

Commands:

{ replSetFreeze : <bool> } "freeze" or unfreeze a set. When frozen, new nodes cannot be elected master. Used when doing
administration. Details TBD.
{ replSetGetStatus : 1 } get status of the set, from this node's POV
{ replSetInitiate : 1 }
{ ismaster : 1 } check if this node is master

Future Versions

add support for replication trees / hierarchies
replicating to a slave that is not a member of the set (perhaps we do not need this given we have the Passive set member type)

Master Slave

Configuration and Setup
Command Line Options

Master
Slave
--slavedelay

Diagnostics
Security
Administrative Tasks

Failing over to a Slave (Promotion)
Inverting Master and Slave
Creating a slave from an existing master's disk image
Creating a slave from an existing slave's disk image
Resyncing a slave that is too stale to recover

See Also

Configuration and Setup

To configure an instance of Mongo to be a master database in a master-slave configuration, you'll need to start two instances of the database,
one in mode, and the other in mode.master slave

Data Storage
The following examples explicitly specify the location of the data files on the command line. This is unnecessary if you are
running the master and slave on separate machines, but in the interest of the readers who are going try this setup on a single
node, they are supplied in the interest of safety.

$ bin/mongod --master [--dbpath /data/masterdb/]

As a result, the master server process will create a collection. This is the "transaction log" which queues operations whichlocal.oplog.$main
will be applied at the slave.

To configure an instance of Mongo to be a slave database in a master-slave configuration:

$ bin/mongod --slave --source <masterhostname>[:<port>] [--dbpath /data/slavedb/]

Details of the source server are then stored in the slave's collection. Instead of specifying the parameter, one canlocal.sources --source
add an object to which specifies information about the master server:local.sources

$ bin/mongo <slavehostname>/local
> db.sources.find(); // confirms the collection is empty. then:
> db.sources.insert({ host: <masterhostname> });

host: masterhostname is the IP address or FQDN of the master database machine. Append to the server hostname if you:port
wish to run on a nonstandard port number.
only: databasename (optional) if specified, indicates that only the specified database should replicate. NOTE: A bug with isonly
fixed in v1.2.4+.

A slave can pull from multiple upstream masters. In such a situation add multiple configuration objects to the collection. See thelocal.sources
 doc page.One Slave Two Masters

A slave may become out of sync with a master if it falls far behind the data updates available from that master, or if the slave is terminated and
then restarted some time later when relevant updates are no longer available from the master. If a slave becomes out of sync, replication will
terminate and operator intervention is required by default if replication is to be restarted. An operator may restart replication using the { }resync:1
command. Alternatively, the command line option causes a slave to restart replication automatically (after ten second pause) if it--autoresync
becomes out of sync. If the option is specified, the slave will not attempt an automatic resync more than once in a ten minute--autoresync
periond.

The command line option may be specified (along with) to configure the amount of disk space in megabytes which will--oplogSize --master
be allocated for storing updates to be made available to slave nodes. If the option is not specified, the amount of disk space for--oplogSize
storing updates will be 5% of available disk space (with a minimum of 1GB) for 64bit machines, or 50MB for 32bit machines.

Command Line Options

Master

--master master mode
 --oplogSize arg size limit (in MB) op logfor

Slave

--slave slave mode
 --source arg arg specifies master as <server:port>
 --only arg arg specifies a single database to replicate
 --slavedelay arg arg specifies delay (in seconds) to be used
 when applying master ops to slave
 --autoresync automatically resync slave data is staleif

--slavedelay

Sometimes its beneficial to have a slave that is purposefully many hours behind to prevent human error. In MongoDB 1.3.3+, you can specify this
with the --slavedelay mongod command line option. Specify the delay in seconds to be used when applying master operations to the slave.

Specify this option at the slave. Example command line:

mongod --slave --source mymaster.foo.com --slavedelay 7200

Diagnostics

Check master status from the shell with:mongo

// inspects contents of local.oplog.$main on master and reports status:
db.printReplicationInfo()

Check slave status from the shell with:mongo

// inspects contents of local.sources on the slave and reports status:
db.printSlaveReplicationInfo()

(Note you can evaluate the above functions without the parenthesis above to see their javascript source and a bit on the internals.)

As of 1.3.2, you can do this on the slave

db._adminCommand({ serverStatus : 1 , repl : N })

N is the level of diagnostic information and can have the following values:

0 - none
1 - local (doesn't have to connect to other server)
2 - remote (has to check with the master)

Security

When security is enabled, one must configure a user account for the local database that exists on both servers.

The slave-side of a replication connection first looks for a user repl in local.system.users. If present, that user is used to authenticate against the
local database on the source side of the connection. If repl user does not exist, the first user object in local.system.users is tried.

The local database works like the admin database: an account for local has access to the entire server.

Example security configuration when security is enabled:

$ mongo <slavehostname>/admin -u <existingadminusername> -p<adminpassword>
> use local
> db.addUser('repl', <replpassword>);
^c
$ mongo <masterhostname>/admin -u <existingadminusername> -p<adminpassword>
> use local
> db.addUser('repl', <replpassword>);

Administrative Tasks

Failing over to a Slave (Promotion)

To permanently fail over from a down master () to a slave ():A B

shut down A
stop on Bmongod
backup or delete local.* datafiles on B
restart on B with the optionmongod --master

Note that is a one time cutover and the "mirror" is broken. A cannot be brought back in sync with B without a full resync.

Inverting Master and Slave

If you have a master () and a slave () and you would like to reverse their roles, this is the recommended sequence of steps. Note the followingA B

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

assumes is healthy and up.A

Halt writes on (using the)A fsync command
Make sure is caught upB
Shut down B
Wipe on B to remove old local.sourceslocal.*
Start up with the optionB --master
Do a write on (primes the)B oplog
Shut down . will now have a new set of local.* files.B B
Shut down and replace 's files with a copy of 's new files.A A local.* B local.*
Start with the optionB --master
Start with all the usual slave options plus A --fastsync

If is healthy but the hardware is okay (power outage, server crash, etc.):A not

Skip the first two steps
Replace all of 's files with 's files in step 7.A B

If the hardware is not okay, replace with a new machine and then follow the instructions in the previous paragraph.A

Creating a slave from an existing master's disk image

--fastsync is a way to start a slave starting with an existing master disk image/backup. This option declares that the adminstrator guarantees
the image is correct and completely up to date with that of the master. If you have a full and complete copy of data from a master (and the master
is not accepting new writes concurrently!) you can use this option to avoid a full synchronization upon starting the slave.

Creating a slave from an existing slave's disk image

You can just copy the other slave's data file snapshot without any special options. Note data snapshots should only be taken when a mongod
process is down or in fsync-and-lock state.

Resyncing a slave that is too stale to recover

Slaves asynchronously apply write operations from the master. These operations are stored in the master's oplog. The oplog is finite in length. If a
slave is too far behind, a full resync will be necessary. See the page.Halted Replication

See Also

Replica Sets

One Slave Two Masters

This document shows an example session with one slave pulling data from two different masters.

Despite the example shown here, it is better, simpler, and generally recommended to have multiple mongod --slave
processes on a single box than to have one process pull from multiple masters.

A few notes:

Each master host has a different hostname (hostname:port).
Pulling the same database from two different databases can have unexpected results. This can be done in certainly limited ways, as the
data will tend to be merged, but there are some edge cases: for example the two masters should have exactly the same set of collections

or else some may not show up. Generally, this is not recommended.
Slaving a replica pair is unfortunately not currently supported – see .SERVER-30

$ mkdir /data/1
$ mkdir /data/2
$ mkdir /data/3
$./mongod --port 27020 --dbpath /data/1 --master &
$./mongod --port 27021 --dbpath /data/2 --master &
$./mongod --port 27022 --dbpath /data/3 --slave &

$ # add some data to masters
$./mongo localhost:27020
> use db1
> db.foo.insert({x:1})
> db.foo.insert({x:2})
^C
$ # master 2
$./mongo localhost:27021
> use db2
> db.foo.insert({x:999, note: })"in db2"
^C

$ # configure slave
$./mongo localhost:27022
> use local
> db.sources.insert({host: })"localhost:27020"
> db.sources.insert({host: })"localhost:27021"
> db.sources.find()
{ : ObjectId(), : }"_id" "4b8ecfac0cb095ca52b62949" "host" "localhost:27020"
{ : ObjectId(), : }"_id" "4b8ecfc30cb095ca52b6294a" "host" "localhost:27021"

> // wait a little, still connected to slave

> use db1
> db.foo.count()
2
> use db2
> db.foo.find()
{ : ObjectId(), : 999, : }"_id" "4b8ed00a1d42d47b3afa3c47" "x" "note" "in db2"
> db.printSlaveReplicationInfo()
source: localhost:27020
syncedTo: Wed Mar 03 2010 16:04:35 GMT-0500 (EST)
 = 2717secs ago (0.75hrs)
source: localhost:27021
syncedTo: Wed Mar 03 2010 16:09:31 GMT-0500 (EST)
 = 2421secs ago (0.67hrs)
>

Replica Pairs

Setup of Replica Pairs
Consistency
Security
Replacing a Replica Pair Server
Querying the slave
What is and when should you use an arbiter?
Working with an existing (non-paired) database
See Also

Setup of Replica Pairs

Replica Sets will soon replace replica pairs. If you are just now setting up an instance, you may want to wait for that and use
master/slave replication in the meantime.

Mongo supports a concept of . These databases automatically coordinate which is the master and which is the slave at a given pointreplica pairs
in time.

http://jira.mongodb.org/browse/SERVER-30

1.
2.

At startup, the databases will negotiate which is master and which is slave. Upon an outage of one database server, the other will automatically
take over and become master from that point on. In the event of another failure in the future, master status would transfer back to the other
server. The databases manage this themselves internally.

Note: Generally, start with empty /data/db directories for each pair member when creating and running the pair for the first time. See section on
Existing Databases below for more information.

To start a pair of databases in this mode, run each as follows:

$./mongod --pairwith <remoteserver> --arbiter <arbiterserver>

where

remoteserver is the hostname of the other server in the pair. Append to the server hostname if you wish to run on a:port
nonstandard port number.
arbiterserver is the hostname (and optional port number) of an . An arbiter is a Mongo database server that helps negotiatearbiter
which member of the pair is master at a given point in time. Run the arbiter on a third machine; it is a "tie-breaker" effectively in
determining which server is master when the members of the pair cannot contact each other. You may also run with no arbiter by not
including the --arbiter option. In that case, both servers will assume master status if the network partitions.

One can manually check which database is currently the master:

$./mongo
> db.$cmd.findOne({ismaster:1});
{ : 0.0 , : , : 1.0 }"ismaster" "remote" "192.168.58.1:30001" "ok"

(Note: When security is on, is only returned if the connection is authenticated for the database.)remote admin

However, Mongo drivers with replica pair support normally manage this process for you.

Consistency

Members of a pair are only eventually consistent on a failover. If machine L of the pair was master and fails, its last couple seconds of operations
may not have made it to R - R will not have those operations applied to its dataset until L recovers later.

Security

Example security configuration when security is enabled:

$./mongo <lefthost>/admin -u <adminusername> -p<adminpassword>
> use local
> db.addUser('repl', <replpassword>);
^c
$./mongo <righthost>/admin -u <adminusername> -p<adminpassword>
> use local
> db.addUser('repl', <replpassword>);

Replacing a Replica Pair Server

When one of the servers in a Mongo replica pair set fails, should it come back online, the system recovers automatically. However, should a
machine completely fail, it will need to be replaced, and its replacement will begin with no data. The following procedure explains how to replace
one of the machines in a pair.

Let's assume nodes (,) is the old pair and that dies. We want to switch to (,).n1 n2 n2 n1 n3

If possible, assure the dead is offline and will not come back online: otherwise it may try communicating with its old pair partner.n2
We need to tell to pair with instead of . We do this with a command. Be sure to check for a successful returnn1 n3 n2 replacepeer
value from this operation.

n1> ./mongo n1/admin
> db.$cmd.findOne({replacepeer:1});
{
 : ,"info" "adjust local.sources hostname; db restart now required"
 : 1.0"ok"
}

2.

3.

4.

At this point, is still running but is reset to not be confused when it begins talking to in the future. The server is still up althoughn1 n3
replication is now disabled.

Restart with the right command line to talk to n1 n3

n1> ./mongod --pairwith n3 --arbiter <arbiterserver>

Start paired with .n3 n1

n3> ./mongod --pairwith n1 --arbiter <arbiterserver>

Note that will not accept any operations as "master" until fully synced with , and that this may take some time if there is an3 n1
substantial amount of data on .n1

Querying the slave

You can query the slave if you set the slave ok flag. In the shell:

db.getMongo().setSlaveOk()

What is and when should you use an arbiter?

The arbiter is used in some situations to determine which side of a pair is master. In the event of a network partition (left and right are both up, but
can't communicate) whoever can talk to the arbiter becomes master.

If your left and right server are on the same switch, an arbiter isn't necessary. If you're running on the same ec2 availability zone, probably not
needed as well. But if you've got left and right on different ec2 availability zones, then an arbiter should be used.

Working with an existing (non-paired) database

Care must be taken when enabling a pair for the first time if you have existing datafiles you wish to use that were created from a singleton
database. Follow the following procedure to start the pair. Below, we call the two servers "left" and "right".

assure no mongod processes are running on both servers
we assume the data files to be kept are on server left. Check that there is no local.* datafiles in left's /data/db (--dbpath) directory. If there
are, remove them.
check that there are no datafiles at all on right's /data/db directory
start the left process with the appropriate command line including --pairwith argument
start the right process with the appropriate paired command line

If both left and right servers have datafiles in their dbpath directories at pair initiation, errors will occur. Further, you do not want a local database
(which contains replication metadata) during initiation of a new pair.

See Also

Replica Pairs in Ruby

Master Master Replication

Mongo does not support full master-master replication. However, for certain restricted use cases master-master can be used. Generally
speaking, we don't recommend the using a master-master configuration with MongoDB.

Master-master usages is eventually consistent.

To configure master-master, simply run both databases with both the --master and --slave parameters. For example, to set up this configuration
on a single machine as a test one might run:

$ nohup mongod --dbpath /data1/db --port 27017 --master --slave --source localhost:27018 > /tmp/dblog1
&
$ nohup mongod --dbpath /data2/db --port 27018 --master --slave --source localhost:27017 > /tmp/dblog2
&

This mode is safe for:

insert operations
delete operations by _id;
any query

Master-master should not be used if:

concurrent updates of single object may occur (including $inc and other updates)

A sample test session on a single computer follows:

$ # terminal 1, we run a mongod on db port (27017)default
$./mongod --slave --master --source localhost:10000

$ # terminal 2, we run a mongod on port 10000
$./mongod --slave --master --dbpath /data/slave --port 10000 --source localhost

$ # terminal 3, we run the shell here
$./mongo
> // 'db' is now connected to localhost:27017/test
> z = connect()"localhost:10000/test"
> // 'z' is now connected to localhost:10000/test db

> db.foo.insert({x:7});
> z.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"
> db.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"

> db.foo.insert({x:8})
> db.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"
{ : ObjectId() , : 8}"_id" "4ab9182a938798896fd8a906" "x"
> z.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"
{ : ObjectId() , : 8}"_id" "4ab9182a938798896fd8a906" "x"

> z.foo.save({x:9})
> z.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"
{ : ObjectId() , : 8}"_id" "4ab9182a938798896fd8a906" "x"
{ : ObjectId() , : 9}"_id" "4ab9188ac50e4c10591ce3b7" "x"
> db.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"
{ : ObjectId() , : 8}"_id" "4ab9182a938798896fd8a906" "x"
{ : ObjectId() , : 9}"_id" "4ab9188ac50e4c10591ce3b7" "x"

> z.foo.remove({x:8})
> db.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"
{ : ObjectId() , : 9}"_id" "4ab9188ac50e4c10591ce3b7" "x"
> z.foo.find()
{ : ObjectId() , : 7}"_id" "4ab917d7c50e4c10591ce3b6" "x"
{ : ObjectId() , : 9}"_id" "4ab9188ac50e4c10591ce3b7" "x"

> db.foo.drop()
{ : 1 , : , : , : 1}"nIndexesWas" "msg" "all indexes deleted collection"for "ns" "test.foo" "ok"
> db.foo.find()
> z.foo.find()
>

Replication Oplog Length

Replication uses an operation log ("oplog") to store write operations. These operations replay asynchronously on other nodes.

The length of the oplog is important if a secondary is down. The larger the log, the longer the secondary can be down and still recover. Once the
oplog has exceeded the downtime of the secondary, there is no way for the secondary to apply the operations; it will then have to do a full
synchronization of the data from the primary.

By default, on 64 bit builds, oplogs are quite large - perhaps 5% of disk space. Generally this is a reasonable setting.

The sets the size of the oplog.mongod --oplogSize command line parameter

This collection is named:

local.oplog.$main for master/slave replication;
local.oplog.rs for replica sets

See also

The pageHalted Replication
Resyncing a Very Stale Replica Set Member

Halted Replication

These instructions are for master/slave replication. For replica sets, see instead.Resyncing a Very Stale Replica Set Member

If you're running mongod with , there are certain scenarios where the slave will halt replication because it hasn't kept upmaster-slave replication
with the master's oplog.

The first is when a slave is prevented from replicating for an extended period of time, due perhaps to a network partition or the killing of the slave
process itself. The best solution in this case is to resyc the slave. To do this, open the mongo shell and point it at the slave:

$ mongo <slave_host_and_port>

Then run the resync command:

> use admin
> db.runCommand({resync: 1})

This will force a full resync of all data (which will be very slow on a large database). The same effect can be achieve dby stopping on themongod
slave, delete all slave datafiles, and restarting it.

Increasing the OpLog Size

Since the oplog is a capped collection, it's allocated to a fixed size; this means that as more data is entered, the collection will loop around and
overwrite itself instead of growing beyond its pre-allocated size. If the slave can't keep up with this process, then replication will be halted. The
solution is to increase the size of the master's oplog. There are a couple of ways to do this, depending on how big your oplog will be and how
much downtime you can stand. But first you need to figure out how big an oplog you need.

If the current oplog size is wrong, how do you figure out what's right? The goal is not to let the oplog age out in the time it takes to clone the
database. The first step is to print the replication info. On the master node, run this command:

> db.printReplicationInfo();

You'll see output like this:

configured oplog size: 1048.576MB
log length start to end: 7200secs (2hrs)
oplog first event time: Wed Mar 03 2010 16:20:39 GMT-0500 (EST)
oplog last event time: Wed Mar 03 2010 18:20:39 GMT-0500 (EST)
now: Wed Mar 03 2010 18:40:34 GMT-0500 (EST)

This indicates that you're adding data to the database at a rate of 524MB/hr. If an initial clone takes 10 hours, then the oplog should be at least
5240MB, so something closer to 8GB would make for a safe bet.

The standard way of changing the oplog size involves stopping the master, deleting the local.* oplog datafiles, and then restarting withmongod
the oplog size you need, measured in MB:

$ # Stop mongod - killall mongod or kill -2 or ctrl-c) - then:
$ rm /data/db/local.*
$ mongod --oplog=8038 --master

Once you've changed the oplog size, restart with slave with --autoresync:

mongod --slave --autoresync

This method of oplog creation might pose a problem if you need a large oplog (say, > 10GB), since the time it takes to pre-allocate themongod
oplog files may mean too much downtime. If this is the case, read on.

Manually Allocating OpLog Files

An alternative approach is to create the oplog files manually before shutting down . Suppose you need an 20GB oplog; here's how you'dmongod
go about creating the files:

1. Create a temporary directory, /tmp/local.
2. You'll be creating ten 2GB datafiles. Here's a shell script for doing just that:

cd /tmp/local
 i in {0..9}for
 do
 echo $i
 head -c 2146435072 /dev/zero > local.$i
 done

Note that the datafiles aren't exactly 2GB due MongoDB's max int size.

3. Shut down the master (kill -2) and then replace the oplog files:mongod

$ mv /data/db/local.* /safe/place
$ mv /tmp/local/* /data/db/

4. Restart the master with the new oplog size:

$ mongod --master --oplogSize=20000

5. Finally, resync the slave. This can be done by shutting down the slave, deleting all its datafiles, and restarting it.

Sharding

MongoDB scales horizontally via an auto-sharding architecture.

Sharding offers:

Scaling out to thousands of nodes
Easy addition of new machines
Automatic balancing for changes in load and data distribution
Zero single points of failure
Automatic failover

*Sharding will be production-ready in MongoDB v1.6, estimated to be released in Aug 6th, 2010. * Please see the page for progresslimitations
updates and current restrictions.

Documentation

1. What Is Sharding?
Here we provide an introduction to MongoDB's auto-sharding, highlighting its philosophy, use cases, and its core components.

2. How To Set Up and Manage a Cluster
How to set up a sharding cluster and manage it.

Configuration
Administration
Failover

3. Sharding Internals
Auto-Sharding implementation details.

4. Restrictions and Limitations
Sharding in the 1.5.x development branch is not yet production-ready. Here you can find out the current limitations and keep track of progress
towards the 1.6 production release.

5. FAQ
Common questions.

Presentations and Further Materials

Sharding Presentation from MongoSF April 2010

Sharding Introduction

MongoDB supports an automated sharding architecture, enabling horizontal scaling across multiple nodes. For applications that outgrow the
resources of a single database server, MongoDB can convert to a sharded cluster, automatically managing failover and balancing of nodes, with
few or no changes to the original application code.

This document explains MongoDB's auto-sharding approach to scalability in detail and provides an architectural overview of the various
components that enable it.

Be sure to acquaint yourself with the current .limitations

MongoDB's Auto-Sharding
Sharding in a Nutshell
Balancing and Failover
Scaling Model

Architectural Overview
Shards

Shard Keys
Chunks

Config Servers
Routing Processes
Operation Types
Server Layout
Configuration

MongoDB's Auto-Sharding

Sharding in a Nutshell

Sharding is the partitioning of data among multiple machines in an order-preserving manner. To take an example, let's imagine sharding a
collection of users by their state of residence. If we designate three machines as our shard servers, the first of those machines might contain
users from Alaska to Kansas, the second from Kentucky to New York, and the third from North Carolina to Wyoming.

Our application connects to the sharded cluster through a process, which routes operations to the appropriate shard(s). In this way, themongos
sharded MongoDB cluster continues to look like a single-node database system to our application. But the system's capacity is greatly enhanced.
If our collection receives heavy writes, those writes are now distributed across three shard servers. Queries continue to be efficient, asusers
well, because they too are distributed. And since the documents are organized in an order-preserving manner, any operations specifying the state
of residence will be routed only to those nodes containing that state.

Sharding occurs on a per-collection basis, not on the database as a whole. This makes sense since, as our application grows, certain collections
will grow much larger than others. For instance, if we were building a service like Twitter, our collection of tweets would likely be several orders of
magnitude larger than the next biggest collection. The size and throughput demands of such a collection would be prime for sharding, whereas
smaller collections would still live on a single server. In the context on MongoDB's sharded architecture, non-sharded collections will reside on just
one of the sharded nodes.

Balancing and Failover

A sharded architecture needs to handle balancing and failover. Balancing is necessary when the load on any one shard node grows out of
proportion with the remaining nodes. In this situation, the data must be redistributed to equalize load across shards.

Automated failover is also quite important since proper system functioning requires that each shard node be always online. In practice, this means
that each shard consists of more than one machine in a configuration known as a . A replica set is a set of servers, frequently three orreplica set n
more, each of which contains a replica of the entire data set for the given shard. One of the servers in a replica set will always be master. If then

http://www.10gen.com/event_mongosf_10apr30#sharding

master replica fails, the remaining replicas are capable of electing a new master. Thus is automated failover provided for the individual shard.

Replica sets were another focus of development in 1.5.x (along with sharding). See the for more details.documentation on replica sets

Scaling Model

MongoDB's auto-sharding scaling model shares many similarities with Yahoo's PNUTS and Google's BigTable. Readers interested in detailed
discussions of distributed databases using order-preserving partitioning are encouraged to look at the and white papers.PNUTS BigTable

Architectural Overview

A MongoDB shard cluster consists of two or more shards, one or more config servers, and any number of routing processes to which the
application servers connect. Each of these components is described below in detail.

Shards

Each shard consists of one or more servers and stores data using processes (being the core MongoDB database process). In amongod mongod
production situation, each shard will consist of multiple replicated servers per shard to ensure availability and automated failover. The set of
servers/ process within the shard comprise a . mongod replica set

Replica sets, as discussed earlier, represent an improved version of MongoDB's replication ().SERVER-557

For testing, you can use sharding with a single instance per shard. If you need redundancy, use one or more slaves for each shard's mongod
 master. This configuration will require manual failover until replica sets become available.mongod

Shard Keys

To partition a collection, we specify a shard key pattern. This pattern is similar to the key pattern used to define an index; it names one or more
fields to define the key upon which we distribute data. Some example shard key patterns include the following:

{ state : 1 }
{ name : 1 }
{ _id : 1 }
{ lastname : 1, firstname : 1 }
{ tag : 1, timestamp : -1 }

MongoDB's sharding is order-preserving; adjacent data by shard key tends to be on the same server. The config database stores all the metadata
indicating the location of data by range:

http://research.yahoo.com/files/pnuts.pdf
http://labs.google.com/papers/bigtable.html
http://jira.mongodb.org/browse/SERVER-557

Chunks

A chunk is a contiguous range of data from a particular collection. Chunks are described as a triple of , , and .collection minKey maxKey
Thus, the shard key K of a given document assigns that document to the chunk where minKey <= K < maxKey.

Chunks grow to a maximum size, usually 200MB. Once a chunk has reached that approximate size, the chunk into two new chunks. Whensplits
a particular shard has excess data, chunks will then to other shards in the system. The addition of a new shard will also influence themigrate
migration of chunks.

When choosing a shard key, keep in mind that these values should be enough to ensure an even distribution of data. For instance, in thegranular
above example, where we're sharding on , we have to be careful that we don't have a disproportionate number of users with the samename
name. In that case, the individual chunk can become too large and find itself unable to split, e.g., where the entire range comprises just a single
key.

Thus, if it's possible that a single value within the shard key range might grow exceptionally large, it's best to use a compound shard key instead
so that further discrimination of the values will be possible.

Config Servers

The config servers store the cluster's metadata, which includes basic information on each shard server and the chunks contained therein.

Chunk information is the main data stored by the config servers. Each config server has a complete copy of all chunk information. A two-phase
commit is used to ensure the consistency of the configuration data among the config servers.

If any of the config servers is down, the cluster's meta-data goes read only. However, even in such a failure state, the MongoDB cluster can still
be read from and written to.

Routing Processes

The process can be thought of as a routing and coordination process that makes the various components of the cluster look like a singlemongos
system. When receiving client requests, the process routes the request to the appropriate server(s) and merges any results to be sentmongos
back to the client.

mongos processes have no persistent state; rather, they pull their state from the config server on startup. Any changes that occur on the the
config servers are propagated to each process.mongos

mongos processes can run on any server desired. They may be run on the shard servers themselves, but are lightweight enough to exist on each
application server. There are no limits on the number of processes that can be run simultaneously since these processes do notmongos
coordinate between one another.

Operation Types

Operations on a sharded system fall into one of two categories: and .global targeted

For targeted operations, communicates with a very small number of shards -- often a single shard. Such targeted operations are quitemongos
efficient.

Global operations involve the process reaching out to all (or most) shards in the system.mongos

The following table shows various operations and their type. For the examples below, assume a shard key of { x : 1 }.

Operation Type Comments

db.foo.find({ x : 300 }) Targeted Queries a single shard.

db.foo.find({ x : 300, age : 40 }) Targeted Queries a single shard.

db.foo.find({ age : 40 }) Global Queries all shards.

db.foo.find() Global sequential

db.foo.find(...).count() Variable Same as the corresponding find() operation

db.foo.find(...).sort({ age : 1 }) Global parallel

db.foo.find(...).sort({ x : 1 }) Global sequential

db.foo.count() Global parallel

db.foo.insert(<object>) Targeted

db.foo.update({ x : 100 }, <object>)
db.foo.remove({ x : 100 })

Targeted

db.foo.update({ age : 40 }, <object>)

db.foo.remove({ age : 40 })

Global

db.getLastError()

db.foo.ensureIndex(...) Global

Server Layout

Machines may be organized in a variety of fashions. For instance, it's possible to have separate machines for each config server process,
 process, and process. However, this can be overkill since the load is almost certainly low on the config servers. Here, then, ismongos mongod

an example where some sharing of physical machines is used to lay out a cluster.

Yet more configurations are imaginable, especially when it comes to . For example, it's possible to run processes on all ofmongos mongos
servers 1-6. Alternatively, as suggested earlier, the processes can exists on each application server (server 7). There is some potentialmongos
benefit to this configuration, as the communications between app server and then can occur over the localhost interface.mongos

Configuration

Sharding becomes a bit easier to understand one you've set it up. It's even possible to set up a sharded cluster on a single machine. To try it for
yourself, see the .configuration docs

Configuring Sharding

Introduction

This document describes the steps involved in setting up a basic sharding cluster. A sharding cluster requires, at minimum, three components:

1. Two or more shards.
2. At least one config server.
3. A routing process.mongos

For testing purposes, it's possible to start all the required processes on a single server, whereas in a production situation, a number of server
 are possible.configurations

Once the shards, config servers, and processes are running, configuration is simply a matter of issuing a series of commands tomongos
establish the various shards as being part of the cluster. Once the cluster has been established, you can begin sharding individual collections.

This document is fairly detailed; if you're the kind of person who prefers a terse, code-only explanation, see the . Ifsample shard configuration
you'd like a quick script to set up a test cluster on a single machine, we have a that can do the trick.python sharding script

Introduction
1. Sharding Components

Shard Servers
Config Servers

 Routermongos
2. Configuring the Shard Cluster

Adding shards
Optional Parameters

Listing shards
Removing a shard

Enabling Sharding on a Database
3. Sharding a Collection
Relevant Examples and Docs

1. Sharding Components

First, start the individual shards, config servers, and processes.mongos

Shard Servers

Run on the shard servers. Use the --shardsvr command line parameter to indicate this is a shard. For auto failover support,mongod mongod
replica sets will be required. See for more info.replica sets

Note that replica pairs will never be supported as shards.

To get started with a simple test, we recommend running a single process per shard, as a test configuration doesn't demand automatedmongod
failover.

Config Servers

Run on the config server(s) with the --configsvr command line parameter. If the config servers are running on a shared machine, be suremongod
to provide a separate dbpath for the config data (command line parameter).--dbpath

 Routermongos

Run on the servers of your choice. Specify the --configdb parameter to indicate location of the config database(s).mongos

2. Configuring the Shard Cluster

Once the shard components are running, issue the sharding commands. You may want to automate or record your steps below in a .js file for
replay in the shell when needed.

Start by connecting to one of the processes, and then switch to the database before issuing any commands.mongos admin

Keep in mind that once these commands are run, the configuration data will be persisted to the config servers. So, regardless of the number of
 processes you've launched, you'll only need run these commands on one of those processes.mongos

You can connect to the admin database via like so:mongos

http://www.mongodb.org/display/DOCS/Sharding+Introduction#ShardingIntroduction-ServerLayout
http://www.mongodb.org/display/DOCS/Sharding+Introduction#ShardingIntroduction-ServerLayout
http://github.com/mongodb/mongo-snippets/blob/master/sharding/simple-setup.py
http://www.mongodb.org/display/DOCS/Starting+and+Stopping+Mongo#StartingandStoppingMongo-StartingMongo

./mongo <mongos-hostname>:<mongos-port>/admin
> db
admin

Adding shards

Each shard can consist of more than one server (see); however, for testing, only a single server with one instance need bereplica sets mongod
used.

You must explicitly add each shard to the cluster's configuration using the command:addshard

> db.runCommand({ addshard : });"<serverhostname>[:<port>]"
{ : 1 , : ...}"ok" "added"

Run this command once for each shard in the cluster.

If the individual shards consist of replica sets, they can be added by specifying replicaSetName
/<serverhostname>[:port][,serverhostname2[:port],...], where at least one server in the replica set is given.

> db.runCommand({ addshard : });"foo/<serverhostname>[:<port>]"
{ : 1 , : }"ok" "added" "foo"

Optional Parameters

name
Each shard has a name, which can be specified using the option. If no name is given, one will be assigned automatically.name

maxSize
The command accepts an optional parameter. This parameter lets you tell the system a maximum amount of disk space inaddshard maxSize
megabytes to use on the specified shard. If unspecified, the system will use the entire disk. maxSize is useful when you have machines with
different disk capacities or when you want to prevent storage of too much data on a particular shard.

As an example:

> db.runCommand({ addshard : , maxSize:100000 });"sf103"

Listing shards

To see current set of configured shards, run the command:listshards

> db.runCommand({ listshards : 1 });

This way, you can verify that all the shard have been committed to the system.

Removing a shard

Before a shard can be removed, we have to make sure that all the chunks and databases that once lived there were relocated to other shards.
The 'removeshard' command takes care of "draining" the chunks out of a shard for us. To start the shard removal, you can issue the command

> db.runCommand({ removeshard : });"localhost:10000"
{ msg : , state: , shard : , ok : 1"draining started succesfully" "started" "localhost:10000"

That will put the shard in "draining mode". Its chunks are going to be moved away slowly over time, so not to cause any disturbance to a running
system. The command will return right away but the draining task will continue on the background. If you issue the command again during it, you'll
get a progress report instead:

> db.runCommand({ removeshard : });"localhost:10000"
{ msg: , state: , remaining : { chunks :23 , dbs : 1 }, ok : 1 }"draining ongoing" "ongoing"

Whereas the chunks will be removed automatically from that shard, the databases hosted there will need to be moved manually. (This has to do

with a current limitation that will go away eventually):

> db.runCommand({ moveprimary : , to : });"test" "localhost:10001"
{ : , : 1 }"primary" "localhost:10001" "ok"

When the shard is empty, you could issue the 'removeshard' command again and that will clean up all metadata information:

> db.runCommand({ removeshard : });"localhost:10000"
{ msg: , stage: , host: , ok : 1 }"remove shard completed succesfully" "completed" "localhost:10000"

After the 'removeshard' command reported being done with that shard, you can take that process down.

Enabling Sharding on a Database

Once you've added the various shards, you can enable sharding on a database. This is an important step; without it, all collection in the database
will be stored on the same shard.

> db.runCommand({ enablesharding : });"<dbname>"

Once enabled, will place different collections for the database on different shards, with the caveat that each collection will still exists onmongos
one shard only. To enable real partitioning of data, we have to shard an individual collection.

3. Sharding a Collection

Use the command to shard a collection. When you shard a collection, you must specify the shard key. If there is data in theshardcollection
collection, mongo will require an index to be create upfront (it speeds up the chunking process) otherwise an index will be automatically created
for you.

> db.runCommand({ shardcollection : ,"<namespace>"
 key : <shardkeypatternobject> });

For example, let's assume we want to shard a collection stored in the database. We'd want to shard on the key,GridFS chunks test files_id
so we'd invoke the command like so:shardcollection

> db.runCommand({ shardcollection : , key : { files_id : 1 } })"test.fs.chunks"
{ : 1}"ok"

One note: a sharded collection can have only one unique index, which must exist on the shard key. No other unique indexes can exist on the
collection.

Of course, a unique shard key wouldn't make sense on the GridFS chunks collection. But it'd be practically a necessity for a users collection
sharded on email address:

db.runCommand({ shardcollection : , key : { email : 1 } , unique : });"test.users" true

Relevant Examples and Docs

Examples

Sample configuration session
The following example shows how to run a simple shard setup on a single machine for testing purposes: .Sharding JS Test

Docs

Sharding Administration
Notes on TCP Port Numbers

A Sample Configuration Session

The following example uses two shards (one server each), one config db, and one process, all running on a single test server. In additionmongos
to the script below, a is available.python script for starting and configuring shard components on a single machine

http://github.com/mongodb/mongo-snippets/blob/master/sharding/first.js
http://github.com/mongodb/mongo-snippets/blob/master/sharding/simple-setup.py

Creating the Shards

First, start up a couple _mongod_s to be your shards.

$ mkdir /data/db/a /data/db/b
$./mongod --shardsvr --dbpath /data/db/a --port 10000 > /tmp/sharda.log &
$ cat /tmp/sharda.log
$./mongod --shardsvr --dbpath /data/db/b --port 10001 > /tmp/shardb.log &
$ cat /tmp/shardb.log

Now you need a configuration server and :mongos

$ mkdir /data/db/config
$./mongod --configsvr --dbpath /data/db/config --port 20000 > /tmp/configdb.log &
$ cat /tmp/configdb.log
$./mongos --configdb localhost:20000 > /tmp/mongos.log &
$ cat /tmp/mongos.log

mongos does not require a data directory, it gets its information from the config server.

In a real production setup, mongod's, mongos's and configs would live on different machines. The use of hostnames or IP
addresses is mandatory in that case. 'localhost' appearance here is merely illustrative – but fully functional – and should be
confined to single-machine, testing scenarios only.

You can toy with sharding by using a small , e.g. 1MB. This is more satisfying when you're playing around, as you won't have to--chunkSize
insert 200MB of documents before you start seeing them moving around. It should not be used in production.

$./mongos --configdb localhost:20000 --chunkSize 1 > /tmp/mongos.log &

Setting up the Cluster

We need to run a few commands on the shell to hook everything up. Start the shell, connecting to the process (at localhost:27017 if youmongos
followed the steps above).

To set up our cluster, we'll add the two shards (and).a b

$./mongo
MongoDB shell version: 1.6.0
connecting to: test
> use admin
switched to db admin
> db.runCommand({ addshard : })"localhost:10000"
{ : , : 1 }"shardadded" "shard0000" "ok"
> db.runCommand({ addshard : })"localhost:10001"
{ : , : 1 }"shardadded" "shard0001" "ok"

Now you need to tell the database that you want to spread out your data at a database and collection level. You have to give the collection a key
(or keys) to partition by.
This is similar to creating an index on a collection.

> db.runCommand({ enablesharding : })"test"
{ : 1}"ok"
> db.runCommand({ shardcollection : , key : {name : 1} })"test.people"
{ : 1}"ok"

Administration

To see what's going on in the cluster, use the database.config

> use config
switched to db config
> show collections
chunks
databases
lockpings
locks
mongos
settings
shards
system.indexes
version

These collections contain all of the sharding configuration information.

Upgrading from a Non-Sharded System

A process can become part of a sharded cluster without any change to that process or downtime. If you haven't done so yet, feel free tomongod
have a look at the to familiarize yourself with the components of a sharded cluster and at the Sharding Introduction Sample Configuration

 to get to know the basic commands involved.Sesssion

Sharding is a new feature introduced at the 1.6.0 release. This page assumes your non-sharded is on that release.mongod

Adding the process to a clustermongod

If you haven't changed the default port, it would be using port 27017. You care about this now because a mongo shell will always try tomongod
connect to it by default. But in a sharded environment, .you want your shell to connect to a insteadmongos

If the port 27017 is taken by a process, you'd need to bring up the in a different port. Assuming that port is 30000 you canmongod mongos
connect your shell to it by issuing:

$ mongo <mongos-host-address>:30000/admin

We're switching directly to the database on the process. That's where we will be able to issue the following commandadmin mongos

MongoDB shell version: 1.6.0
connecting to: <mongos-address>:30000/admin
> db.runCommand({ addshard : })"192.168.25.203:27017"
> { : , : 1 }"shardAdded" "shard0000" "ok"

The host address and port you see on the command are the original 's. All the databases of that process were added to the cluster andmongod
are accessible now through .mongos

> db.runCommand({ listdatabases : 1 })
{
 : ["databases"
 {
 : "name" "mydb"
 ...
 : {"shards"
 : <size-in-shard00000>"shard0000"
 }
 },
 ...

Note that that doesn't mean that the database or any of its collections is sharded. They haven't moved (see next). All we did so far is to make
them visible within the cluster environment.

You should stop accessing the former stand-alone directly and should have all the clients connect to a process, just as we'vemongod mongos
been doing here.

Sharding a collection

All the databases of your -process-turned-shard can be chunked and balanced among the cluster's shards. The commands and examplesmongod
to do so are listed at the

 page. Note that a chunk size defaults to 200MB in version 1.6.0, so if you want to change that – for testing purposes, say –Configuring Sharding
you would do so by starting the process with the additional --chunkSize parameter.mongos

Difference between upgrading and starting anew

You should pay attention to the host addresses and ports when upgrading, is all.
Again, if you haven't changed the default ports of your process, it would be listening on 27017, which is the port that would try tomongod mongos
bind by default, too.

Sharding Administration

Here we present a list of useful commands for obtaining information about a sharding cluster.

To set up a sharding cluster, see the docs on .sharding configuration

Identifying a Shard Cluster
List Existing Shards
List Which Databases are Sharded
View Sharding Details
Chunk Operations

Identifying a Shard Cluster

// Test we're speaking to a mongos process or if
// straight to a mongod process
> db.runCommand({ isdbgrid : 1});

// connected to mongos, command returns { ismaster: 0.0, msg: }if this "isdbgrid"
> db.runCommand({ismaster:1});

List Existing Shards

> db.runCommand({ listShards : 1});
{ :"servers"
 [{ : ObjectId() ,"_id" "4a9d40c981ba1487ccfaa634"
 : },"host" "localhost:10000"
 { : ObjectId() ,"_id" "4a9d40df81ba1487ccfaa635"
 : }"host" "localhost:10001"
],
 : 1"ok"
}

List Which Databases are Sharded

Here we query the config database, albeit through . The command is used to return the config database.mongos getSisterDB

> config = db.getSisterDB()"config"
> config.system.namespaces.find()

View Sharding Details

http://www.mongodb.org/display/DOCS/Configuring+Sharding#ConfiguringSharding-3.ShardingaCollection

> use admin
> db.printShardingStatus();

// A very basic sharding configuration on localhost
sharding version: { : 1, : 2 }"_id" "version"
 shards:
 { : ObjectId(), : }"_id" "4bd9ae3e0a2e26420e556876" "host" "localhost:30001"
 { : ObjectId(), : }"_id" "4bd9ae420a2e26420e556877" "host" "localhost:30002"
 { : ObjectId(), : }"_id" "4bd9ae460a2e26420e556878" "host" "localhost:30003"

 databases:
 { : , : , "name" "admin" "partitioned" false
 : , "primary" "localhost:20001"
 : ObjectId() }"_id" "4bd9add2c0302e394c6844b6"
 my chunks

 { : , : ,"name" "foo" "partitioned" true
 : , "primary" "localhost:30002"
 : { : { : { : 1 }, : } },"sharded" "foo.foo" "key" "_id" "unique" false
 : ObjectId() }"_id" "4bd9ae60c0302e394c6844b7"
 my chunks
 foo.foo { : { $minKey : 1 } } -->> { : { $maxKey : 1 } } "_id" "_id"
 on : localhost:30002 { : 1272557259000, : 1 }"t" "i"

Notice the output to the command. First, we see the locations the the three shards comprising the cluster. Next, theprintShardingStatus
various databases living on the cluster are displayed.

The first database shown is the admin database, which has not bee partitioned. The field indicates the location of the database, which, inprimary
the case of the admin database, is on the config server running on port 20001.

The second database partitioned, and it's easy to see the shard key and the location and ranges of chunks comprising the partition. Sinceis
there's no data in the database, only a single chunk exists. That single chunk includes the entire range of possible shard keys.foo

Chunk Operations

MongoDB v1.6 will managing the arrangement chunks automatically. However, it may be desirable to move a chunk manually; here's the
command to do that:

db.runCommand({ moveChunk : , "test.blog.posts"
 find : { author : } , "eliot"
 to : })"shard1"

Parameters:

movechunk: a full collection namespace, including the database name
find: a query expression that falls within the chunk to be moved
to: shard id where the chunk will be moved

Sharding and Failover

A properly-configured MongoDB shard cluster will have no single point of failure.

This document describes the various potential failure scenarios of components within a shard cluster, and how failure is handled in each situation.

1. Failure of a routing process.mongos

One routing process will be run on each application server, and that server will communicate to the cluster exclusively through the mongos
 process. process aren't persistent; rather, they gather all necessary config data on startup from the config server.mongos mongos

This means that the failure of any one application server will have no effect on the shard cluster as a whole, and all other application servers will
continue to function normally. Recovery is simply a matter starting up a new app server and process.mongos

2. Failure of a single server within a shard.mongod

Each shard will consist of a group of servers in a configuration known as a replica set. If any one server in the replica set fails, read and writen
operations on the shard are still permitted. What's more, no data need be lost on the failure of a server because the replica allows an option on
write that forces replication of the write before returning. This is similar to setting to 2 on Amazon's Dynamo.W

Replica sets will be available as of MongoDB v1.6. Read more about or follow the .replica set internals jira issue

3. Failure of all servers comprising a shard.mongod

If all replicas within a shard are down, the data within that shard will be unavailable. However, operations that can be resolved at other shards will
continue to work properly. See the documentation on to see why this is so.global and targeted operations

If the shard is configured as a replica set, with at least one member of the set in another data center, then an outage of an entire shard is
extremely unlikely. This will be the recommended configuration for maximum redundancy.

4. Failure of a config server.

A production shard cluster will have three config server processes, each existing on a separate machine. Writes to config servers use a
two-phase commit to ensure an atomic and replicated transaction of the shard cluster's metadata.

On the failure of any one config server, the system's metadata becomes read-only. The system will continue to function, but chunks will be unable
to split within a single shard or migrate across shards. For most use cases, this will present few problems, since changes to the chunk metadata
will be infrequent.

That said, it will be important that the down config server be restored in a reasonable time period (say, a day) so that shards do not become
unbalanced due to lack of migrates (again, for many production situations, this may not be an urgent matter).

Sharding Limits

Sharding Release 1 (MongoDB v1.6.0)

Differences from Unsharded Configurations

Sharding must be ran in trusted security mode, without explicit .security
Shard keys are immutable in the current version.
All (non-multi)updates, upserts, and inserts must include the current shard key. This may cause issues for anyone using a mapping
library since you don't have full control of updates.

$where

$where works with sharding. However do not reference the db object from the $where function (one normally does not do this anyway).

db.eval

db.eval() may not be used with sharded collections. However, you may use db.eval() if the evaluation function accesses unsharded collections
within your database. Use map/reduce in sharded environments.

getPrevError

getPrevError is unsupported for sharded databases, and may remain so in future releases (TBD). Let us know if this causes a problem for you.

Unique Indexes

For a sharded collection, you may only (optionally) specify a unique constraint on the shard key. Other secondary indexes work (via a global
) as long as no unique constraint is specified.operation

Scale Limits

Goal is support of systems of up to 1,000 shards. Testing so far has been limited to clusters with a modest number of shards (e.g., 20). More
information will be reported here later on any scaling limitations which are encountered.

MongoDB sharding supports two -- targeted and global. On giant systems, global operations will be of less applicability.styles of operations

Sharding Internals

This section includes internal implementation details for MongoDB auto sharding. See also the main sharding documentation.

Note: some internals docs could be out of date -- if you see that let us know so we can fix.

Internals

http://jira.mongodb.org/browse/SERVER-557
http://www.mongodb.org/display/DOCS/Sharding+Introduction#ShardingIntroduction-OperationTypes

Moving Chunks
Sharding Config Schema
Sharding Design
Sharding Use Cases
Shard Ownership
Splitting Chunks

Unit Tests

./mongo --nodb jstests/sharding/*js

Moving Chunks

inc version
try to set on from
if set is successful, have it "locked"
start transfer
finish transfer
commit result

max version for a shard is MAX(chunks on shard)
this poses slight problem when moving last chunk off of a shard, so add a special marker

Sharding Config Schema

Sharding configuration schema. This lives in the config servers.

Collections

version

This is a singleton that contains the current meta-data version number.

> db.getCollection().findOne()"version"
{ : 1, : 2 }"_id" "version"

settings

Key/Value table for configurable options (chunkSize)

> db.settings.find()
{ : , : 200 }"_id" "chunksize" "value"
{ : , : , : ObjectId() }"_id" "balancer" "who" "ubuntu:27017" "x" "4bd0cb39503139ae28630ee9"

shards

Stores information about the shards.

> db.shards.findOne()
{ : , : }"_id" "shard0" "host" "localhost:30001"

databases

{
 : , "_id" "admin"
 : , "partitioned" false
 : "primary" "localhost:20001"
}

chunks

{
 : ,"_id" "test.foo-x_MinKey"
 : {"lastmod"
 : 1271946858000,"t"
 : 1"i"
 },
 : ,"ns" "test.foo"
 : {"min"
 : { $minKey : 1 }"x"
 },
 : {"max"
 : { $maxKey : 1 }"x"
 },
 : "shard" "localhost:30002"
}

mongos

Record of all mongos affiliated with this cluster. mongos will ping every 30 seconds so we know who is alive.

> db.mongos.findOne()
{
 : ,"_id" "erh-wd1:27017"
 : ,"ping" "Fri Apr 23 2010 11:08:39 GMT-0400 (EST)"
 : 30"up"
}

changelog

Human readable log of all meta-data changes. Capped collection that defaults to 10mb.

> db.changelog.findOne()
{
 : ,"_id" "erh-wd1-2010-3-21-17-24-0"
 : ,"server" "erh-wd1"
 : ,"time" "Wed Apr 21 2010 13:24:24 GMT-0400 (EST)"
 : ,"what" "split"
 : ,"ns" "test.foo"
 : {"details"
 : {"before"
 : {"min"
 : { $minKey : 1 }"x"
 },
 : {"max"
 : { $maxKey : 1 }"x"
 }
 },
 : {"left"
 : {"min"
 : { $minKey : 1 }"x"
 },
 : {"max"
 : 5"x"
 }
 },
 : {"right"
 : {"min"
 : 5"x"
 },
 : {"max"
 : { $maxKey : 1 }"x"
 }
 }
 }
}

Changes

2 (<= 1.5.0) -> 3 (1.5.1)

shards : _id is now the name
databases : _id is now the db name
general : all references to a shard can be via name or host

Sharding Design

concepts

config database - the top level database that stores information about servers and where things live.

shard. this can be either a single server or a replica pair.

database - one top level namespace. a database can be partitioned or not

chunk - a region of data from a particular collection. A chunk can be though of as (). Thecollectionname,fieldname,lowvalue,highvalue
range is inclusive on the low end and exclusive on the high end, , [lowvalue,highvalue).i.e.

components and database collections

config database
config.servers - this contains all of the servers that the system has. These are logical servers. So for a replica pair, the entry would be
192.168.0.10,192.168.0.11
config.databases - all of the databases known to the system. This contains the server for a database, and information aboutprimary
whether its partitioned or not.

config.shards - a list of all database . Each shard is a db pair, each of which runs a db process.shards
config.homes - specifies which shard is for a given client db.home

shard databases
client.system.chunklocations - the home shard for a given client db contains a .system.chunklocations collection. thisclient

collection lists where to find particular chunks; that is, it maps chunk->shard.
mongos process

"routes" request to proper db's, and performs merges. can have a couple per system, or can have 1 per client server.
gets chunk locations from the client db's home shard. load lazily to avoid using too much mem.

chunk information is cached by mongos. This information can be stale at a mongos (it is always up to date at the owning
shard; you cannot migrate an item if the owning shard is down). If so, the shard contacted will tell us so and we can then
retry to the proper location.

db operations

moveprimary - move a database's primary server
migrate - migrate a chunk from one machine to another.

lock and migrate
shard db's coordinate with home shard to atomically pass over ownership of the chunk (two phase commit)

split - split a chunk that is growing too large into pieces. as the two new chunks are on the same machine after the split, this is really just
a metadata update and very fast.
reconfiguration operations

add shard - dbgrid processes should lazy load information on a new (unknown) shard when encountered.
retire shard - in background gradually migrate all chunks off

minimizing lock time

If a chunk is migrating and is 50MB, that might take 5-10 seconds which is too long for the chunk to be locked.

We could perform the migrate much like Cloner works,where we copy the objects and then apply all operations that happened during copying.
This way lock time is minimal.

Sharding Use Cases

What specific use cases do we want to address with db partioning (and other techniques) that are challenging to scale? List here for discussion.

video site (e.g., youtube) (also, GridFS scale-up)
seems straightforward: partition by video
for related videos feature, see search below

social networking (e.g., facebook)
this can be quite hard to partition, because it is difficult to cluster people.

very high RPS sites with small datasets
N replicas, instead of partioning, might help here

replicas only work if the dataset is really small as we are using/wasting the same RAM on each replica. thus, partioning
might help us with ram cache efficiency even if entire data set fits on one or two drives.

twitter
search & tagging

Log Processing

Use cases related to map-reduce like things.

massive sort
top N queries per day
compare data from two nonadjacent time periods

Shard Ownership

By shard ownership we mean which server owns a particular key range.

Early draft/thoughts will change:

Contract

the master copy of the ownership information is in the config database
mongos instances have cached info on which server owns a shard. this information may be stale.
mongod instances have definitive information on who owns a shard (atomic with the config db) when they know about a shards
ownership

mongod

The mongod processes maintain a cache of shards the mongod instance owns:

map<ShardKey,state> ownership

State values are as follows:

missing - no element in the map means no information available. In such a situation we should query the config database to get the state.
1 - this instance owns the shard
0 - this instance does not own the shard (indicates we queried the config database and found another owner, and remembered that fact)

Initial Assignment of a region to a node.

This is trivial: add the configuration to the config db. As the ShardKey is new, no nodes have any cached information.

Splitting a Key Range

The mongod instance A which owns the range R breaks it into R1,R2 which are still owned by it. It updates the config db. We take care to handle
the config db crashing or being unreachable on the split:

lock(R) on A
update the config db -- ideally atomically perhaps with eval(). await code.return
ownership[R].erase
unlock(R) on A

After the above the cache has no information on the R,R1,R2 ownerships, and will requery configdb on the next request. If the config db crashed
and failed to apply the operation, we are still consistent.

Migrate ownership of keyrange R from server A->B. We assume here that B is the coordinator of the job:

B copies range from A
lock(R) on A and B
 B copies any additional operations from A (fast)
 clear ownership maps R on A and B. B waits a response from A on operation.for for this
 B then updates the ownership data in the config db. (Perhaps even fsyncing.) await code.return
 unlock(R) on B
 delete R on A (cleanup)
unlock (R) on A

We clear the ownership maps first. That way, if the config db update fails, nothing bad happens, IF mongos filters data upon receipt for being in
the correct ranges (or in its query parameters).

R stays locked on A for the cleanup work, but as that shard no longer owns the range, this is not an issue even if slow. It stays locked for that
operation in case the shard were to quickly migrate back.

Migrating Empty Shards

Typically we migrate a shard after a split. After certain split scenarios, a shard may be empty but we want to migrate it.

Splitting Chunks

Normally, splitting chunks is done automatically for you. Currently, the splits happen as a side effect of inserting (and are transparent). In the
future, there may be other cases where a chunk is automatically split.

A recently split chunk may be moved immediately to a new shard if the system finds that future insertions will benefit from that move. (Chunk
moves are transparent, too.)

Moreover, MongoDB has a sub-system called Balancer, which constantly monitors shards loads and, as you guessed, moves chunks around if it
finds an imbalance. Balancing chunks automatically helps incremental scalability. If you add a new shard to the system, some chunks will
eventually be moved to that shard to spread out the load.

That all being said, in certain circumstances one may need to force a split manually.

The Balancer will treat all chunks the same way, regardless if they were generated by a manual or an automatic split.

The following command splits the chunk where the _id 99 would reside using that key as the split point. Note that a key need not exist for a chunk

to use it in its range.

> use admin
switched to db admin
> db.runCommand({ split : , middle : { _id : 99 } })"test.foo"
...

The following command splits the chunk where the _id 99 would reside in two. The key used as the middle key is computed internally to roughly
divide the chunk in equally sized parts.

> use admin
switched to db admin
> db.runCommand({ split : , find : { _id : 99 } })"test.foo"
...

Sharding FAQ

How does sharding work with replication?
Where do unsharded collections go if sharding is enabled for a database?
When will data be on more than one shard?
What happens if I try to update a document on a chunk that is being migrated?
What if a shard is down or slow and I do a query?
How do queries distribute across shards?
Now that I sharded my collection, how do I <...> (e.g. drop it)?
If I don't shard on _id how is it kept unique?
Why is all my data on one server?

How does sharding work with replication?

Each shard is a logical collection of partitioned data. The shard could consist of a single server or a cluster of replicas. Typically in production one
would use a for each shard.replica set

Where do unsharded collections go if sharding is enabled for a database?

In alpha 2 unsharded data goes to the "primary" for the database specified (query config.databases to see details). Future versions will parcel out
unsharded collections to different shards (that is, a collection could be on any shard, but will be on only a single shard if unsharded).

When will data be on more than one shard?

MongoDB sharding is range based. So all the objects in a collection get put into a chunk. Only when there is more than 1 chunk is there an option
for multiple shards to get data. Right now, the chunk size is 50mb, so you need at least 50mb for a migration to occur.

What happens if I try to update a document on a chunk that is being migrated?

The update will go through immediately on the old shard, and then the change will be replicated to the new shard before ownership transfers.

What if a shard is down or slow and I do a query?

If a shard is down, the query will return an error. If a shard is responding slowly, mongos will wait for it. You won't get partial results.

How do queries distribute across shards?

There are a few different cases to consider, depending on the query keys and the sort keys. Suppose 3 distinct attributes, X, Y, and Z, where X is
the shard key. A query that keys on X and sorts on X will translate straightforwardly to a series of queries against successive shards in X-order. A
query that keys on X and sorts on Y will execute in parallel on the appropriate shards, and perform a merge sort keyed on Y of the documents
found. A query that keys on Y must run on all shards: if the query sorts by X, the query will serialize over shards in X-order; if the query sorts by Z,
the query will parallelize over shards and perform a merge sort keyed on Z of the documents found.

Now that I sharded my collection, how do I <...> (e.g. drop it)?

Even if chunked, your data is still part of a collection and so all the collection commands apply.

If I don't shard on _id how is it kept unique?

If you don't use _id as the shard key then it is your responsibility to keep the _id unique. If you have duplicate _id values in your collection bad
 (as mstearn says).things will happen

Why is all my data on one server?

MongoDB sharding breaks data into chunks. By default, these chunks are 200mb. Sharding will keep chunks balanced across shards. This

means that you need many chunks to trigger balancing, typically 2gb of data or so. db.printShardingStatus() will tell you how many chunks you
have, typically need 10 to start balancing.

Hosting Center

Cloud-Style

MongoHQ provides cloud-style hosted MongoDB instances
Mongo Machine is currently in private beta

Dedicated Servers

ServerBeach offers preconfigured, dedicated MongoDB servers Blog

EngineYard supports MongoDB on its private cloud.

VPS

(mt) Media Temple's is an excellent choice for .(ve) server platform easy MongoDB deployment
Dreamhost offers instant configuration and deployment of MongoDB
LOCUM Hosting House is a project-oriented shared hosting and VDS. MongoDB is available for all customers as a part of their
subscription plan.

Setup Instructions for Others

Amazon EC2
Joyent
Linode
Webfaction

Amazon EC2

Instance Types
Linux
EC2 TCP Port Management
EBS Snapshotting
EBS vs. Local Drives

MongoDB runs well on . This page includes some notes in this regard.Amazon EC2

Instance Types

MongoDB works on most EC2 types including Linux and Windows. We recommend you use a 64 bit instance as this is required for all MongoDB
. Additionally, we find that the larger instances tend to be on the freshest ec2 hardware.databases of significant size

Linux

One can download a binary or build from source. Generally it is easier to download a binary. We can download and run the binary without being
root. For example on 64 bit Linux:

[~]$ curl -O http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.0.1.tgz
[~]$ tar -xzf mongodb-linux-x86_64-1.0.1.tgz
[~]$ cd mongodb-linux-x86_64-1.0.1/bin
[bin]$./mongod --version

Before running the database one should decide where to put datafiles. Run df -h to see volumes. On some images /mnt will be the many locally
attached storage volume. Alternatively you may want to use which will have a different mount point. Regardless, create aElastic Block Store

http://mongohq.com/
http://mongomachine.com/
http://www.serverbeach.com/services/mongodb.php
 http://serverbeach.wordpress.com/2010/05/19/serverbeach-now-offers-mongodb-dedicated-servers/
http://www.engineyard.com/technology/stack
http://mediatemple.net
http://mediatemple.net/webhosting/ve/
http://wiki.mediatemple.net/w/Installing_MongoDB_on_Ubuntu
http://www.wiki.dreamhost.com/V12.01_January_2010
http://locum.ru
http://library.linode.com/databases/mongodb/
http://docs.webfaction.com/software/mongodb.html
http://mongohq.com/
http://www.dreamhost.com/
http://mongomachine.com/
http://mediatemple.net
http://aws.amazon.com/ec2/
http://blog.mongodb.org/post/137788967/32-bit-limitations
http://blog.mongodb.org/post/137788967/32-bit-limitations
http://aws.amazon.com/ebs/

directory in the desired location and then run the database:

mkdir /mnt/db
./mongod --fork --logpath ~/mongod.log --dbpath /mnt/db/

EC2 TCP Port Management

By default the database will now be listening on port 27017. The web administrative UI will be on port 28017.

EBS Snapshotting

v1.3.1+

If your datafiles are on an EBS volume, you can snapshot them for backups. Use the fsync lock command to lock the database to prevent writes.
Then, snapshot the volume. Then use the unlock command to allow writes to the database again. See the for morefsync documentation
information.

This method may also be used with slave databases.

EBS vs. Local Drives

Local drives may be faster than EBS; however, they are impermanent. One strategy is to have a hot server which uses local drives and a slave
which uses EBS for storage.

We have seen sequential read rates by MongoDB from ebs (unstriped) of 400Mbps on an extra large instance box. (YMMV)

Joyent

The MongoDB Solaris 64 binaries work with Joyent accelerators. prebuilt

Some newer gcc libraries are required to run -- see sample setup session below.

$ # assuming a 64 bit accelerator
$ /usr/bin/isainfo -kv
64-bit amd64 kernel modules

$ # get mongodb
$ # note is 'latest' you may want a different versionthis
$ curl -O http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-latest.tgz
$ gzip -d mongodb-sunos5-x86_64-latest.tgz
$ tar -xf mongodb-sunos5-x86_64-latest.tar
$ mv mongo"mongodb-sunos5-x86_64-2009-10-26"

$ cd mongo

$ # get extra libraries we need (you will get a libstdc++.so.6 dependency issue)else
$ curl -O http://downloads.mongodb.org.s3.amazonaws.com/sunos5/mongo-extra-64.tgz
$ gzip -d mongo-extra-64.tgz
$ tar -xf mongo-extra-64.tar
$ # just as an example - you will really probably want to put these somewhere better:
$ export LD_LIBRARY_PATH=mongo-extra-64
$ bin/mongod --help

Monitoring and Diagnostics

Query Profiler
Http Console
db.serverStatus() from mongo shell
Trending/Monitoring Adaptors
Hosted Monitoring
Database Record/Replay

Checking Server Memory Usage
Database Profiler
Munin configuration examples
Http Interface
mongostat
mongosniff

Admin UIs

Query Profiler

Use the to analyze slow queries.Database Profiler

Http Console

The mongod process includes a simple diagnostic screen at . See the docs for more information.http://localhost:28017/ Http Interface

db.serverStatus() from mongo shell

> db.stats()
> db.serverStatus()
> db.foo.find().explain()
> help
> db.help()
> db.foo.help()

Server Status Fields

globalLock - totalTime & lockTime are total microsecs since startup that there has been a write lock
mem - current usage in megabytes
indexCounters - counters since startup, may rollover
opcounters - operation counters since startup
asserts - assert counters since startup

Trending/Monitoring Adaptors

munin, and another munin
ganglia
cacti

Chris Lea from has made an for the munin plugin.(mt) Media Temple easy to install Ubuntu package

Hosted Monitoring

Server Density
scout app slow queries

Database Record/Replay

Recording database operations, and replaying them later, is sometimes a good way to reproduce certain problems in a controlled environment.

To enable logging:

db._adminCommand({ diagLogging : 1 })

To disable:

db._adminCommand({ diagLogging : 0 })

Values for diagLogging:

0 off. Also flushes any pending data to the file.
1 log writes
2 log reads
3 log both
Note: if you log reads, it will record the findOnes above and if you replay them, that will have an effect!

http://localhost:28017/
http://github.com/erh/mongo-munin
http://github.com/pcdummy/mongomon
http://github.com/quiiver/mongodb-ganglia
http://tag1consulting.com/blog/mongodb-cacti-graphs
http://mediatemple.net
https://launchpad.net/~chris-lea/+archive/munin-plugins
http://www.serverdensity.com/faq/#q1
http://scoutapp.com/plugin_urls/291-mongodb-slow-queries

Output is written to diaglog.bin_ in the /data/db/ directory (unless --dbpath is specified).

To replay the logged events:

nc ''database_server_ip'' 27017 < ''somelog.bin'' | hexdump -c

Checking Server Memory Usage

Checking using DB Commands

The serverStatus() command provides memory usage information.

> db.serverStatus()

add: how to interpret. what would indicate a memory leak

Checking via Unix Commands

mongod uses memory-mapped files; thus the memory stats in top are not that useful. On a large database, virtual bytes/VSIZE will tend to be the
size of the entire database, and if the server doesn't have other processes running, resident bytes/RSIZE will be the total memory of the machine
(as this counts file system cache contents).

vmstat can be useful. Try running . On OS X, use .vmstat 2 vm_stat

Checking in Windows

Help, any Windows admin experts our there? What should be here?

Historial Memory Leak Bugs (that are fixed)

 (4 issues)

Key FixVersion Summary

SERVER-1827 1.7.1 Memory leak when there's multiple query plans with empty result

SERVER-768 1.3.4 Memory leak and high memory usage from snapshots thread

SERVER-774 MessagingPorts are leaking

SERVER-1897 admin page plugins and handlers leak memory

Database Profiler

Mongo includes a profiling tool to analyze the performance of database operations.

See also the command.currentOp

Enabling Profiling

To enable profiling, from the shell invoke:mongo

> db.setProfilingLevel(2);
{ : 0 , : 1}"was" "ok"
> db.getProfilingLevel()
2

Profiling levels are:

0 - off
1 - log slow operations (>100ms)
2 - log all operations

Starting in 1.3.0, you can also enable on the command line, --profile=1

http://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&query=+leak&summary=true&description=true&body=true&type=1&pid=10000&customfield_10033=Memory+Leak&tempMax=1000
http://jira.mongodb.org/browse/SERVER-1827
http://jira.mongodb.org/browse/SERVER-1827
http://jira.mongodb.org/browse/SERVER-768
http://jira.mongodb.org/browse/SERVER-768
http://jira.mongodb.org/browse/SERVER-774
http://jira.mongodb.org/browse/SERVER-774
http://jira.mongodb.org/browse/SERVER-1897
http://jira.mongodb.org/browse/SERVER-1897

When profiling is enabling, there is continual writing to the system.profile table. This is very fast but does use a write lock which
has certain implications for concurrency. An alternative which has no impact on concurrency is to use the currentOp command.

Viewing

Profiling data is recorded in the database's collection. Query that collection to see the results.system.profile

> db.system.profile.find()
{ : , : "ts" "Thu Jan 29 2009 15:19:32 GMT-0500 (EST)" "info" "query test.$cmd ntoreturn:1 reslen:66

 , : 0}nscanned:0
query: { profile: 2 } nreturned:1 bytes:50" "millis"
...

To see output without $cmd (command) operations, invoke:

db.system.profile.find(function() { .info.indexOf('$cmd')<0; })return this

To view operations for a particular collection:

> db.system.profile.find({ info: /test.foo/ })
{ : , : , : 0}"ts" "Thu Jan 29 2009 15:19:40 GMT-0500 (EST)" "info" "insert test.foo" "millis"
{ : , : , : 0}"ts" "Thu Jan 29 2009 15:19:42 GMT-0500 (EST)" "info" "insert test.foo" "millis"
{ : , : "ts" "Thu Jan 29 2009 15:19:45 GMT-0500 (EST)" "info" "query test.foo ntoreturn:0 reslen:102

 , : 0}nscanned:2
query: {} nreturned:2 bytes:86" "millis"
{ : , : "ts" "Thu Jan 29 2009 15:21:17 GMT-0500 (EST)" "info" "query test.foo ntoreturn:0 reslen:36

 , : 0}nscanned:2
query: { $not: { x: 2 } } nreturned:0 bytes:20" "millis"
{ : , : "ts" "Thu Jan 29 2009 15:21:27 GMT-0500 (EST)" "info" "query test.foo ntoreturn:0 exception

 , : 88}bytes:53" "millis"

To view operations slower than a certain number of milliseconds:

> db.system.profile.find({ millis : { $gt : 5 } })
{ : , : "ts" "Thu Jan 29 2009 15:21:27 GMT-0500 (EST)" "info" "query test.foo ntoreturn:0 exception

 , : 88}bytes:53" "millis"

To see newest information first:

db.system.profile.find().sort({$natural:-1})

The mongo shell includes a helper to see the most recent 5 profiled events that took at least 1ms to execute. Type show profile at the command
prompt to use this feature.

Understanding the Output

The output reports the following values:

ts Timestamp of the profiled operation.
millis Time, in milliseconds, to perform the operation. This time does not include time to acquire the lock or network time, just the time
for the server to process.
info Details on the operation.

query A database query operation. The query info field includes several additional terms:
ntoreturn Number of objects the client requested for return from a query. For example, <code>findOne()</code> sets
ntoreturn to 1. <code>limit()</code> sets the appropriate limit. Zero indicates no limit.
query Details of the query spec.
nscanned Number of objects scanned in executing the operation.
reslen Query result length in bytes.
nreturned Number of objects returned from query.

update A database update operation. <code>save()</code> calls generate either an update or insert operation.
fastmod Indicates a fast modify operation. See . These operations are normally quite fast.Updates
fastmodinsert - indicates a fast modify operation that performed an upsert.

upsert Indicates on upsert performed.
moved Indicates the update moved the object on disk (not updated in place). This is slower than an in place update, and
normally occurs when an object grows.

insert A database insert.
getmore For large queries, the database initially returns partial information. indicates a call to retrieve furthergetmore
information.

Optimizing Query Performance

If is much higher than , the database is scanning many objects to find the target objects. Consider creating annscanned nreturned
index to improve this.

reslen A large number of bytes returned (hundreds of kilobytes or more) causes slow performance. Consider passing
<code>find()</code> a second parameter of the member names you require.

Note: There is a cost for each index you create. The index causes disk writes on each insert and some updates to the collection. If a rare query,
it may be better to let the query be "slow" and not create an index. When a query is common relative to the number of saves to the collection, you
will want to create the index.

Optimizing Update Performance

Examine the info field. If it is a very large value, the database is scanning a large number of objects to find the object tonscanned
update. Consider creating an index if updates are a high-frequency operation.
Use fast modify operations when possible (and usually with these, an index). See .Updates

Profiler Performance

When enabled, profiling affects performance, although not severely.

Profile data is stored in the database's collection, which is a . By default it is set to a very small size andsystem.profile Capped Collection
thus only includes recent operations.

Configuring "Slow"

Since 1.3.0 there are 2 ways to configure "slow"

--slowms on the command line when starting mongod (or file config)
db.setProfilingLevel(level , slowms)

db.setProfilingLevel(1 , 10);

will log all queries over 10ms to system.profile

See Also

Optimization
explain()
Viewing and Terminating Current Operation

Munin configuration examples

Overview

Munin can use be used monitoring aspects of you running system. The following is a mini tutorial to help you setup and use the MongoDB plugin
with munin.

Setup

Munin is made up of two components

agent and plugins that are installed on the system you want to monitor
server which polls the agent(s) and creates the basic web pages and graphs to visualize the data

Install

You can download from , but pre-built packages are also available. For example on Ubuntu you can do the followingSourceForge

http://www.mongodb.org/display/DOCS/Optimization#Optimization-Explain
http://munin-monitoring.org
http://sourceforge.net/projects/munin/files/

Agent install

To install the agent, repeat the following steps on each node you want to monitor

shell> sudo apt-get install munin-node

Server install

The server needs to be installed once. It relies on apache2, so you will need to ensure that it is installed as well

shell> apt-get install apache2
shell> apt-get install munin

Configuration

Both the agent(s) and server need to be configured with the IP address and port to contact each other. In the following examples we will use
these nodes

db1 : 10.202.210.175
db2 : 10.203.22.38
munin-server : 10.194.102.70

Agent configuration

On each node, add an entry as follows into
for db1:

/etc/munin/munin-node.conf
host_name db1-ec2-174-129-52-161.compute-1.amazonaws.com
allow ^10\.194\.102\.70$

for db2:

/etc/munin/munin-node.conf
host_name db2-ec2-174-129-52-161.compute-1.amazonaws.com
allow ^10\.194\.102\.70$

host_name : can be whatever you like, this name will be used by the server
allow : this is the IP address of the server, enabling the server to poll the agent

Server configuration

Add an entry for each node that is being monitored as follows in

[db1-ec2-174-129-52-161.compute-1.amazonaws.com]
address 10.202.210.175
use_node_name no

[db2-ec2-184-72-191-169.compute-1.amazonaws.com]
address 10.203.22.38
use_node_name no

the name in between the [] needs to match the name set in the agents munin-node.conf
address : IP address of the node where the agent is running
use_node_name : dtermine if the IP or the name between [] is used to contact the agent

MongoDB munin plugin

A is available that provide metrics forplugin

B-Tree stats
Current connections

http://github.com/erh/mongo-munin

Memory usage
Database operations (inserts, updates, queries etc.)

The plugin can be installed as follows on each node where MongoDB is running

shell> wget http://github.com/erh/mongo-munin/tarball/master
shell> tar xvf erh-mongo-munin-*tar.gz
shell> cp erh-mongo-munin-*/mongo_* /etc/munin/plugins/

Check your setup

After installing the plugin and making the configuration changes, force the server to update the information to check your setup is correct using the
following

shell> sudo -u munin /usr/share/munin/munin-update

If everything is setup correctly, you will get a chart like this

Advanced charting

If you are running a large MongoDB cluster, you may want to aggregate the values (e.g. inserts per second) across all the nodes in the cluster.
Munin provides a simple way to aggregate.

/etc/munin/munin.conf
[compute-1.amazonaws.com;CLUSTER]
update no

* Defines a new segment called CLUSTER

update no : munin can generate the chart based on existing data, this tell munin not to poll the agents for the data

Now lets define a chart to aggregate the inserts, updates and deletefor the cluster

cluster_ops.graph_title Cluster Ops
cluster_ops.graph_category mongodb
cluster_ops.graph_total total
cluster_ops.total.graph no
cluster_ops.graph_order insert update delete
cluster_ops.insert.label insert
cluster_ops.insert.sum \
 db1-ec2-174-129-52-161.compute-1.amazonaws.com:mongo_ops.insert \
 db2-ec2-184-72-191-169.compute-1.amazonaws.com:mongo_ops.insert
cluster_ops.update.label update
cluster_ops.update.sum \
 db1-ec2-174-129-52-161.compute-1.amazonaws.com:mongo_ops.insert \
 db2-ec2-184-72-191-169.compute-1.amazonaws.com:mongo_ops.insert
cluster_ops.delete.label delete
cluster_ops.delete.sum \
 db1-ec2-174-129-52-161.compute-1.amazonaws.com:mongo_ops.insert \
 db2-ec2-184-72-191-169.compute-1.amazonaws.com:mongo_ops.insert

* cluster_ops : name of this chart

cluster_ops.graph_category mongodb : puts this chart into the "mongodb" category. Allows you to collect similar charts on a single page
cluster_ops.graph_order insert update delete : indicates the order of the line son the key for the chart
cluster_ops.insert : represents a single line on the chart, in this case the "insert"
cluster_ops.insert.sum : indicates the values are summed

db1-ec2-174-129-52-161.compute-1.amazonaws.com : indicates the node to aggregate
mongo_ops.insert : indicates the chart (mongo_ops) and the counter (insert) to aggregate

And this is what is looks like

Http Interface

REST Interfaces
Sleepy Mongoose (Python)
MongoDB Rest (Node.js)

HTTP Console
HTTP Console Security

Simple REST Interface
JSON in the simple REST interface

See Also

REST Interfaces

Sleepy Mongoose (Python)

Sleepy Mongoose is a full featured REST interface for MongoDB which is available as a separate project.

MongoDB Rest (Node.js)

MongoDB Rest is an REST interface to MongoDB, which uses the .alpha MongoDB Node Native driver

HTTP Console

MongoDB provides a simple http interface listing information of interest to administrators. This interface may be accessed at the port with numeric
value 1000 more than the configured mongod port; the default port for the http interface is 28017. To access the http interface an administrator
may, for example, point a browser to if mongod is running with the default port on the local machine.http://localhost:28017

Here is a description of the informational elements of the http interface:

element description

db version database version information

git hash database version developer tag

sys info mongod compilation environment

dblocked indicates whether the primary mongod mutex is held

uptime time since this mongod instance was started

assertions any software assertions that have been raised by this mongod instance

replInfo information about replication configuration

currentOp most recent client request

databases number of databases that have been accessed by this mongod instance

curclient last database accessed by this mongod instance

Cursors describes outstanding client cursors

http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/
http://github.com/tdegrunt/mongodb-rest
http://github.com/christkv/node-mongodb-native
http://localhost:28017

master whether this mongod instance has been designated a master

slave whether this mongod instance has been designated a slave

initialSyncCompleted whether this slave or repl pair node has completed an initial clone of the mongod instance it is replicating

DBTOP Displays the total time the mongod instance has devoted to each listed collection, as well as the percentage of available
time devoted to each listed collection recently and the number of reads, writes, and total calls made recently

dt Timing information about the primary mongod mutex

HTTP Console Security

If security is configured for a mongod instance, authentication is required for a client to access the http interface from another machine.

Simple REST Interface

The mongod process includes a simple read-only REST interface for convenience. For full REST capabilities we recommend using an external
tool such as .Sleepy.Mongoose

Note: in v1.3.4+ of MongoDB, this interface is disabled by default. Use on the command line to enable.--rest

To get the contents of a collection (note the trailing slash):

http://127.0.0.1:28017/databaseName/collectionName/

To add a limit:

http://127.0.0.1:28017/databaseName/collectionName/?limit=-10

To skip:

http://127.0.0.1:28017/databaseName/collectionName/?skip=5

To query for {a : 1}:

http://127.0.0.1:28017/databaseName/collectionName/?filter_a=1

Separate conditions with an :&

http://127.0.0.1:28017/databaseName/collectionName/?filter_a=1&limit=-10

Same as on the "admin" database in the shell:db.$cmd.findOne({listDatabase:1})

http://localhost:28017/admin/$cmd/?filter_listDatabases=1&limit=1

JSON in the simple REST interface

The simple ReST interface uses strict JSON (as opposed to the shell, which uses Dates, regular expressions, etc.). To display non-JSON types,
the web interface wraps them in objects and uses the key for the type. For example:

ObjectIds just become strings
 : "_id" "4a8acf6e7fbadc242de5b4f3"

dates
 : { : 1250609897802 }"date" "$date"

regular expressions
 : { : , : }"match" "$regex" "foo" "$options" "ig"

http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/

The code type has not been implemented yet and causes the DB to crash if you try to display it in the browser.

See for details.Mongo Extended JSON

See Also

Replica Set Admin UI
Diagnostic Tools

mongostat

Use the mongostat utility to quickly view statistics on a running mongod instance.

Run for help.mongostat --help

Fields:
 inserts/s - # of inserts per second
 query/s - # of queries per second
 update/s - # of updates per second
 delete/s - # of deletes per second
 getmore/s - # of get mores (cursor batch) per second
 command/s - # of commands per second
 flushes/s - # of fsync flushes per second
 mapped - amount of data mmaped (total data size) megabytes
 vsize - virtual size of process in megabytes
 res - resident size of process in megabytes
 faults/s - # of pages faults/sec (linux only)
 locked - percent of time in global write lock
 idx miss - percent of btree page misses (sampled)
 q t|r|w - lock queue lengths (total|read|write)
 conn - number of open connections

mongosniff

Unix releases of MongoDB include a utility called mongosniff. This utility is to MongoDB what tcpdump is to TCP/IP; that is, fairly low level and for
complex situations. The tool is quite useful for authors of driver tools.

$./mongosniff --help
Usage: mongosniff [--help] [--forward host:port] [--source (NET < > | FILE <filename>)]interface
[<port0> <port1> ...]
--forward Forward all parsed request messages to mongod instance at
 specified host:port
--source Source of traffic to sniff, either a network or ainterface
 file containing perviously captured packets, in pcap format.
 If no source is specified, mongosniff will attempt to sniff
 from one of the machine's network interfaces.
<port0>... These parameters are used to filter sniffing. By , default
 only port 27017 is sniffed.
--help Print help message.this

Building

mongosniff is including in the binaries for Unix distributions. As mongosniff depends on libpcap, the MongoDB SConstruct only builds mongosniff
if libpcap is installed.

1.
2.
3.

sudo yum install libpcap-devel
scons mongosniff

Example

To monitor localhost:27017, run to find loopback's name (usually something like or). Then run:ifconfig lo lo0

mongosniff --source NET lo

If you get the error message "error opening device: socket: Operation not permitted" or "error finding device: no suitable device found", try running
it as root.

Backups

Fsync, Write Lock and Backup
Shutdown and Backup
Exports
Slave Backup
Community Stuff

Several strategies exist for backing up MongoDB databases. A word of warning: it's not safe to back up the mongod data files (by default in
/data/db/) while the database is running and writes are occurring; such a backup may turn out to be corrupt. See the fsync option below for a way
around that.

Fsync, Write Lock and Backup

MongoDB v1.3.1 and higher supports an with which we can flush writes, lock the database to prevent writing, and thenfsync and lock command
backup the datafiles.

While in this locked mode, all writes will block. If this is a problem consider one of the other methods below.

For example, you could use LVM2 to create a snapshot after the fsync+lock, and then use that snapshot to do an offsite backup in the
background. This means that the server will only be locked while the snapshot is taken. Don't forget to unlock after the backup/snapshot is taken.

Shutdown and Backup

A simple approach is just to stop the database, back up the data files, and resume. This is safe but of course requires downtime.

Exports

The utility may be used to dump an entire database, even when the database is running and active. The dump can then be restoredmongodump
later if needed.

Slave Backup

Another good technique for backups is replication to a slave database. The slave polls master continuously and thus always has a
nearly-up-to-date copy of master.

We then have several options for backing up the slave:

Fsync, write lock, and backup the slave.
Shut it down, backup, and restart.
Export from the slave.

For methods 1 and 2, after the backup the slave will resume replication, applying any changes made to master in the meantime.

Using a slave is advantageous because we then always have backup database machine ready in case master fails (failover). But a slave also
gives us the chance to back up the full data set without affecting the performance of the master database.

Community Stuff

http://github.com/micahwedemeyer/automongobackup

http://github.com/micahwedemeyer/automongobackup

How to do Snapshotted Queries in the Mongo Database

This document refers to query snapshots. For backup snapshots of the database's datafiles, .see the fsync lock page

MongoDB does not support full point-in-time snapshotting. However, some functionality is available which is detailed below.

Cursors

A MongoDB query returns data as well as a cursor ID for additional lookups, should more data exist. Drivers lazily perform a "getMore" operation
as needed on the cursor to get more data. Cursors may have latent getMore accesses that occurs after an intervening write operation on the
database collection (i.e., an insert, update, or delete).

Conceptually, a cursor has a current position. If you delete the item at the current position, the cursor automatically skips its current position
forward to the next item.

Mongo DB cursors do not provide a snapshot: if other write operations occur during the life of your cursor, it is unspecified if your application will
see the results of those operations. In fact, it is even possible (although unlikely) to see the same object returned twice if the object were updated
and grew in size (and thus moved in the datafile). To assure no update duplications, use snapshot() mode (see below).

Snapshot Mode

snapshot() mode assures that objects which update during the lifetime of a query are returned once and only once. This is most important when
doing a find-and-update loop that changes the size of documents that are returned ($inc does not change size).

> // mongo shell example
> cursor = db.myCollection.find({country:'uk'}).snapshot();var

Even with snapshot mode, items inserted or deleted during the query may or may not be returned; that is, this mode is not a true point-in-time
snapshot.

Because snapshot mode traverses the _id index, it may not be used with sorting or explicit hints. It also cannot use any other index for the query.

You can get the same effect as snapshot by using any unique index on a field(s) that will not be modified (probably best to use explicit hint() too).
If you want to use a non-unique index (such as creation time), you can make it unique by appending _id to the index at creation time.

Import Export Tools

mongoimport
Example: Importing Interesting Types

mongoexport
mongodump

Example: Dumping Everything
Example: Dumping a Single Collection
Example: Dumping a Single Collection to Stdout

mongorestore
bsondump

If you just want to do from one server to another you don't need these tools.Clone Database

These tool just work with the raw data (the documents in the collection); they do not save, or load, the metadata like the defined
indexes or (capped) collection properties. You will need to (re)create those yourself in a separate step, before loading that data.
Vote to change this.here

mongoimport

This utility takes a single file that contains 1 JSON/CSV/TSV string per line and inserts it. You have to specify a database and a collection.

http://jira.mongodb.org/browse/SERVER-808

options:
 --help produce help message
 -v [--verbose] be more verbose (include multiple times morefor
 verbosity e.g. -vvvvv)
 -h [--host] arg mongo host to connect to (pairs)"left,right" for
 -d [--db] arg database to use
 -c [--collection] arg collection to use (some commands)
 -u [--username] arg username
 -p [--password] arg password
 --dbpath arg directly access mongod data files in the given path,
 instead of connecting to a mongod instance - needs to
 lock the data directory, so cannot be used aif
 mongod is currently accessing the same path
 --directoryperdb dbpath specified, each db is in a separateif
 directory
 -f [--fields] arg comma seperated list of field names e.g. -f name,age
 --fieldFile arg file with fields names - 1 per line
 --ignoreBlanks given, empty fields in csv and tsv will be ignoredif
 --type arg type of file to . : json (json,csv,tsv)import default
 --file arg file to from; not specified stdin is usedimport if
 --drop drop collection first
 --headerline CSV,TSV only - use first line as headers

Example: Importing Interesting Types

MongoDB supports more types that JSON does, so it has a special format for representing as valid JSON. For example,some of these types
JSON has no date type. Thus, to import data containing dates, you structure your JSON like:

{ : 123456, : { : 1285679232000}}"somefield" "created_at" "$date"

Then will turn the value into a Date.mongoimport created_at

Note: the $-prefixed types must be enclosed in double quotes to be parsed correctly.

mongoexport

This utility takes a collection and exports to either JSON or CSV. You can specify a filter for the query, or a list of fields to output.

Neither JSON nor TSV/CSV can represent all data types. Please be careful not to lose or change data (types) when using this.
For full fidelity please use mongodump.

If you want to output CSV, you have to specify the fields in the order you want them.

Example

options:
 --help produce help message
 -v [--verbose] be more verbose (include multiple times morefor
 verbosity e.g. -vvvvv)
 -h [--host] arg mongo host to connect to (pairs)"left,right" for
 -d [--db] arg database to use
 -c [--collection] arg where 'arg' is the collection to use
 -u [--username] arg username
 -p [--password] arg password
 --dbpath arg directly access mongod data files in the given path,
 instead of connecting to a mongod instance - needs to
 lock the data directory, so cannot be used aif
 mongod is currently accessing the same path
 --directoryperdb dbpath specified, each db is in a separateif
 directory
 -q [--query] arg query filter, as a JSON string
 -f [--fields] arg comma seperated list of field names e.g. -f name,age
 --csv export to csv instead of json
 -o [--out] arg output file; not specified, stdout is usedif

mongodump

This takes a database and outputs it in a binary representation. This is mostly used for doing hot backups of a database.

If you're using sharding and try to migrate data this way, this will dump shard configuration information and overwrite
configurations upon restore.

options:
 --help produce help message
 -v [--verbose] be more verbose (include multiple times morefor
 verbosity e.g. -vvvvv)
 -h [--host] arg mongo host to connect to (pairs)"left,right" for
 -d [--db] arg database to use
 -c [--collection] arg collection to use (some commands)
 -u [--username] arg username
 -p [--password] arg password
 --dbpath arg directly access mongod data files in the given path,
 instead of connecting to a mongod instance - needs
 to lock the data directory, so cannot be used aif
 mongod is currently accessing the same path
 --directoryperdb dbpath specified, each db is in a separateif
 directory
 -o [--out] arg (=dump) output directory
 --query

Example: Dumping Everything

To dump all of the collections in all of the databases, run with just the :mongodump --host

$./mongodump --host prod.example.com
connected to: prod.example.com
all dbs
DATABASE: log to dump/log
 log.errors to dump/log/errors.bson
 713 objects
 log.analytics to dump/log/analytics.bson
 234810 objects
DATABASE: blog to dump/blog
 blog.posts to dump/log/blog.posts.bson
 59 objects
DATABASE: admin to dump/admin

You'll then have a folder called "dump" in your current directory.

If you're running locally on the default port, you can just do:mongod

$./mongodump

Example: Dumping a Single Collection

If we just want to dump a single collection, we can specify it and get a single .bson file.

$./mongodump --db blog --collection posts
connected to: 127.0.0.1
DATABASE: blog to dump/blog
 blog.posts to dump/blog/posts.bson
 59 objects

Example: Dumping a Single Collection to Stdout

In version 1.7.0+, you can use stdout instead of a file by specifying :--out stdout

$./mongodump --db blog --collection posts --out - > blogposts.bson

mongodump creates a file for each database collection, so we can only dump one collection at a time to stdout.

mongorestore

This takes the output from mongodump and restores it.

usage: ./mongorestore [options] [directory or filename to restore from]
options:
 --help produce help message
 -v [--verbose] be more verbose (include multiple times morefor
 verbosity e.g. -vvvvv)
 -h [--host] arg mongo host to connect to (pairs)"left,right" for
 -d [--db] arg database to use
 -c [--collection] arg collection to use (some commands)
 -u [--username] arg username
 -p [--password] arg password
 --dbpath arg directly access mongod data files in the given path,
 instead of connecting to a mongod instance - needs to
 lock the data directory, so cannot be used aif
 mongod is currently accessing the same path
 --directoryperdb dbpath specified, each db is in a separateif
 directory
 --drop drop each collection before import
 --objcheck validate object before inserting

bsondump

Added in 1.6

This takes a bson file and converts it to json/debug output.

usage: ./bsondump [options] [filename]
options:
 --help produce help message
 --type arg (=json) type of output: json,debug

Durability and Repair

Single Server Durability
Repair Command
Validate Command

 Command Line Option--syncdelay
See Also

Single Server Durability

The v1.8 release of MongoDB will have single server durability. You can follow the Jira here : .http://jira.mongodb.org/browse/SERVER-980

We recommend using replication to keep copies of data for now – and likely forever – as a single server could fail catastrophically regardless.

Repair Command

There is a bug with repair and replica sets in MongoDB v1.6.0. Please see this Jira for information:
. Do NOT run repair without reading this first. This bug applies to 1.6.0 only. Willhttp://jira.mongodb.org/browse/SERVER-1614

be fixed in 1.6.1. In the meantime there are workarounds.

After a machine crash or or termination, consider running the command. This command will check all data forkill -9 repairDatabase
corruption, remove any corruption found, and compact data files a bit.

In the event of a hard crash, we recommend running a repair – analogous to running . If a slave crashes, another option is just to restart thefsck
slave from scratch.

From the command line:

http://jira.mongodb.org/browse/SERVER-980
http://jira.mongodb.org/browse/SERVER-1614
http://en.wikipedia.org/wiki/Fsck

mongod --repair

From the shell (you have to do for all dbs including local if you go this route):

> db.repairDatabase();

During a repair operation, must store temporary files to disk. By default, creates temporary directories under the dbpath for thismongod mongod
purpose. Alternatively, the command line option can be used to specify a base directory for temporary repair files.--repairpath

Note that repair is a slow operation which inspects the entire database.

If the databases exited uncleanly and you attempt to restart the database, will print:mongod

old lock file: /data/db/mongod.lock. probably means unclean shutdown
recommend removing file and running --repair
see: http://dochub.mongodb.org/core/repair more informationfor

Then it will exit. After running with , will start up normally.--repair mongod

Validate Command

Alternatively one could restart and run the command on select tables. The command checks if the contents of a collection arevalidate validate
valid.

For example, here we validate the collection:users

> db.users.validate();
{
 : ,"ns" "test.users"
 : " validate"result"
 details: 0x1243dbbdc ofs:740bdc
 firstExtent:0:178b00 ns:test.users
 lastExtent:0:178b00 ns:test.users
 # extents:1
 datasize?:44 nrecords?:1 lastExtentSize:8192
 padding:1
 first extent:
 loc:0:178b00 xnext: xprev:null null
 nsdiag:test.users
 size:8192 firstRecord:0:178bb0 lastRecord:0:178bb0
 1 objects found, nobj:1
 60 bytes data w/headers
 44 bytes data wout/headers
 deletedList: 0000000010000000000
 deleted: n: 1 size: 7956
 nIndexes:2
 test.users.$_id_ keys:1
 test.users.$username_1 keys:1 ",
 : 1,"ok"
 : ,"valid" true
 : 8192"lastExtentSize"
}

--syncdelay Command Line Option

Since 1.1.4, the option controls how often changes are flushed to disk (the default is 60 seconds). If replication is not being used, it--syncdelay
may be desirable to reduce this default.

See Also

What About Durability? (MongoDB Blog)
 Commandfsync

MongoDB (Single-Server) Data Durability Guide

Security and Authentication

Running Without Security (Trusted Environment)

This is the default option and is recommended.

One valid way to run the Mongo database is in a trusted environment, with no security and authentication (much like how one would use, say,
memcached). Of course, in such a configuration, one must be sure only trusted machines can access database TCP ports.

The current versions of sharding and replica sets requires trusted (nonsecure) mode.

Mongo Security

The current version of Mongo supports only very basic security. One authenticates a username and password in the context of a particular
database. Once authenticated, a normal user has full read and write access to the database in question while a read only user only has read
access.

The database is special. In addition to several commands that are administrative being possible only on , authentication on admin admin admin
gives one read and write access to all databases on the server. Effectively, access means root access to the server process.admin

Run the database (process) with the option to enable security. You either have added a user to the db beforemongod --auth must admin
starting the server with , or add the first user from the localhost interface.--auth

Configuring Authentication and Security

Authentication is stored in each database's collection. For example, on a database projectx, willsystem.users projectx.system.users
contain user information.

We should first configure an administrator user for the entire db server process. This user is stored under the special database.admin

If no users are configured in , one may access the database from the localhost interface without authenticating. Thus,admin.system.users
from the server running the database (and thus on localhost), run the database shell and configure an administrative user:

$./mongo
> use admin
> db.addUser(,)"theadmin" "anadminpassword"

We now have a user created for database . Note that if we have not previously authenticated, we now must if we wish to perform furtheradmin
operations, as there is a user in .admin.system.users

> db.auth(,)"theadmin" "anadminpassword"

We can view existing users for the database with the command:

> db.system.users.find()

Now, let's configure a "regular" user for another database.

> use projectx
> db.addUser(,)"joe" "passwordForJoe"

Finally, let's add a readonly user. (only supported in 1.3.2+)

http://blog.mongodb.org/post/381927266/what-about-durability
http://www.thebuzzmedia.com/mongodb-single-server-data-durability-guide/

> use projectx
> db.addUser(, ,)"guest" "passwordForGuest" true

Changing Passwords

The shell command may also be used to update a password: if the user already exists, the password simply updates.addUser

Many Mongo drivers provide a helper function equivalent to the db shell's addUser method.

Deleting Users

To delete a user:

db.system.users.remove({ user: username })

Ports

You can also do ip level security. See for what ports MongoDB uses.Production Notes

Admin UIs

Several administrative user interfaces, or GUIs, are available for MongoDB. has a good summary of the tools.Tim Gourley's blog

Fang of Mongo
Futon4Mongo
Mongo3
MongoHub
MongoVUE
Mongui
Myngo
Opricot
PHPMoAdmin
RockMongo

The built-in replica set admin UI

Commercial Offerings

DatabaseMaster

Details

Fang of Mongo

A web-based user interface for MongoDB build with django and jquery.

http://blog.timgourley.com/post/453680012/tuesday-night-tech-mongodb-ui-edition
http://github.com/sbellity/futon4mongo
http://github.com/derailed/mongo3
http://poulh.github.com/
http://github.com/milancermak/myngo

It will allow you to explore content of mongodb with simple but (hopefully) pleasant user interface.

Features:

field name autocompletion in query builder
data loading indicator
human friendly collection stats
disabling collection windows when there is no collection selected
twitter stream plugin
many more minor usability fixes
works well on recent chrome and firefox

See it in action at: http://blueone.pl:8001/fangofmongo/
Get it from github: http://github.com/Fiedzia/Fang-of-Mongo
Or track progress on twitter: @fangofmongo

MongoHub

MongoHub is a native OS X GUI.

MongoVUE

MongoVUE is a .NET GUI for MongoDB.

http://blueone.pl:8001/fangofmongo/
http://github.com/Fiedzia/Fang-of-Mongo
http://www.twitter.com/fangofmongo
http://mongohub.todayclose.com/
http://blog.mongovue.com

Opricot

Opricot is a hybrid GUI/CLI/Scripting web frontend implemented in PHP to manage your MongoDB servers and databases. Use as a
point-and-click adventure for basic tasks, utilize scripting for automated processing or repetitive things.

Opricot combines the following components to create a fully featured administration tool:

An interactive console that allows you to either work with the database through the UI, or by using custom Javascript.
A set of simple commands that wrap the Javascript driver, and provide an easy way to complete the most common tasks.
Javascript driver for Mongo that works on the browser and talks with the AJAX interface.
Simple server-side AJAX interface for communicating with the MongoDB server (currently available for PHP).

PHPMoAdmin

http://www.icmfinland.fi/oss/opricot/

PHPMoAdmin is a MongoDB administration tool for PHP built on a stripped-down version of the Vork high-performance framework.

Nothing to configure - place the moadmin.php file anywhere on your web site and it just works!
Fast AJAX-based XHTML 1.1 interface operates consistently in every browser!
Self-contained in a single 95kb file!
Works on any version of PHP5 with the MongoDB NoSQL database installed & running.
Super flexible - search for exact-text, text with * wildcards, regex or JSON (with Mongo-operators enabled)
Option to enable password-protection for one or more users; to activate protection, just add the username-password(s) to the array at the
top of the file.
E_STRICT PHP code is formatted to the Zend Framework coding standards + fully-documented in the phpDocumentor DocBlock
standard.
Textareas can be resized by dragging/stretching the lower-right corner.
Free & open-source! Release under the GPLv3 FOSS license!
Option to query MongoDB using JSON or PHP-array syntax
Multiple design themes to choose from
Instructional error messages - phpMoAdmin can be used as a PHP-Mongo connection debugging tool

PHPMoAdmin can help you discover the source of connection issues between PHP and Mongo. Download , place the moadmin.phpphpMoAdmin
file in your web site document directory and navigate to it in a browser. One of two things will happen:

You will see an error message explaining why PHP and Mongo cannot connect and what you need to do to fix it
You will see a bunch of Mongo-related options, including a selection of databases (by default, the "admin" and "local" databases always
exist) - if this is the case your installation was successful and your problem is within the PHP code that you are using to access
MongoDB, troubleshoot that from the Mongo docs on php.net

RockMongo

RockMongo is a MongoDB management tool, written in PHP 5.

Main features:

easy to install, and open source
multiple hosts, and multiple administrators for one host
password protection
query dbs
advanced collection query tool
read, insert, update, duplicate and remove single row
query, create and drop indexes
clear collection
remove and change (only work in higher php_mongo version) criteria matched rows
view collection statistics

http://www.phpmoadmin.com/
http://www.phpMoAdmin.com
http://php.net/manual/en/book.mongo.php
http://code.google.com/p/rock-php/wiki/rock_mongo

Commercial Tools

Database Master

Database Master from Nucleon Software
Seems to be written in .net for windows (windows installer).
Features:

Tree view for dbs and collections
Create/Drop indexes
Server/DB stats
Support RDMBS (MySQL, postgres, ...)

Starting and Stopping Mongo

http://www.nucleonsoftware.com/

Starting Mongo
Default Data Directory, Default Port
Alternate Data Directory, Default Port
Alternate Port
Running as a Daemon

Stopping Mongo
Control-C
Sending shutdownServer() message from the mongo shell
Sending a Unix INT or TERM signal

Memory Usage

MongoDB is run as a standard program from the command line. Please see for more information on those options.Command Line Parameters

The following examples assume that you are in the directory where the Mongo executable is, and the Mongo executable is called .mongod

Starting Mongo

Default Data Directory, Default Port

To start Mongo in default mode, where data will be stored in the directory (or on Windows), and listening on port 27017,/data/db c:\data\db
just type

$./mongod

Alternate Data Directory, Default Port

To specify a directory for Mongo to store files, use the option:--dbpath

$./mongod --dbpath / /lib/mongodb/var

Note that you must create the directory and set its permissions appropriately ahead of time -- Mongo will not create the directory if it doesn't exist.

Alternate Port

You can specify a different port for Mongo to listen on for connections from clients using the option--port

$./mongod --port 12345

This is useful if you want to run more than one instance of Mongo on a machine (e.g., for running a master-slave pair).

Running as a Daemon

Note: these options are only available in MongoDB version 1.1 and later.

This will fork the Mongo server and redirect its output to a logfile. As with , you must create the log path yourself, Mongo will not create--dbpath
parent directories for you.

$./mongod --fork --logpath / /log/mongodb.log --logappendvar

Stopping Mongo

Control-C

If you have Mongo running in the foreground in a terminal, you can simply "Ctrl-C" the process. This will cause Mongo to do a clean exit, flushing
and closing it's data files. Note that it will wait until all ongoing operations are complete.

Sending shutdownServer() message from the mongo shell

The shell can request that the server terminate.

$./mongo
> db.shutdownServer()

This command only works from localhost, or, if one is authenticated.

From a driver (where the helper function may not exist), one can run the command

{ : 1 }"shutdown"

Sending a Unix INT or TERM signal

You can cleanly stop using a SIGINT or SIGTERM signal on Unix-like systems. Either ^C, " ," or will work.mongod kill -2 PID kill -15 PID

Sending a KILL signal will probably cause damage as will not be able to cleanly exit. (In such a scenario, runkill -9 mongod
the .)repairDatabase command

After a unclean shutdown, MongoDB will say it was not shutdown cleanly, and ask you to do a repair. This is absolutely not the
same as corruption, this is MongoDB saying it can't 100% verify what's going on, and to be paranoid, run a repair.

Memory Usage

Mongo uses memory mapped files to access data, which results in large numbers being displayed in tools like top for the mongod process. This is
not a concern, and is normal when using memory-mapped files. Basically, the size of mapped data is shown in the virtual size parameter, and
resident bytes shows how much data is being in RAM.cached

You can get a feel for the "inherent" memory footprint of Mongo by starting it fresh, with no connections, with an empty /data/db directory and
looking at the resident bytes.

Logging

MongoDB outputs some important information to stdout while its running. There are a number of things you can do to control this

Command Line Options

--quiet - less verbose output
-v - more verbose output. use more v's (such as -vvvvvv) for higher levels of verbosity
--logpath <file> output to file instead of stdout

if you use logpath, you can rotate the logs by either running the logRotate command (1.3.4+) or sending SIGUSR1

> db.runCommand();"logRotate"

shell> kill -SIGUSR1 <mongod process id>

Command Line Parameters

MongoDB can be configured via command line parameters in addition to . You can see the currently supported set ofFile Based Configuration
command line options by running the database with as a single parameter:-h [--help]

$./mongod --help

Information on usage of these parameters can be found in .Starting and Stopping Mongo

The following list of options is not complete; for the complete list see the usage information as described above.

Basic Options

-h | --help Shows all options

>-f | --config <file Specify a to useconfiguration file

--port <portno> Specifies the port number on which Mongo will listen for client connections. Default is 27017

--dbpath <path> Specifies the directory for datafiles. Default is or /data/db c:\data\db

--fork Fork the server process

--bind_ip <ip> Specifies a single IP that the database server will listen for

--directoryperdb Specify use of an alternative directory structure, in which files for each database are kept in a unique
directory. (since 1.3.2)

--quiet Reduces amount of log output

--nohttpinterface Disable the HTTP interface (localhost:27018)

--rest Allow extended operations at the Http Interface

--logpath <file> File to write logs to (instead of stdout). You can rotate the logs by sending SIGUSR1 to the server.

--logappend Append to existing log file, instead of overwritting

--repairpath <path> Root path for temporary files created during database repair. Default is value.dbpath

--cpu Enables periodic logging of CPU utilization and I/O wait

--noauth Turns off security. This is currently the default

--auth Turn on security

-v[v[v[v[v]]]] |
--verbose

Verbose logging output (is most verbose,)-vvvvv -v == --verbose

--objcheck Inspect all client data for validity on receipt (useful for developing drivers)

--quota Enable db quota management

--diaglog <n> Set oplogging level where n is 0=off (default) 1=W 2=R 3=both 7=W+some reads

--nocursors Diagnostic/debugging option

--nohints Ignore query hints

--noscripting Turns off server-side scripting. This will result in greatly limited functionality

--notablescan Turns off table scans. Any query that would do a table scan fails

--noprealloc Disable data file preallocation

--smallfiles Use a smaller default file size

--nssize <MB> Specifies .ns file size for new databases

--sysinfo Print system info as detected by Mongo and exit

--nounixsocket disable listening on unix sockets (will not create socket files at /tmp/mongodb-<port>.sock)

--upgrade Upgrade database files to new format if necessary
(required when upgrading from <= 1.0 to 1.1+)

Master/Slave Replication Options

--master Designate this server as a master in a master-slave setup

--slave Designate this server as a slave in a master-slave setup

--source <server:port> Specify the source (master) for a slave instance

--only <db> Slave only: specify a single database to replicate

--arbiter <server:port> Address of arbiter server

--autoresync Automatically resync if slave data is stale

--oplogSize <MB> Custom size for replication operation log

Replica Set Options

--replSet
<setname>[/<seedlist>]

Use replica sets with the specified logical set name. Typically the optional seed host list need not be
specified.

--oplogSize <MB> Custom size for replication operation log

File Based Configuration

In addition to accepting , MongoDB can also be configured using a configuration file. A configuration file to use can beCommand Line Parameters
specified using the or command line options. On some packaged installs of MongoDB (for example Ubuntu & Debian) the default-f --config
file can be found in /etc/mongodb.conf which is automatically used when starting and stopping MongoDB from the service.

The following example configuration file demonstrates the syntax to use:

This is an example config file MongoDB. for

dbpath = / /lib/mongodb var
bind_ip = 127.0.0.1
noauth = # use ' ' options that don't take an argumenttrue true for
verbose = # to disable, comment out. true

Parameters

Basic database configuration

Parameter Meaning Example

dbpath Location of the database files dbpath=/var/lib/mongodb

port Port the mongod will listen on port=27017

logpath Full filename path to where log messages will be written logpath=/var/log/mongodb/mongodb.log

logappend Whether the log file will be appended (TRUE) or over-written (FALSE) logappend=true

Logging

Parameter Meaning Example

cpu Enable periodic logging (TRUE) of CPU utilization and I/O wait cpu = true

verbose Verbose logging output verbose=true

Security

Parameter Meaning Example

noauth Turn authorization on/off. Off is currently the default noauth = true

auth Turn authorization on/off. Off is currently the default auth=false

Administration & Monitoring

Parameter Meaning Example

nohttpinterface Disable the HTTP interface. The default port is 1000 more than the dbport nohttpinterface = true

noscripting Turns off server-side scripting. This will result in greatly limited functionality noscripting = true

notablescan Turns off table scans. Any query that would do a table scan fails. notablescan = true

noprealloc Disable data file preallocation. noprealloc = true

nssize Specify .ns file size for new databases in MB nssize = 16

mms-token Account token for Mongo monitoring server. mms-token=mytoken

mms-name Server name for Mongo monitoring server. mms-name=monitor.example.com

mms-interval Ping interval for Mongo monitoring server in seconds. mms-interval=15

Replication

Parameter Meaning Example

master In replicated mongo databases, specify here whether this is a slave or master master = true

slave In replicated mongo databases, specify here whether this is a slave or master slave = true

source Specify the source = master.example.com

only Slave only: specify a single database to replicate only = master.example.com

pairwith Address of a server to pair with. pairwith = master.example.com:27017

arbiter Address of arbiter server arbiter = aribiter.example.com:27018

autoresync Automatically resync if slave data is stale autoresync

oplogSize Custom size for replication operation log in MB. oplogSize=100

opIdMem Size limit for in-memory storage of op ids in Bytes opIdMem=1000

Sharding

Parameter Meaning Example

shardsvr Indicates that this mongod will participate in sharding shardsvr=true

Notes

Lines starting with octothorpes (#) are comments
Options are case sensitive
The syntax is assignment of a value to an option name
All command line options are accepted

GridFS Tools

File Tools

mongofiles is a tool for manipulating from the command line.GridFS

Example:

$./mongofiles list
connected to: 127.0.0.1

$./mongofiles put libmongoclient.a
connected to: 127.0.0.1
done!

$./mongofiles list
connected to: 127.0.0.1
libmongoclient.a 12000964

$ cd /tmp/

$ ~/work/mon/mongofiles get libmongoclient.a

$ ~/work/mongo/mongofiles get libmongoclient.a
connected to: 127.0.0.1
done write to: libmongoclient.a

$ md5 libmongoclient.a
MD5 (libmongoclient.a) = 23a52d361cfa7bad98099c5bad50dc41

$ md5 ~/work/mongo/libmongoclient.a
MD5 (/Users/erh/work/mongo/libmongoclient.a) = 23a52d361cfa7bad98099c5bad50dc41

DBA Operations from the Shell

This page lists common DBA-class operations that one might perform from the .MongoDB shell

Note one may also create .js scripts to run in the shell for administrative purposes.

help show help
show dbs show database names
show collections show collections in current database
show users show users in current database
show profile show most recent system.profile entries with time >= 1ms
use <db name> set curent database to <db name>

db.addUser (username, password)
db.removeUser(username)

db.cloneDatabase(fromhost)
db.copyDatabase(fromdb, todb, fromhost)
db.createCollection(name, { size : ..., capped : ..., max : ... })

db.getName()
db.dropDatabase()
db.printCollectionStats()

db.currentOp() displays the current operation in the db
db.killOp() kills the current operation in the db

db.getProfilingLevel()
db.setProfilingLevel(level) 0=off 1=slow 2=all

db.getReplicationInfo()
db.printReplicationInfo()
db.printSlaveReplicationInfo()
db.repairDatabase()

db.version() current version of the server

db.shutdownServer()

Commands for manipulating and inspecting a collection:

db.foo.drop() drop the collection
db.foo.dropIndex(name)
db.foo.dropIndexes()
db.foo.getIndexes()
db.foo.ensureIndex(keypattern,options) - options object has these possible
 fields: name, unique, dropDups

db.foo.find([query] , [fields]) - first parameter is an optional
 query filter. second parameter
 is optional
 set of fields to .return
 e.g. db.foo.find(
 { x : 77 } ,
 { name : 1 , x : 1 })
db.foo.find(...).count()
db.foo.find(...).limit(n)
db.foo.find(...).skip(n)
db.foo.find(...).sort(...)
db.foo.findOne([query])

db.foo.getDB() get DB object associated with collection

db.foo.count()
db.foo.group({ key : ..., initial: ..., reduce : ...[, cond: ...] })

db.foo.renameCollection(newName) renames the collection

db.foo.stats()
db.foo.dataSize()
db.foo.storageSize() - includes free space allocated to collectionthis
db.foo.totalIndexSize() - size in bytes of all the indexes
db.foo.totalSize() - storage allocated all data and indexesfor
db.foo.validate() (slow)

db.foo.insert(obj)
db.foo.update(query, object[, upsert_bool])
db.foo.save(obj)
db.foo.remove(query) - remove objects matching query
 remove({}) will remove all

Architecture and Components

MongoDB has two primary components to the database server. The first is the mongod process which is the core database server. In many
cases, mongod may be used as a self-contained system similar to how one would use mysqld on a server. Separate mongod instances on
different machines (and data centers) can replicate from one to another.

Another MongoDB process, mongos, facilitates auto-sharding. mongos can be thought of as a "database router" to make a cluster of mongod
processes appear as a single database. See the documentation for more information.sharding

Database Caching

With relational databases, object caching is usually a separate facility (such as memcached), which makes sense as even a RAM page cache hit
is a fairly expensive operation with a relational database (joins may be required, and the data must be transformed into an object representation).
Further, memcached type solutions are more scaleable than a relational database.

Mongo eliminates the need (in some cases) for a separate object caching layer. Queries that result in file system RAM cache hits are very fast as
the object's representation in the database is very close to its representation in application memory. Also, the MongoDB can scale to any level
and provides an object cache and database integrated together, which is very helpful as there is no risk of retrieving stale data from the cache. In
addition, the complex queries a full DBMS provides are also possible.

Troubleshooting

Excessive Disk Space
Too Many Open Files

mongod process "disappeared"
See Also

mongod process "disappeared"

Scenario here is the log ending suddenly with no error or shutdown messages logged.

On Unix, check /var/log/messages:

$ grep mongod / /log/messagesvar
$ grep score / /log/messagesvar

See Also

Diagnostic Tools

Excessive Disk Space

You may notice that for a given set of data the MongoDB datafiles in /data/db are larger than the data set inserted into the database. There are
several reasons for this.

Preallocation

Each datafile is preallocated to a given size. (This is done to prevent file system fragmentation, among other reasons.) The first file for a
database is <dbname>.0, then <dbname>.1, etc. <dbname>.0 will be 64MB, <dbname>.1 128MB, etc., up to 2GB. Once the files reach 2GB in
size, each successive file is also 2GB.

Thus if the last datafile present is say, 1GB, that file might be 90% empty if it was recently reached.

Additionally, on Unix, mongod will preallocate an additional datafile in the background and do background initialization of this file. These files are
prefilled with zero bytes. This inititialization can take up to a minute (less on a fast disk subsystem) for larger datafiles; without prefilling in the
background this could result in significant delays when a new file must be prepopulated.

You can disable preallocation with the --noprealloc option to the server. This flag is nice for tests with small datasets where you drop the db after
each test. It shouldn't be used on production servers.

For large databases (hundreds of GB or more) this is of no signficant consequence as the unallocated space is small.

Deleted Space

MongoDB maintains deleted lists of space within the datafiles when objects or collections are deleted. This space is reused but never freed to the
operating system.

To compact this space, run db.repairDatabase() from the mongo shell (note this operation will block and is slow).

When testing and investigating the size of datafiles, if your data is just test data, use db.dropDatabase() to clear all datafiles and start fresh.

Checking Size of a Collection

Use the validate command to check the size of a collection -- that is from the shell run:

> db.<collectionname>.validate();

> // these are faster:
> db.<collectionname>.dataSize(); // just data size collectionfor
> db.<collectionname>.storageSize(); // allocation size including unused space
> db.<collectionname>.totalSize(); // data + index
> db.<collectionname>.totalIndexSize(); // index data size

This command returns info on the collection data but note there is also data allocated for associated indexes. These can be checked with validate
too, if one looks up the index's namespace name in the system.namespaces collection. For example:

> db.system.namespaces.find()
{ : }"name" "test.foo"
{ : }"name" "test.system.indexes"
{ : }"name" "test.foo.$_id_"
> > db.foo.$_id_.validate()
{ : , : ""ns" "test.foo.$_id_" "result"
validate
 details: 0xb3590b68 ofs:83fb68
 firstExtent:0:8100 ns:test.foo.$_id_
 lastExtent:0:8100 ns:test.foo.$_id_
 # extents:1
 datasize?:8192 nrecords?:1 lastExtentSize:131072
 padding:1
 first extent:
 loc:0:8100 xnext: xprev:null null
 ns:test.foo.$_id_
 size:131072 firstRecord:0:81b0 lastRecord:0:81b0
 1 objects found, nobj:1
 8208 bytes data w/headers
 8192 bytes data wout/headers
 deletedList: 0000000000001000000
 deleted: n: 1 size: 122688
 nIndexes:0

ok valid lastExtentSize" : 131072}" , " " : 1 , " " : , "true

Too Many Open Files

If you receive the error "too many open files" or "too many open connections" in the mongod log, there are a couple of possible reasons for this.

First, to check what file descriptors are in use, run lsof (some variations shown below):

lsof | grep mongod
lsof | grep mongod | grep TCP
lsof | grep mongod | grep data | wc

If most lines include "TCP", there are many open connections from client sockets. If most lines include the name of your data directory, the open
files are mostly datafiles.

ulimit

If the numbers from lsof look reasonable, check your ulimit settings. The default for file handles (often 1024) might be too low for production
usage. Run ulimit -a (or limit -a depending on shell) to check.

Use ulimit -n X to change the max number of file handles to X. If your OS is configured to not allow modifications to that setting you might need to
reconfigure first. On ubuntu you'll need to edit /etc/security/limits.conf and add a line something like the following (where user is the username and
X is the desired limit):

user hard nofile X

Upstart uses a for setting file descriptor limits - add something like this to your job file:different mechanism

limit nofile X

High TCP Connection Count

If lsof shows a large number of open TCP sockets, it could be that one or more clients is opening too many connections to the database. Check
that your client apps are using connection pooling.

http://upstart.ubuntu.com/wiki/Stanzas

Contributors
JS Benchmarking Harness
MongoDB kernel code development rules
Project Ideas
UI
Source Code
Building
Database Internals
Contributing to the Documentation

10gen Contributor Agreement

JS Benchmarking Harness

CODE:

db.foo.drop();
db.foo.insert({ _id : 1 })

ops = [
 { op : , ns : , query : { _id : 1 } }"findOne" "test.foo"
]

 (x = 1; x<=128; x*=2){for
 res = benchRun({ parallel : x ,
 seconds : 5 ,
 ops : ops
 })
 print(+ x + + res.query)"threads: " "\t queries/sec: "
}

More info:

http://github.com/mongodb/mongo/commit/3db3cb13dc1c522db8b59745d6c74b0967f1611c

MongoDB kernel code development rules

Coding conventions for the MongoDB C++ code...

Git Commit Rules
Kernel class rules
Kernel code style
Kernel concurrency rules
Kernel exception architecture
Kernel Logging
Kernel string manipulation
Writing Tests

Git Commit Rules

commit messages should have the case in the message SERVER-XXX
commit messages should be descriptive enough that a glance can tell the basics
commits should only include 1 thought.

Kernel class rules

new classes

By default, use constructorsexplicit
Inherit from boost::noncopyable unless you have implemented copy constructor and assignment.

non-publics

http://www.10gen.com/contributor
http://github.com/mongodb/mongo/commit/3db3cb13dc1c522db8b59745d6c74b0967f1611c

Put the public interface at the top and the private stuff at the bottom. Except when the compiler insists otherwise.

inheritance

No multiple inheritance.
Be very careful about adding the FIRST virtual function to a class as you then have a vtable entry for every object.
If anything is virtual, make your destructor virtual.

details on destructor guards? when and where?

Kernel code style

case
inlines
strings
brackets
class members
templates
namespaces
start of file
assertions

case

Use camelCase for

most varNames
--commandLineOptions
{ commandNames : 1 }

inlines

Put long inline functions in a file.-inl.h

If your inline function is a single line long, put it and its decl on the same line e.g.:

 length() { _length; }int const return

If a function is not performance sensitive, and it isn't one (or 2) lines long, put it in the cpp file.

strings

See

utils/mongoutils/str.h
bson/stringdata.h

Use , , not .str::startsWith() str::endsWith() strstr()

Use not .<< 'c' << "c"

Use not .str[0] == '\0' strlen(str) == 0

See .Kernel string manipulation

brackets

if (0) {
}

class members

class Foo {
 _bar;int
};

templates

set< > s;int

namespaces

namespace foo {
 foo;int
 namespace bar {
 bar;int
 }
}

start of file

// @file <filename>
license

assertions

See .Kernel exception architecture

Kernel concurrency rules

All concurrency code must be placed under . You will find several helper libraries there.utils/concurrency

Several rules are listed below. Don't break them. If you think there is a real need let's have the group weigh in and get a concensus on the
exception.

Do not use/add recursive locks.
Do not use rwlocks.
Always acquire locks in a consistent order. In fact, the MutexDebugger can assist with verification of this. MutexDebugger is on for
_DEBUG builds and will alert if locks are taken in opposing orders during the run.

Kernel exception architecture

There are several different types of assertions used in the MongoDB code. In brief:

assert should be used for internal assertions. However, massert is preferred.
massert is an internal assertion with a message.
uassert is used for a user error
wassert warn (log) and continue

Both and take error codes, so that all errors have codes associated with them. These are assigned randomly, somassert uassert error codes
there aren't segments that have meaning. scons checks for duplicates, but if you want the next available code you can run:

python buildscripts/errorcodes.py

A failed assertion throws an or a child of that. The inheritance hierarchy is something like:AssertionException

std::exception
mongo::DBException

mongo::AssertionException
mongo::UserAssertionException
mongo::MsgAssertionException

See .util/assert_util.h

Generally, code in the server should be prepared to catch a DBException. UserAssertionException's are particularly common as errors and
should be expected. We use heavily.resource acquisition is initialization

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

1.
2.
3.
4.
5.

Kernel Logging

Basic Rules
cout/cerr should never be used

Normal Logging

log(x)int

debugging with levels of verbosity

log()

informational

warning()

warnings

error()

errors

Debugging Helpers
PRINT = prints variable name and (string)
GEODEBUG, etc... = used for incredibly verbose logging for a section of code that has to be turned on at compile time

Kernel string manipulation

For string manipulation, use the library.util/mongoutils/str.h

mongoutils

MongoUtils has its own namespace. Its code has these basic properties:

are not database specific, rather, true utilities
are cross platform
may require boost headers, but not libs (header-only works with mongoutils)
are clean and easy to use in any c++ project without pulling in lots of other stuff
apache license

str.h

mongoutils/str.h provides string helper fucntions for each manipulation. Add new functions here rather than lines and lines of code to your
app that are not generic.

Typically these fucntions return a string and take two as paramters : string f(string,string). Thus we wrap them all in a namespace called .str

StringData

See also .bson/stringdata.h

Writing Tests

We have three general flavors of tests currently.

Lightweight startup test.

You can inherit from class and make a test that runs at program startup. These tests run EVERY TIME the program starts. Thus, theyUnitTest
should be minimal: the test should ideally take 1ms or less to run. Why run the tests in the general program? This gives some validation at
program run time that the build is reasonable. For example, we test that pcre supports UTF8 regex in one of these tests at startup. If someone
had built the server with other settings, this would be flagged upon execution, even if the test suite has not been invoked.

dbtests

jstests

See Also

Smoke Tests

Project Ideas

If you're interested in getting involved in the MongoDB community (or the open source community in general) a great way to do so is by starting or
contributing to a MongoDB related project. Here we've listed some project ideas for you to get started on. For some of these ideas projects are
already underway, and for others nothing (that we know of) has been started yet.

A GUI

One feature that is often requested for MongoDB is a GUI, much like CouchDB's futon or phpMyAdmin. There are a couple of projects working on
this sort of thing that are worth checking out:

http://github.com/sbellity/futon4mongo
http://www.mongodb.org/display/DOCS/Http+Interface
http://www.mongohq.com

We've also started to the features that a tool like this should provide.spec out

Try Mongo!

It would be neat to have a web version of the MongoDB Shell that allowed users to interact with a real MongoDB instance (for doing the tutorial,
etc). A project that does something similar (using a basic MongoDB emulator) is here:

http://github.com/banker/mongulator

Real-time Full Text Search Integration

It would be interesting to try to nicely integrate a search backend like Xapian, Lucene or Sphinx with MongoDB. One idea would be to use
MongoDB's oplog (which is used for master-slave replication) to keep the search engine up to date.

GridFS FUSE

There is a project working towards creating a FUSE filesystem on top of GridFS - something like this would create a bunch of interesting potential
uses for MongoDB and GridFS:

http://github.com/mikejs/gridfs-fuse

GridFS Web Server Modules

There are a couple of modules for different web servers designed to allow serving content directly from GridFS:

Nginx: http://github.com/mdirolf/nginx-gridfs
Lighttpd: http://bitbucket.org/bwmcadams/lighttpd-gridfs

Framework Adaptors

Working towards adding MongoDB support to major web frameworks is a great project, and work has been started on this for a variety of different
frameworks (please use google to find out if work has already been started for your favorite framework).

Logging and Session Adaptors

MongoDB works great for storing logs and session information. There are a couple of projects working on supporting this use case directly.

Logging:
Zend: http://raphaelstolt.blogspot.com/2009/09/logging-to-mongodb-and-accessing-log.html
Python: http://github.com/andreisavu/mongodb-log
Rails: http://github.com/peburrows/mongo_db_logger

Sessions:
web.py: http://github.com/whilefalse/webpy-mongodb-sessions
Beaker: http://pypi.python.org/pypi/mongodb_beaker

http://github.com/sbellity/futon4mongo
http://www.mongohq.com
http://github.com/banker/mongulator
http://github.com/mikejs/gridfs-fuse
http://github.com/mdirolf/nginx-gridfs
http://bitbucket.org/bwmcadams/lighttpd-gridfs
http://raphaelstolt.blogspot.com/2009/09/logging-to-mongodb-and-accessing-log.html
http://github.com/andreisavu/mongodb-log
http://github.com/peburrows/mongo_db_logger
http://github.com/whilefalse/webpy-mongodb-sessions
http://pypi.python.org/pypi/mongodb_beaker

Package Managers

Add support for installing MongoDB with your favorite package manager and let us know!

Locale-aware collation / sorting

MongoDB doesn't yet know how to sort query results in a locale-sensitive way. If you can think up a good way to do it and implement it, we'd like
to know!

Drivers

If you use an esoteric/new/awesome programming language write a driver to support MongoDB! Again, check google to see what people have
started for various languages.

Some that might be nice:

Scheme (probably starting with PLT)
GNU R
Visual Basic
Lisp (e.g, Common Lisp)
Delphi
Falcon

Write a killer app that uses MongoDB as the persistance layer!

UI

Spec/requirements for a future MongoDB admin UI.

list databases
repair, drop, clone?

collections
validate(), datasize, indexsize, clone/copy

indexes
queries - explain() output
security: view users, adjust
see replication status of slave and master
sharding
system.profile viewer ; enable disable profiling
curop / killop support

Source Code

All source for MongoDB, it's drivers, and tools is open source and hosted at .Github

Mongo Database (includes C++ driver)
Python Driver
PHP Driver
Ruby Driver
Java Driver
Perl Driver

(Additionally, community drivers and tools also exist and will be found in other places.)

See Also

Building
License

Building

This section provides instructions on setting up your environment to write Mongo drivers or other infrastructure code. For specific instructions, go
to the document that corresponds to your setup.

Note: see the page for prebuilt binaries!Downloads

Sub-sections of this section:

http://github.com/mongodb
http://github.com/mongodb/mongo/tree/master
http://github.com/mongodb/mongo-python-driver/tree/master
http://github.com/mongodb/mongo-php-driver/tree/master
http://github.com/mongodb/mongo-ruby-driver/tree/master
http://github.com/mongodb/mongo-java-driver/tree/master
http://github.com/mongodb/mongo-perl-driver/tree/master

1.
2.

3.

4.

Building Boost
Building for FreeBSD
Building for Linux
Building for OS X
Building for Solaris
Building for Windows
Building Spider Monkey
scons

See Also

The main pageDatabase Internals
Building with V8

Building Boost

Windows

MongoDB uses the C++ libraries.[www.boost.org]

Windows

See also the page.prebuilt libraries

By default c:\boost\ is checked for the boost files. Include files should be under \boost\boost, and libraries in \boost\lib.

First download the . Then use the utility to extra the files. Place the extracted files in C:\boost.boost source 7 Zip

Then we will compile the required libraries.

See buildscripts/buildboost.bat and buildscripts/buildboost64.bat for some helpers.

> rem set PATH compiler:for
> "C:\Program Files (x86)\Microsoft Visual Studio 10.0\VC\vcvarsall.bat"
>
> rem build the bjam make tool:
> cd \boost\tools\jam\src\
> build.bat
>
> cd \boost
> tools\jam\src\bin.ntx86\bjam --help
> rem see also mongo/buildscripts/buildboost*.bat
> rem build DEBUG libraries:
> tools\jam\src\bin.ntx86\bjam variant=debug threading=multi --with-program_options --with-filesystem
--with-date_time --with-thread
> mkdir lib
> move stage\lib* lib\

Building for FreeBSD

On FreeBSD 8.0 and later, there is a mongodb port you can use.

For FreeBSD <= 7.2:

Get the database source: .http://www.github.com/mongodb/mongo
Update your ports tree:

$ sudo portsnap fetch && portsnap extract

The packages that come by default on 7.2 and older are too old, you'll get weird errors when you try to run the database)
Install SpiderMonkey:

$ cd /usr/ports/lang/spidermonkey && make && make install

Install scons:

http://www.howsthe.com/blog/2010/feb/22/mongodb-and-v8/
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://sourceforge.net/projects/boost/files/boost/1.42.0/boost_1_42_0.7z/download
http://www.7-zip.org/
http://www.github.com/mongodb/mongo

4.

5.

6.

7.
8.

1.
2.

3.

4.

$ cd /usr/ports/devel/scons && make && make install

Install boost: (it will pop up an X "GUI", select)PYTHON

$ cd /usr/ports/devel/boost-all && make && make install

Install libexecinfo:

$ cd /usr/ports/devel/libexecinfo && make && make install

Change to the database source directory
scons .

See Also

Building for Linux - many of the details there including how to clone from git apply here too.

Building for Linux

General Instructions
Special Notes about Spider Monkey
Package Requirements

Fedora
Fedora 8 or 10
Ubuntu
Ubuntu 8.04
Ubuntu 9.04 and 9.10
Ubuntu 10.04

See Also

General Instructions

Install Dependencies - see platform specific below
get source

git clone git://github.com/mongodb/mongo.git
pick a stable version unless doing devtrue
git tag -l
Switch to a stable branch (unless doing development) --
an even second number indicates . (Although with"stable"
stharding you will want the latest the latest is lessif
than 1.6.0.) For example:
git checkout r1.4.1

build

scons all

install

scons --prefix=/opt/mongo install

Special Notes about Spider Monkey

Most pre-built spider monkey binaries don't have UTF8 compiled in. Additionally, ubuntu has a weird version of spider monkey that doesn't
support everything we use. If you get any warnings during compile time or runtime, we highly recommend building spider monkey from source.
See for more information.Building Spider Monkey

We currently support spider monkey 1.6 and 1.7, although there is some degredation with 1.6, so we recommend using 1.7. We have not yet
tested 1.8, but will once it is officially released.

1.
2.

Package Requirements

Fedora

Fedora 8 or 10

sudo yum -y install git tcsh scons gcc-c++ glibc-devel
sudo yum -y install boost-devel pcre-devel js-devel readline-devel
release builds:for
sudo yum -y install boost-devel- readline- ncurses-static static static

Ubuntu

See spider monkey note above.

Ubuntu 8.04

apt-get -y install tcsh git-core scons g++
apt-get -y install libpcre++-dev libboost-dev libreadline-dev xulrunner-1.9-dev
apt-get -y install libboost-program-options-dev libboost-thread-dev libboost-filesystem-dev
libboost-date-time-dev

Ubuntu 9.04 and 9.10

apt-get -y install tcsh git-core scons g++
apt-get -y install libpcre++-dev libboost-dev libreadline-dev xulrunner-1.9.1-dev
apt-get -y install libboost-program-options-dev libboost-thread-dev libboost-filesystem-dev
libboost-date-time-dev

Ubuntu 10.04

apt-get -y install tcsh git-core scons g++
apt-get -y install libpcre++-dev libboost-dev libreadline-dev xulrunner-dev
apt-get -y install libboost-program-options-dev libboost-thread-dev libboost-filesystem-dev
libboost-date-time-dev

See Also

The page for setup information for other operating systemsBuilding
The main pageDatabase Internals

Building for OS X

Upgrading to Snow Leopard
Setup

Package Manager Setup (32bit)
Manual Setup

Install Apple developer tools
Install libraries (32bit option)
Install libraries (64bit option)

Compiling
XCode
Troubleshooting

To set up your OS X computer for MongoDB development:

Upgrading to Snow Leopard

If you have installed Snow Leopard, the builds will be 64 bit -- so if moving from a previous OS release, a bit more setup may be required than
one might first expect.

Install XCode tools for Snow Leopard.

http://developer.apple.com/technology/xcode.html

2.

3.
4.

1.

1.

1.

1.

2.

Install MacPorts (snow leopard version). If you have MacPorts installed previously, we've had the most success by running rm -rf
 first./opt/local

Update/install packages: .sudo port install boost pcre
Update/install SpiderMonkey with . (If this fails, see the note on #2 above.)sudo port install spidermonkey

Setup

Install git. If not already installed, download the source and run ./configure; make; sudo make install
Then: git clone git://github.com/mongodb/mongo.git ()more info
Then: git tag -l to see tagged version numbers
Switch to a stable branch (unless doing development) -- an even second number indicates "stable". (Although with stharding you
will want the latest if the latest is less than 1.6.0.) For example:

git checkout r1.4.1
If you do not wish to install git you can instead get the source code from the page.Downloads

Install gcc.
gcc version 4.0.1 (from XCode Tools install) works, but you will receive compiler warnings. The easiest way to upgrade gcc is to install
the iPhone SDK.

Package Manager Setup (32bit)

Install libraries (using macports)

port install boost pcre++ spidermonkey

Manual Setup

Install Apple developer tools

Install libraries (32bit option)

Download boost {{boost 1.37.0 }}Apply the following patch:http://downloads.sourceforge.net/boost/boost_1_37_0.tar.gz

diff -u -r a/configure b/configure
--- a/configure 2009-01-26 14:10:42.000000000 -0500
+++ b/configure 2009-01-26 10:21:29.000000000 -0500
@@ -9,9 +9,9 @@

 BJAM=""
 TOOLSET=""
-BJAM_CONFIG=""
+BJAM_CONFIG="--layout=system"
 BUILD=""
 PREFIX=/usr/local
 EPREFIX=
diff -u -r a/tools/build/v2/tools/darwin.jam b/tools/build/v2/tools/darwin.jam
--- a/tools/build/v2/tools/darwin.jam 2009-01-26 14:22:08.000000000 -0500
+++ b/tools/build/v2/tools/darwin.jam 2009-01-26 10:22:08.000000000 -0500
@@ -367,5 +367,5 @@

 actions link.dll bind LIBRARIES
 {
- -dynamiclib -Wl,-single_module -install_name -L"$(CONFIG_COMMAND)" "$(<:B)$(<:S)"

 -o -l$(FINDLIBS-SA) -l$(FINDLIBS-ST)"$(LINKPATH)" "$(<)" "$(>)" "$(LIBRARIES)"
$(FRAMEWORK_PATH) -framework$(_)$(FRAMEWORK:D=:S=) $(OPTIONS) $(USER_OPTIONS)
+ -dynamiclib -Wl,-single_module -install_name "$(CONFIG_COMMAND)"

 -L -o -l$(FINDLIBS-SA)"/usr/local/lib/$(<:B)$(<:S)" "$(LINKPATH)" "$(<)" "$(>)" "$(LIBRARIES)"
-l$(FINDLIBS-ST) $(FRAMEWORK_PATH) -framework$(_)$(FRAMEWORK:D=:S=) $(OPTIONS) $(USER_OPTIONS)
 }

then,

./configure; make; sudo make install

Install (must enable UTF8)pcre http://www.pcre.org/

http://www.macports.org/install.php
http://github.com/mongodb/mongo
http://downloads.sourceforge.net/boost/boost_1_37_0.tar.gz
http://www.pcre.org/

2.

3.

1.

./configure --enable-utf8 --enable-unicode-properties --with-match-limit=200000
--with-match-limit-recursion=4000; make; sudo make install

Install c++ unit test framework (optional)http://unittest.red-bean.com/

./configure; make; sudo make install

Install libraries (64bit option)

(The 64bit libraries will be installed in /usr/64/{include,lib}.)

Download SpiderMonkey: ftp://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz

Apply the following patch:

diff -u -r js/src/config/Darwin.mk js-1.7.0/src/config/Darwin.mk
--- js/src/config/Darwin.mk 2007-02-05 11:24:49.000000000 -0500
+++ js-1.7.0/src/config/Darwin.mk 2009-05-11 10:18:37.000000000 -0400
@@ -43,7 +43,7 @@
 # Just ripped from Linux config
 #

-CC = cc
+CC = cc -m64
 CCC = g++
 CFLAGS += -Wall -Wno-format
 OS_CFLAGS = -DXP_UNIX -DSVR4 -DSYSV -D_BSD_SOURCE -DPOSIX_SOURCE -DDARWIN
@@ -56,9 +56,9 @@
 #.c.o:
 # $(CC) -c -MD $*.d $(CFLAGS) $<

-CPU_ARCH = $(shell uname -m)
+CPU_ARCH = "X86_64"
 ifeq (86,$(findstring 86,$(CPU_ARCH)))
-CPU_ARCH = x86
+CPU_ARCH = x86_64
 OS_CFLAGS+= -DX86_LINUX
 endif
 GFX_ARCH = x
@@ -81,3 +81,14 @@
 # Don't allow Makefile.ref to use libmath
 NO_LIBM = 1

+ifeq ($(CPU_ARCH),x86_64)
+# Use VA_COPY() standard macro on x86-64
+# FIXME: better use it everywhere
+OS_CFLAGS += -DHAVE_VA_COPY -DVA_COPY=va_copy
+endif
+
+ifeq ($(CPU_ARCH),x86_64)
+# We need PIC code shared librariesfor
+# FIXME: better patch rules.mk & fdlibm/Makefile*
+OS_CFLAGS += -DPIC -fPIC
+endif

compile and install

cd src
make -f Makefile.ref
sudo JS_DIST=/usr/64 make -f Makefile.ref export

remove the dynamic library

http://unittest.red-bean.com/
ftp://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz

sudo rm /usr/64/lib64/libjs.dylib

Download boost {{boost 1.37.0 }}Apply the following patch:http://downloads.sourceforge.net/boost/boost_1_37_0.tar.gz

diff -u -r a/configure b/configure
--- a/configure 2009-01-26 14:10:42.000000000 -0500
+++ b/configure 2009-01-26 10:21:29.000000000 -0500
@@ -9,9 +9,9 @@

 BJAM=""
 TOOLSET=""
-BJAM_CONFIG=""
+BJAM_CONFIG="architecture=x86 address-model=64 --layout=system"
 BUILD=""
-PREFIX=/usr/local
+PREFIX=/usr/64
 EPREFIX=
 LIBDIR=
 INCLUDEDIR=
diff -u -r a/tools/build/v2/tools/darwin.jam b/tools/build/v2/tools/darwin.jam
--- a/tools/build/v2/tools/darwin.jam 2009-01-26 14:22:08.000000000 -0500
+++ b/tools/build/v2/tools/darwin.jam 2009-01-26 10:22:08.000000000 -0500
@@ -367,5 +367,5 @@

 actions link.dll bind LIBRARIES
 {
- -dynamiclib -Wl,-single_module -install_name -L"$(CONFIG_COMMAND)" "$(<:B)$(<:S)" "$(LINKPATH)"
-o -l$(FINDLIBS-SA) -l$(FINDLIBS-ST) $(FRAMEWORK_PATH)"$(<)" "$(>)" "$(LIBRARIES)"
-framework$(_)$(FRAMEWORK:D=:S=) $(OPTIONS) $(USER_OPTIONS)
+ -dynamiclib -Wl,-single_module -install_name -L"$(CONFIG_COMMAND)" "/usr/64/lib/$(<:B)$(<:S)"

 -o -l$(FINDLIBS-SA) -l$(FINDLIBS-ST) $(FRAMEWORK_PATH)"$(LINKPATH)" "$(<)" "$(>)" "$(LIBRARIES)"
-framework$(_)$(FRAMEWORK:D=:S=) $(OPTIONS) $(USER_OPTIONS)
 }

then,

./configure; make; sudo make install

Install (must enable UTF8)pcre http://www.pcre.org/

CFLAGS= CXXFLAGS= LDFLAGS= ./configure --enable-utf8 --with-match-limit=200000"-m64" "-m64" "-m64"
--with-match-limit-recursion=4000 --enable-unicode-properties --prefix /usr/64; make; sudo make
install

Install unit test framework (optional)http://unittest.red-bean.com/

CFLAGS= CXXFLAGS= LDFLAGS= ./configure --prefix /usr/64; make; sudo make install"-m64" "-m64" "-m64"

Compiling

To compile 32bit, just run

scons

To compile 64bit on 10.5 (64 is default on 10.6), run

scons --64

http://downloads.sourceforge.net/boost/boost_1_37_0.tar.gz
http://www.pcre.org/
http://unittest.red-bean.com/

1.
2.

3.
4.
5.
6.

XCode

You can open the project with:

$ open mongo.xcodeproj/

You need to add an executable target.:

In the mongo project window, go to the , right click and choose -> .Executables Add NewCustomExecutable
Name it . Path is .db ./db/db
It will appear under ".Executables
Double-click on it.
Under , set the working directory to the project directory.general
Under , add .arguments run
Go to , go to and turn off .general prefs (cmd ,) debugging lazy load
(Seems to be an issue that prevents breakpoints from working in debugger?)

Troubleshooting

Undefined symbols: "_PR_NewLock", referenced from: _JS_Init in libjs.a.
Try not using the scons option (if you are using it). That option attempts to use static libraries.--release

Building for Solaris

MongoDB server currently supports little endian Solaris operation. (Although most drivers – not the database server – work on both.)

Community: Help us make this rough page better please! (And help us add support for big endian please...)

Prerequisites:

g++ 4.x (SUNWgcc)
scons (need to install from source)
spider monkey Building Spider Monkey
pcre (SUNWpcre)
boost (need to install from source)

See Also

Joyent
Building for Linux - many of the details there including how to clone from git apply here too

Building for Windows

MongoDB can be compiled for Windows (32 and 64 bit) using Visual C++. is the make mechanism, although a .vcproj/.sln is also includedSCons
in the project for convenience when using the Visual Studio IDE.

There are several dependencies exist which are listed below; you may find it easier to simply .download a pre-built binary

Building with Visual Studio 2008
Building with Visual Studio 2010
Building the Shell

See Also

Prebuilt Boost Libraries
Prebuilt SpiderMonkey for VS2010
Building Boost
Building SpiderMonkey
Windows Quick Links
scons

Boost 1.41.0 Visual Studio 2010 Binary

This is OLD and was for the VS2010 BETA. See the new page instead.Boost and Windows

http://www.scons.org/
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://github.com/dwight/vc2010_js

The following is a prebuilt binary (libraries) for Visual Studio 2010 .boost beta 2

The MongoDB vcxproj files assume this package is unzipped under c:\Program Files\boost\boost_1_41_0\.

http://downloads.mongodb.org/misc/boost_1_41_0_binary_vs10beta2.zipx

Note: we're not boost build gurus please let us know if there are things wrong with the build.

See also the prebuilt boost binaries at .http://www.boostpro.com/download

Boost and Windows

Visual Studio 2010
Prebuilt from mongodb.org
Building Yourself

Visual Studio 2008
Prebuilt from mongodb.org
Prebuilt from boostpro.com
Building Yourself

Additional Notes

Visual Studio 2010

Prebuilt from mongodb.org

Click here for a prebuilt boost library for Visual Studio 2010. format.7zip

Building Yourself

Download the boost source from boost.org. Move it to C:\boost\.
Run .C:\Program Files (x86)\Microsoft Visual Studio 10.0\vc\vcvarsall.bat
From the MongoDB source project, run buildscripts\buildboost.bat. Or, buildboost64.bat for the 64 bit version.
We have successfully compiled version 1.42 – you might want to try that version or higher. See additional notes section at end of this
page too.

Visual Studio 2008

Prebuilt from mongodb.org

Click here for a prebuilt boost library for Visual Studio 2008. format. This file has what you need to build MongoDB, but not some other boost7zip
libs, so it's partial.

Prebuilt from boostpro.com

Or, you can download a complete prebuilt boost library for 32 bit VS2008 at . Install the prebuilt libraries forhttp://www.boostpro.com/products/free
Boost version 1.35.0 (or higher - generally newer is better). During installation, for release builds choose static multithread libraries

. The Debug version of the project uses the DLL libraries; choose all multithread libraries if you plan to do development. for installation
From the BoostPro installer, be sure to select all relevant libraries that mongodb uses -- for example, you need Filesystem, Regex, Threads, and
ProgramOptions (and perhaps others).

Building Yourself

Download the boost source from boost.org. Move it to C:\boost\.
From the Visual Studio 2008 IDE, choose Tools.Visual Studio Command Prompt to get a command prompt with all PATH variables set
nicely for the C++ compiler.
From the MongoDB source project, run buildscripts\buildboost.bat. Or, buildboost64.bat for the 64 bit version.

Additional Notes

When using bjam, MongoDB expects

variant=debug for debug builds, and for release buildsvariant=release
threading=multi
link=static runtime-link=static for release builds
address-model=64 for 64 bit

Building the Mongo Shell on Windows

You can build the mongo shell with either scons or a Visual Studio 2010 project file.

http://www.boost.org/
http://downloads.mongodb.org/misc/boost_1_41_0_binary_vs10beta2.zipx
http://www.boostpro.com/download
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://www.boostpro.com/products/free

Scons

scons mongo

Visual Studio 2010 Project File

A VS2010 vcxproj file is availabe for building the shell. From the mongo directory open shell/msvc/mongo.vcxproj.

The project file assumes that GNU readline is installed in ../readline/ relative to the mongo project. If you would prefer to build without having to
install readline, remove the definition of USE_READLINE in the preprocessor definitions section of the project file, and exclude readline.lib from
the project.

The project file currently only supports 32 bit builds of the shell (scons can do 32 and 64 bit). However this seems sufficient given there is no real
need for a 64 bit version of the shell.

Readline Library

The shell uses the to facilitate command line editing and history. You can build the shell without readline but would then loseGNU readline library
that functionality. USE_READLINE is defined when building with readline. SCons will look for readline and if not found build without it.

See Also

Prebuilt readline for Windows 32 bit at SourceForge (DLL version)

Building with Visual Studio 2008

Get the MongoDB Source Code
Get Boost Libraries
Get SpiderMonkey
Building MongoDB from the IDE
Install SCons
Building MongoDB with SCons
Troubleshooting

MongoDB can be compiled for Windows (32 and 64 bit) using Visual C++. is the make mechanism, although a solution file is also includedSCons
in the project for convenience when using the Visual Studio IDE.

There are several dependencies exist which are listed below; you may find it easier to simply .download a pre-built binary

Get the MongoDB Source Code

Download the source code from .Downloads

Or install . Then:Git

git clone git://github.com/mongodb/mongo.git ()more info
git tag -l to see tagged version numbers
Switch to a stable branch (unless doing development) -- an even second number indicates "stable". (Although with sharding you will want
the latest if the latest is less than 1.6.0.) For example:

git checkout r1.4.1

Get Boost Libraries

Click here for a prebuilt boost library for Visual Studio. format. This file has what you need to build MongoDB, but not some other7zip
boost libs, so it's partial.
See the page for other options.Boost and Windows

The Visual Studio project files are setup to look for boost in the following locations:

c:\program files\boost\latest
c:\boost
\boost

You can unzip boost to c:\boost, or use an to create a junction point to one of the above locations. Some versions of windowsNTFS junction point
come with linkd.exe, but others require you to download to accomplish this task. For example, if you installed boost 1.42Sysinternal's junction.exe
via the installer to the default location of , You can create a junction point with the following command:c:\Program Files\boost\boost_1_42

http://tiswww.case.edu/php/chet/readline/rltop.html
http://gnuwin32.sourceforge.net/packages/readline.htm
http://www.scons.org/
http://github.com/guides/using-git-and-github-for-the-windows-for-newbies
http://github.com/mongodb/mongo
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://en.wikipedia.org/wiki/NTFS_junction_point
http://technet.microsoft.com/en-us/sysinternals/bb896768.aspx

junction "c:\Program Files\boost\latest" "c:\Program Files\boost\boost_1_42"

This should return the following output:

Junction v1.05 - Windows junction creator and reparse point viewer
Copyright (C) 2000-2007 Mark Russinovich
Systems Internals - http://www.sysinternals.com

Created: c:\Program Files\boost\latest
Targetted at: c:\Program Files\boost\boost_1_42

Get SpiderMonkey

Build a SpiderMonkey js engine library (js.lib) – .details here

Building MongoDB from the IDE

Open the db/db.sln solution file.

Note: currently the shell and C++ client libraries must be built from scons. Also, for the VS2008 project files, 64 bit must be built frommongo
scons (although you can do 64 bit with db_10.sln in vs2010).

Install SCons

If building with scons, install :SCons

First install Python: .http://www.python.org/download/releases/2.6.4/
Then SCons itself: .http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download
Add the python scripts directory (e.g., C:\Python26\Scripts) to your PATH.

Building MongoDB with SCons

The SConstruct file from the MongoDB project is the preferred way to perform production builds. Run scons in the mongo project directory to
build.

If scons does not automatically find Visual Studio, preset your path for it by running the VS2010 vcvars*.bat file.

To build:

scons // build mongod
scons mongoclient.lib // build C++ client driver library
scons all // build all end user components
scons . // build all including unit test

Troubleshooting

If you are using , check the file which is generated.scons config.log

Can't find jstypes.h when compiling. This file is generated when building SpiderMonkey. See the page forBuilding SpiderMonkey
more info.
Can't find / run cl.exe when building with scons. See troubleshooting note on the page.Building SpiderMonkey
Error building program database. (VS2008.) Try installing the Visual Studio 2008 Service Pack 1.

Building with Visual Studio 2010

Get the MongoDB Source Code
Get Boost Libraries
Get SpiderMonkey
Building MongoDB from the IDE
Install SCons

http://www.scons.org/
http://www.python.org/download/releases/2.6.4/
http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download

Building MongoDB with SCons
Troubleshooting

MongoDB can be compiled for Windows (32 and 64 bit) using Visual C++. is the make mechanism, although a solution file is also includedSCons
in the project for convenience when using the Visual Studio IDE.

There are several dependencies exist which are listed below; you may find it easier to simply .download a pre-built binary

Get the MongoDB Source Code

Download the source code from .Downloads

Or install . Then:Git

git clone git://github.com/mongodb/mongo.git ()more info
git tag -l to see tagged version numbers
Switch to a stable branch (unless doing development) -- an even second number indicates "stable". (Although with sharding you will want
the latest if the latest is less than 1.6.0.) For example:

git checkout r1.4.1

Get Boost Libraries

Click here for a prebuilt boost library for Visual Studio. format. This file has what you need to build MongoDB, but not some other7zip
boost libs, so it's partial.
See the page for other options. Use v1.42 or higher with VS2010.Boost and Windows

Get SpiderMonkey

Download prebuilt libraries and headers for VS2010. Place these files in ../js/ relative to your mongo project directory.here
Or (more work) build SpiderMonkey js.lib yourself – .details here

Building MongoDB from the IDE

Open the db/db_10.sln solution file.

Note: a exists for the shell. Currently the C++ client libraries must be built from scons (this obviously needs to beseparate project file mongo
fixed...)

Install SCons

If building with scons, install :SCons

First install Python: .http://www.python.org/download/releases/2.6.4/
Then SCons itself: .http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download
Add the python scripts directory (e.g., C:\Python26\Scripts) to your PATH.

Building MongoDB with SCons

The SConstruct file from the MongoDB project is the preferred way to perform production builds. Run scons in the mongo project directory to
build.

If scons does not automatically find Visual Studio, preset your path for it by running the VS2010 vcvars*.bat file.

To build:

scons // build mongod
scons mongoclient.lib // build C++ client driver library
scons all // build all end user components
scons . // build all including unit test

Troubleshooting

If you are using , check the file which is generated.scons config.log

Can't find jstypes.h when compiling.
This file is generated when building SpiderMonkey. See the page for more info.Building SpiderMonkey

http://www.scons.org/
http://github.com/guides/using-git-and-github-for-the-windows-for-newbies
http://github.com/mongodb/mongo
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://github.com/dwight/vc2010_js
http://www.scons.org/
http://www.python.org/download/releases/2.6.4/
http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download

Can't find / run cl.exe when building with scons.
See troubleshooting note on the page.Building SpiderMonkey

LINK : fatal error LNK1104: cannot open file js64d.lib js64r.lib js32d.lib js32r.lib
Get the -- or copy your self-built js.lib to the above name.prebuilt spidermonkey libraries

Building Spider Monkey

Building js.lib - Unix
Download
Build
Install

Building js.lib - Windows
Prebuilt
Download
Build
Troubleshooting scons

See Also

MongoDB uses for server-side Javascript execution. The mongod project requires a file js.lib when linking. This page details howSpiderMonkey
to build js.lib.

Note: Javascript support is under development.V8

Building js.lib - Unix

Download

curl -O ftp://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz
tar zxvf js-1.7.0.tar.gz

Build

cd js/src
export CFLAGS="-DJS_C_STRINGS_ARE_UTF8"
make -f Makefile.ref

SpiderMonkey does not use UTF-8 by default, so we enable before building.

An experimental SConstruct build file is available here.

Install

JS_DIST=/usr make -f Makefile.ref export

By default, the mongo scons project expects spidermonkey to be located at ../js/.

Building js.lib - Windows

Prebuilt

VS2008: a and headers for Win32 is attached to this document (this file may or may not work depending onprebuilt SpiderMonkey library
your compile settings and compiler version).
VS2010 prebuilt libraries

Alternatively, follow the steps below to build yourself.

Download

From an or cygwin shell, run:msysgit

curl -O ftp://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz
tar zxvf js-1.7.0.tar.gz

http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.mozilla.org/js/spidermonkey/
http://code.google.com/p/v8/
http://github.com/mongodb/mongo-snippets/blob/master/jslib-sconstruct
http://www.mongodb.org/pages/viewpageattachments.action?pageId=1474760&metadataLink=true
http://github.com/dwight/vc2010_js
http://code.google.com/p/msysgit/

Build

cd js/src

export CFLAGS="-DJS_C_STRINGS_ARE_UTF8"
make -f Makefile.ref

If is not found, launch Tools...Visual Studio Command Prompt from inside Visual Studio -- your path should then be correct for make.cl.exe

If you do not have a suitable make utility installed, you may prefer to build using scons. An to build the js.lib isexperimental SConstruct file
available in the project. For example:mongodb/snippets

cd
git clone git://github.com/mongodb/mongo-snippets.git
cp mongo-snippets/jslib-sconstruct js/src/SConstruct
cd js/src
scons

Troubleshooting scons

Note that scons does not use your PATH to find Visual Studio. If you get an error running cl.exe, try changing the following line in the msvc.py
scons source file from:

MVSdir = os.getenv('ProgramFiles') + r'\Microsoft Visual Studio 8'

to

MVSdir = os.getenv('ProgramFiles') + r'\Microsoft Visual Studio ' + version

See Also

Building MongoDB

scons

Use scons to build MongoDB, and related utilities and libraries. See the SConstruct file for details.

Run to see all options.scons --help

Targets

Run .scons <target>

scons .
scons all
scons mongod build mongod
scons mongo build the shell
scons shell build just the generated shell files.cpp
scons mongoclient build just the client lib

Options

--d debug build
--dd debug build with _DEBUG defined (extra asserts etc.)
--release
--32 force 32 bit
--64 force 64 bit
--clean

Troubleshooting

scons generates a file. See this file when there are problems building.config.log

http://msdn.microsoft.com/en-us/library/ms235639.aspx
http://github.com/mongodb/mongo-snippets/blob/master/jslib-sconstruct
http://github.com/mongodb/mongo-snippets

See Also

Smoke Tests

Database Internals

This section provides information for developers who want to write drivers or tools for MongoDB, \ contribute code to the MongoDB codebase
itself, and for those who are just curious how it works internally.

Sub-sections of this section:

Caching
Cursors
Error Codes
Internal Commands
Replication Internals
Smoke Tests
Pairing Internals

Caching

Memory Mapped Storage Engine

This is the current storage engine for MongoDB, and it uses memory-mapped files for all disk I/O. Using this strategy, the operating system's
virtual memory manager is in charge of caching. This has several implications:

There is no redundancy between file system cache and database cache: they are one and the same.
MongoDB can use all free memory on the server for cache space automatically without any configuration of a cache size.
Virtual memory size and resident size will appear to be very large for the mongod process. This is benign: virtual memory space will be
just larger than the size of the datafiles open and mapped; resident size will vary depending on the amount of memory not used by other
processes on the machine.
Caching behavior (such as LRU'ing out of pages, and laziness of page writes) is controlled by the operating system: quality of the VMM
implementation will vary by OS.

Cursors

Redirection Notice
This page should redirect to .Internals

Error Codes

Error Code Description Comments

10003 objects in a capped ns cannot grow

11000 duplicate key error _id values must be unique in a collection

11001 duplicate key on update

12000 idxNo fails an internal error

12001 can't sort with $snapshot the $snapshot feature does not support sorting yet

12010, 12011, 12012 can't $inc/$set an indexed field

13440 bad offset accessing a datafile Run a database r--repai

Internal Commands

Most have helper functions and do not require the syntax. These are primarily internal and administrative.commands $cmd.findOne()

> db.$cmd.findOne({assertinfo:1})
{
 : , "dbasserted" false // : db assertedboolean

 : , "asserted" false // : db asserted or a user have happendboolean assert
 : "" , " "assert // regular assert
 : "assertw" "" , warning" // " assert

 : "" , "assertmsg" // with a message in the db logassert
 : "" , "assertuser" // user - benign, generally a request that was not meaningfulassert

 : 1.0"ok"
}

> db.$cmd.findOne({serverStatus:1})
{
 : 6 , "uptime"
 : {"globalLock"
 : 6765166 , "totalTime"
 : 2131 ,"lockTime"
 : 0.00031499596610046226"ratio"
 } ,
 : {"mem"
 : 3 , "resident"
 : 111 , "virtual"
 : 32"mapped"
 } ,
 : 1"ok"
}

> admindb.$cmd.findOne({replacepeer:1})
{
 : ,"info" "adjust local.sources hostname; db restart now required"
 : 1.0"ok"
}

// close all databases. a subsequent request will reopen a db.
> admindb.$cmd.findOne({closeAllDatabases:1});

Replication Internals

On the mongod instance, the database will contain a collection, , which stores a high-level transaction log. Themaster local oplog.$main
transaction log essentially describes all actions performed by the user, such as "insert this object into this collection." Note that the oplog is not a
low-level redo log, so it does not record operations on the byte/disk level.

The mongod instance polls the collection from . The actual query looks like this:slave oplog.$main master

 local.oplog.$main.find({ ts: { $gte: ''last_op_processed_time'' } }).sort({$natural:1});

where 'local' is the master instance's database. collection is a , allowing the oldest data to be aged outlocal oplog.$main capped collection
automatically.

See the section of the for more information.Replication Mongo Developers' Guide

OpTime

An is a 64-bit timestamp that we use to timestamp operations. These are stored as Javascript datatypes but are JavaScriptOpTime Date not
Date objects. Implementation details can be found in the class in .OpTime repl.h

Applying OpTime Operations

Operations from the oplog are applied on the slave by reexecuting the operation. Naturally, the log includes write operations only.

Note that inserts are transformed into upserts to ensure consistency on repeated operations. For example, if the slave crashes, we won't know

exactly which operations have been applied. So if we're left with operations 1, 2, 3, 4, and 5, and if we then apply 1, 2, 3, 2, 3, 4, 5, we should
achieve the same results. This repeatability property is also used for the initial cloning of the replica.

Tailing

After applying operations, we want to wait a moment and then poll again for new data with our operation. We want this operation to be fast,$gte
quickly skipping past old data we have already processed. However, we do not want to build an index on , as indexing can be somewhatts
expensive, and the oplog is write-heavy. Instead, we use a table scan in order, but use a to "remember" our position.[natural] tailable cursor
Thus, we only scan once, and then when we poll again, we know where to begin.

Initiation

To create a new replica, we do the following:

t = now();
cloneDatabase();
end = now();
applyOperations(t..end);

cloneDatabaseeffectively exports/imports all the data in the database. Note the actual "image" we will get may or may not include data
modifications in the time range (..). Thus, we apply all logged operations from that range when the cloning is complete. Because of ourt end
repeatability property, this is safe.

See class for more information.Cloner

Smoke Tests

smoke.py lets you run a subsets of the tests in . When it is running tests, it starts up an instance of mongod, runs the tests, and then shutsjstests
it down again. For the moment, smoke.py must be run from the top-level directory of a mongo source repository. To use you'll need asmoke.py
recent version of .PyMongo

To see the possible options, run:

$ python buildscripts/smoke.py --help
Usage: smoke.py [OPTIONS] ARGS*

Options:
 -h, --help show help message and exitthis
 --mode=MODE If , ARGS are filenames; , ARGS are"files" if "suite"
 sets of tests (suite)
 --test-path=TEST_PATH
 Path to the test executables to run, currently only
 used 'client' (none)for
 --mongod=MONGOD_EXECUTABLE
 Path to mongod to run (/Users/mike/10gen/mongo/mongod)
 --port=MONGOD_PORT Port the mongod will bind to (32000)
 --mongo=SHELL_EXECUTABLE
 Path to mongo, .js test filesfor
 (/Users/mike/10gen/mongo/mongo)
 -- -on-failurecontinue
 If supplied, testing even after a test failscontinue
 --from-file=FILE Run tests/suites named in FILE, one test per line, '-'
 means stdin
 --smoke-db-prefix=SMOKE_DB_PREFIX
 Prefix to use the mongods' dbpaths ('')for
 --small-oplog Run tests with master/slave replication & use a small
 oplog

To run specific tests, use the option:--mode=files

python buildscripts/smoke.py --mode=files jstests/find1.js

You can specify as many files as you want.

You can also run a suite of tests. Suites are predefined and include:

http://api.mongodb.org/python

1.

2.
3.

4.

test
all
perf
js
quota
jsPerf
disk
jsSlowNightly
jsSlowWeekly
parallel
clone
repl
auth
sharding
tool
client
mongosTest

To run a suite, specify the suite's name:

python buildscripts/smoke.py js

Pairing Internals

Policy for reconciling divergent oplogs

In a paired environment, a situation may arise in which each member of a pair has logged operations as master that have not been applied to the
other server. In such a situation, the following procedure will be used to ensure consistency between the two servers:

The new master will scan through its own oplog from the point at which it last applied an operation from it's peer's oplog to the end. It will
create a set C of object ids for which changes were made. It will create a set M of object ids for which only modifier changes were made.
The values of C and M will be updated as client operations are applied to the new master.
The new master will iterate through its peer's oplog, applying only operations that will not affect an object having an id in C.
For any operation in the peer's oplog that may not be applied due to the constraint in the previous step, if the id of the of the object in
question is in M, the value of the whole object on the new master is logged to the new master's oplog.
The new slave applies all operations from the new master's oplog.

Contributing to the Documentation

Qualified volunteers are welcome to assist in editing the wiki documentation. Contact us for more information.

Emacs tips for MongoDB work

You can edit confluence directly from emacs:

First, follow the basic instructions on http://code.google.com/p/confluence-el/

Change the confluence-url in their sample setup to http://mongodb.onconfluence.com/rpc/xmlrpc

Might also want to change the default space to DOCS or DOCS-ES or whatever space you edit the most.

etags setup (suggested by mstearn)

First, install "exuberant ctags", which has nicer features than GNU etags.

http://ctags.sourceforge.net/

Then, run something like this in the top-level mongo directory to make an emacs-style TAGS file:

ctags -e --extra=+qf --fields=+iasnfSKtm --c++-kinds=+p --recurse .

Then you can use M-x visit-tags-table, M-., M-* as normal.

Mongo Documentation Style Guide

http://code.google.com/p/confluence-el/
http://mongodb.onconfluence.com/rpc/xmlrpc
http://ctags.sourceforge.net/

This page provides information for everyone adding to the Mongo documentation on Confluence. It covers:

General Notes on Writing Style
Guide to Confluence markup for specific situations
Some general notes about doc production

General Notes on Writing Style

Voice

Active voice is almost always preferred to passive voice.

To make this work, however, you may find yourself anthropromorphizing components of the system - that is, treating the driver or the database as
an agent that actually does something. ("The dbms writes the new record to the collection" is better than "the new record is written to the
database", but some purists may argue that the dbms doesn't do anything - it's just code that directs the actions of the processor - but then
someone else says "yes, but does the processor really do anything?" and so on and on.) It is simpler and more economical to write as if these
components are actually doing things, although you as the infrastructure developers might have to stop and think about which component is
actually performing the action you are describing.

Tense

Technical writers in general prefer to keep descriptions of processes in the present tense: "The dbms writes the new collection to disk" rather than
"the dbms will write the new collection to disk." You save a few words that way.

MongoDB Terminology

It would be good to spell out precise definitions of technical words and phrases you are likely to use often, like the following:

Mongo
database (do you want "a Mongo database"? Or a Mongo database instance?)
dbms (I have't seen this term often - is it correct to talk about "the Mongo DBMS"?)
Document
Record
Transaction (I stopped myself from using this term because my understanding is the Mongo doesn't support "transactions" in the sense of
operations that are logged and can be rolled back - is this right?)

These are just a few I noted while I was editing. More should be added. It would be good to define these terms clearly among yourselves, and
then post the definitions for outsiders.

Markup for terms

It's important to be consistent in the way you treat words that refer to certain types of objects. The following table lists the types you will deal with
most often, describes how they should look, and (to cut to the chase) gives you the Confluence markup that will achieve that appearance.

Type Appearance Markup

Object name (the type of "object" that "object-oriented programming" deals with) monospace {{ }}term

short code fragment inline monospace {{ }}term

file path/name, extension italic _term_

programming command, statement or expression monospace {{ }}term

variable or "replaceable item" monospace italic _ _term

Placeholders in paths, directories, or other text that would be italic anyway angle brackets around <item> <item>

GUI element (menus menu items, buttons bold *term*

First instance of a technical term italic _term_

tag (in HTML or XML, for example) monospace {{ }}term

Extended code sample code block {code}
program code

{code}

In specifying these, I have relied on the O'Reilly Style Guide, which is at:

http://oreilly.com/oreilly/author/stylesheet.html

http://oreilly.com/oreilly/author/stylesheet.html

This guide is a good reference for situations not covered here.

I should mention that for the names of GUI objects I followed the specification in the Microsoft Guide to Technical Publications.

Other Confluence markup

If you are editing a page using Confluence's RTF editor, you don't have to worry about markup. Even if you are editing markup directly,
Confluence displays a guide on the right that shows you most of the markup you will need.

References and Links

Confluence also provides you with a nice little utility that allows you to insert a link to another Confluence page by searching for the page by title
or by text and choosing it from a list. Confluence handles the linking markup. You can even use it for external URLs.

The one thing this mechanism does NOT handle is links to specific locations within a wiki page. Here is what you have to know if you want to
insert these kinds of links:

Every heading you put in a Confluence page ("h2.Title", "h3.OtherTitle", etc.) becomes an accessible "anchor" for linking.
You can also insert an anchor anywhere else in the page by inserting "{anchor\: is the unique nameanchorname}" where _anchorname
you will use in the link.
To insert a link to one of these anchors, you must go into wiki markup and add the anchor name preceded by a "#". Example: if the page

 contains a heading or an ad-hoc anchor named , the link to that anchor from within the same page would look like MyPage GoHere
, and a link to that anchor from a different page would look like . (See the sidebar for information about[#GoHere] [MyPage#GoHere]

adding other text to the body of the link.)

Special Characters

You will often need to insert code samples that contain curly braces. As Dwight has pointed out, Confluence gets confused by this unless
you "escape" them by preceding them with a backslash, thusly:

\{ \}

You must do the same for "[", "]", "_" and some others.
Within a {code} block you don't have to worry about this. If you are inserting code fragments inline using {{ and }}, however, you still need
to escape these characters. Further notes about this:

If you are enclosing a complex code expression with {{ and }}, do NOT leave a space between the last character of the
expression and the }}. This confuses Confluence.
Confluence also gets confused (at least sometimes) if you use {{ and }}, to enclose a code sample that includes escaped curly
brackets.

About MongoDB's Confluence wiki

Confluence has this idea of "spaces". Each person has a private space, and there are also group spaces as well.

The MongoDB Confluence wiki has three group spaces defined currently:

Mongo Documentation - The publicly accessible area for most Mongo documentation
Contributor - Looks like, the publicly accessible space for information for "Contributors"
Private - a space open to MongoDB developers, but not to the public at large.
As I said in my email on Friday, all of the (relevant) info from the old wiki now lives in the "Mongo Documentation"

Standard elements of Wiki pages

You shouldn't have to spend a lot of time worrying about this kind of thing, but I do have just a few suggestions:

Since these wiki pages are (or can be) arranged hierarchically, you may have "landing pages" that do little more than list their child
pages. I think Confluence actually adds a list of children automatically, but it only goes down to the next hierarchical level. To insert a
hierarchical list of a page's children, all you have to do is insert the following Confluence "macro":

{children:all= }true

See the Confluence documentation for more options and switches for this macro.

For pages with actual text, I tried to follow these guidelines:
For top-level headings, I used "h2" not "h1"
I never began a page with a heading. I figured the title of the page served as one.
I always tried to include a "See Also" section that listed links to other Mongo docs.

I usually tried to include a link to the "Talk to us about Mongo" page.

Community

General Community Resources

User Mailing List

The is for general questions about using, configuring, and running MongoDB and the associated tools and drivers. The list isuser list
open to everyone

IRC chat

irc://irc.freenode.net/#mongodb

Blog

http://blog.mongodb.org/

Bugtracker

File, track, and vote on bugs and feature requests. There is for MongoDB and all supported driversissue tracking

Announcement Mailing List

http://groups.google.com/group/mongodb-announce - for release announcement and important bug fixes.

Store

Visit our store for Mongo-related swag.Cafepress

Resources for Driver and Database Developers

Developer List

This mongodb-dev mailing list is for people developing drivers and tools, or who are contributing to the MongoDB codebase itself.

Source

The source code for the database and drivers is available at the .http://github.com/mongodb

Job Board

Click Here to access the Job Board. The Board is a community resource for all employers to post MongoDB-related jobs. Please feel free
to post/investigate positions!

MongoDB Commercial Services Providers

Note: if you provide consultative or support services for MongoDB and wish to be listed here, just let us know.

Support
10gen

Training
Hosting
Consulting

10gen
Hashrocket
LightCube Solutions
Squeejee
ZOPYX
Mijix

http://groups.google.com/group/mongodb-user
irc://irc.freenode.net/#mongodb
http://blog.mongodb.org/
http://jira.mongodb.org
http://groups.google.com/group/mongodb-announce
http://www.cafepress.com/MongoDB
http://groups.google.com/group/mongodb-dev
http://github.com/mongodb/

Support

10gen

10gen began the MongoDB project, and offers commercial MongoDB support services.

Training

10gen offers .MongoDB training

Hosting

See the MongoDB .Hosting Center

Consulting

10gen

10gen offers consulting services for MongoDB application design, development, and production operation. These services are typically advisory in
nature with the goal of building higher in-house expertise on MongoDB for the client.

Hashrocket

Hashrocket is a full-service design and development firm that builds . Hashrocket continually creates and follows successful web businesses best
 and surround themselves with to ensure the best results for you and your business.practices passionate and talented craftsmen

LightCube Solutions

LightCube Solutions provides PHP development and consulting services, as well as a lightweight PHP framework designed for MongoDB called
'photon'

Squeejee

Squeejee builds web applications on top of MongoDB with multiple sites already in production.

ZOPYX

ZOPYX Ltd is a German-based consulting and development company in the field of Python, Zope & Plone. Lately we added MongoDB to our
consulting and development portofolio. As one of the first projects we were involved in the launch of the social platform.BRAINREPUBLIC

Mijix

MijiX, a software development studio based on Indonesia, provides consulting for MongoDB in Asia-Pacific area.

User Feedback

"I just have to get my head around that mongodb is really _this_ good"
 -muckster, #mongodb

"Guys at Redmond should get a long course from you about what is the software development and support "
 -kunthar@gmail.com, mongodb-user list

"#mongoDB keep me up all night. I think I have found the 'perfect' storage for my app "
 -elpargo, Twitter

"Maybe we can relax with couchdb but with mongodb we are completely in dreams"
 -namlook, #mongodb

"Dude, you guys are legends!"
 -Stii, mongodb-user list

"Times I've been wowed using MongoDB this week: 7."
 -tpitale, Twitter

Community Blog Posts

http://www.10gen.com/
http://www.10gen.com/training
http://10gen.com
http://www.hashrocket.com
http://hashrocket.com/work/
http://hashrocket.com/services/process/
http://hashrocket.com/services/process/
http://hashrocket.com/people/
http://www.lightcubesolutions.com
http://squeejee.com/
http://www.zopyx.com
http://www.brainrepublic.com
http://www.mijix.com/

B is for Billion
 -Wordnik (July 9, 2010)

[Reflections on MongoDB]
 -Brandon Keepers, Collective Idea (June 15, 2010)

Building a Better Submission Form
 -New York Times Open Blog (May 25, 2010)

Notes from a Production MongoDB Deployment
 -Boxed Ice (February 28, 2010)

NoSQL in the Real World
 -CNET (February 10, 2010)

Why I Think Mongo is to Databases what Rails was to Frameworks
 -John Nunemaker, Ordered List (December 18, 2009)

MongoDB a Light in the Darkness...
 -EngineYard (September 24, 2009)

Introducing MongoDB
 -Linux Magazine (September 21, 2009)

Choosing a non-relational database; why we migrated from MySQL to MongoDB
 -Boxed Ice (July 7, 2010)

The Other Blog - The Holy Grail of the Funky Data Model
 -Tom Smith (June 6, 2009)

GIS Solved - Populating a MongoDb with POIs
 -Samuel

Community Presentations

Scalable Event Analytics with MongoDb and Ruby on Rails
Jared Rosoff at RubyConfChina (June 2010)

How Python, TurboGears, and MongoDB are Transforming SourceForge.net
Rick Copeland at PyCon 2010

MongoDB
Adrian Madrid at Mountain West Ruby Conference 2009, video

MongoDB - Ruby friendly document storage that doesn't rhyme with ouch
Wynn Netherland at Dallas.rb Ruby Group, slides

MongoDB
jnunemaker at Grand Rapids RUG, slides

Developing Joomla! 1.5 Extensions, Explained (slide 37)
Mitch Pirtle at Joomla!Day New England 2009, slides

Drop Acid (slide 31) ()video
Bob Ippolito at Pycon 2009

Python and Non-SQL Databases (in French, slide 21)
Benoit Chesneau at Pycon France 2009, slides

Massimiliano Dessì at the Spring Framework Italian User Group

MongoDB (in Italian)
MongoDB and Scala (in Italian)

Presentations and Screencasts at Learnivore
Frequently-updated set of presentations and screencasts on MongoDB.

Benchmarking

We keep track of user benchmarks on the page.Benchmarks

http://blog.wordnik.com/b-is-for-billion
http://open.blogs.nytimes.com/2010/05/25/building-a-better-submission-form/
http://blog.boxedice.com/2010/02/28/notes-from-a-production-mongodb-deployment/
http://news.cnet.com/8301-13846_3-10451248-62.html
http://railstips.org/blog/archives/2009/12/18/why-i-think-mongo-is-to-databases-what-rails-was-to-frameworks/
http://www.engineyard.com/blog/2009/mongodb-a-light-in-the-darkness-key-value-stores-part-5/
http://www.linux-mag.com/cache/7530/1.html
http://blog.boxedice.com/2009/07/25/choosing-a-non-relational-database-why-we-migrated-from-mysql-to-mongodb/
http://www.theotherblog.com/Articles/2009/06/02/the-holy-grail-of-the-funky-data-model/
http://gissolved.blogspot.com/2009/05/populating-mongodb-with-pois.html
http://www.slideshare.net/jrosoff/scalable-event-analytics-with-mongodb-ruby-on-rails
http://us.pycon.org/2010/conference/schedule/event/110/
http://mwrc2009.confreaks.com/14-mar-2009-19-36-mongodb-adrian-madrid.html
http://www.slideshare.net/pengwynn/mongodb-ruby-document-store-that-doesnt-rhyme-with-ouch
http://www.slideshare.net/jnunemaker/mongodb-grand-rapids-rug
http://www.slideshare.net/spacemonkeylabs/developing-joomla-15-extensions-explained
http://www.slideshare.net/rawwell/dropacidpycon2009
http://amix.dk/blog/viewEntry/19443
http://www.benoitc.org/b/7cb06e5de28327c7fc81c7028bece5a3/pyconfr2009_1.pdf
http://www.jugsardegna.org/vqwiki/jsp/Wiki?12settembre2009
http://www.slideshare.net/desmax74/mongodb-scala-roma-springframework-meeting2009
http://www.learnivore.com/search/mongodb

Job Board

Redirecting...

Redirection Notice
This page should redirect to in about 2 seconds.http://jobs.mongodb.org/

About
Philosophy
Use Cases
Production Deployments
Mongo-Based Applications
Events
Slide Gallery
Articles
Benchmarks
FAQ
Product Comparisons
Licensing

Philosophy

Design Philosophy

Databases are specializing - the "one size fits all" approach no
longer applies.
By reducing transactional semantics the db provides, one can
still solve an interesting set of problems where performance is
very important, and horizontal scaling then becomes easier.
The (JSON) document data model is easy to code to, easy to
manage (schemaless), and yields excellent performance by
grouping relevant data together internally.
A non-relational approach is the best path to database
solutions which scale horizontally to many machines.
While there is an opportunity to relax certain capabilities for
better performance, there is also a need for deeper
functionality than that provided by pure key/value stores.
Database technology should run anywhere, being available
both for running on your own servers or VMs, and also as a
cloud pay-for-what-you-use service.

Use Cases

See also the page for a discussion of how companies like Shutterfly, foursquare, bit.ly, Etsy, SourceForge, etc. useProduction Deployments
MongoDB.

Use Case Articles

Using MongoDB for Real-time Analytics
Using MongoDB for Logging
Full Text Search in Mongo
MongoDB and E-Commerce
Archiving

Well Suited

Operational data store of a web site. MongoDB is very good at real-time inserts, updates, and queries. Scalability and replication are
provided which are necessary functions for large web sites' real-time data stores. Specific web use case examples:

content management
comment storage, management, voting

http://jobs.mongodb.org/
http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics
http://blog.mongodb.org/post/172254834/mongodb-is-fantastic-for-logging
http://kylebanker.com/blog/2010/04/30/mongodb-and-ecommerce/
http://blog.mongodb.org/post/1200539426/archiving-a-good-mongodb-use-case

real time page view counters
user registration, profile, session data

Caching. With its potential for high performance, MongoDB works well as a caching tier in an information infrastructure. The persistent
backing of Mongo's cache assures that on a system restart the downstream data tier is not overwhelmed with cache population activity.
High volume problems. Problems where a traditional DBMS might be too expensive for the data in question. In many cases developers
would traditionally write custom code to a filesystem instead using flat files or other methodologies.
Storage of program objects and JSON data (and equivalent). Mongo's data format makes it very easy to store and retrieve data inBSON
a document-style / "schemaless" format. Addition of new properties to existing objects is easy and does not require blocking "ALTER
TABLE" style operations.
Document and Content Management Systems - as a document-oriented (JSON) database, MongoDB's flexible schemas are a good fit
for this.
Electronic record keeping - similar to document management.

Less Well Suited

Systems with a heavy emphasis on complex transations such as banking systems and accounting. These systems typically require
multi-object transactions, which MongoDB doesn't support. It's worth noting that, unlike many "NoSQL" solutions, MongoDB does support

 on single documents. As documents can be rich entities; for many use cases, this is sufficient.atomic operations
Traditional Business Intelligence. Data warehouses are more suited to new, problem-specific BI databases. However note that
MongoDB can work very well for several reporting and analytics problems where data is predistilled or aggregated in -- butruntime
classic, nightly batch load business intelligence, while possible, is not necessarily a sweet spot.
Problems requiring SQL.

Use Case - Session Objects

MongoDB is a good tool for storing HTTP session objects.

One implementation model is to have a sessions collection, and store the session object's _id value in a browser cookie.

With its update-in-place design and general optimization to make updates fast, the database is efficient at receiving an update to the session
object on every single app server page view.

Aging Out Old Sessions

The best way to age out old sessions is to use the auto-LRU facility of . The one complication is that objects in cappedcapped collections
collections may not grow beyond their initial allocation size. To handle this, we can "pre-pad" the objects to some maximum size on initial
addition, and then on further updates we are fine if we do not go above the limit. The following mongo shell javascript example demonstrates
padding.

(Note: a clean padding mechanism should be added to the db so the steps below are not necessary.)

> db.createCollection('sessions', { capped: , size : 1000000 })true
{ : 1}"ok"
> p = "";
> (x = 0; x < 100; x++) p += 'x';for
> s1 = { info: 'example', _padding : p };
{ : , : "info" "example" "_padding"
"xx"
}
> db.sessions.save(s1)
> s1
{ : , : "info" "example" "_padding"
"xx"
, : ObjectId() }"_id" "4aafb74a5761d147677233b0"

> // when updating later
> s1 = db.sessions.find({ _id : ObjectId() })"4aafb74a5761d147677233b0"
{ : ObjectId() , : , : "_id" "4aafb74a5761d147677233b0" "info" "example" "_padding"
"xx"
}
> delete s._padding;
true
> s.x = 3; // add a fieldnew
3
> db.sessions.save(s);
> s
{ : ObjectId() , : , : 3}"_id" "4aafb5a25761d147677233af" "info" "example" "x"

http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics

Production Deployments

If you're using MongoDB in production, we'd love to list you here! Please complete this or email meghan@10gen.com and we will addweb form
you.

Company Use Case

 is an Internet-based social expression and personal publishing service.Shutterfly
MongoDB is used for various persistent data storage requirements within Shutterfly.
MongoDB helps Shutterfly build an unrivaled service that enables deeper, more
personal relationships between customers and those who matter most in their lives. For
more information, view Kenny Gorman's presentation Implementing MongoDB at

 from MongoSF (April 2010): and .Shutterfly Slides Video

 is a location based social network that incorporates gaming elements.Foursquare

MongoDB at foursquare presentation: and (May 2010)Slides Video

 allows users to shorten, share, and track links. bit.ly uses MongoDB to store userbit.ly
history. For more information:

bit.ly user history, auto-sharded presentation at MongoNYC (May 2010)

 is one of the world's largest providers of software and services for smallIntuit
businesses and individuals. Intuit uses MongoDB to track user engagement and activity
in real-time across its network of websites for small businesses

MongoDB is used for back-end storage on the front pages, project pages,SourceForge
and download pages for all projects.

Scaling SourceForge with MongoDB - OSCON Presentation (July 2010)
MongoDB at SourceForge - QCon London Presentation (March 2010)
How Python, TurboGears, and MongoDB are Transforming SourceForge.net -
PyCon (February 2010)
SourceForge.net releases Ming - SourceForge blog (December 2009)
TurboGears on Sourceforge - Compound Thinking (July 2009)

 is a website that allows users to buy and sell handmade items. Read theEtsy
MongoDB at Etsy blog series:

Part 1 - May 19, 2010
Part 2 - July 3, 2010

 is using MongoDB in a form-building application for photoThe New York Times
submissions. Mongo's lack of schema gives producers the ability to define any
combination of custom form fields. For more information:

Building a Better Submission Form - NYTimes Open Blog (May 25, 2010)
A Behind the Scenes Look at the New York Times Moment in Time Project -
Hacks/Hackers Blog (July 28, 2010)

 is the fastest-growing local content network in the U.S., powered by theExaminer.com
largest pool of knowledgeable and passionate contributors in the world. Launched in
April 2008 with 60 cities, Examiner.com now serves hundreds of markets across the
U.S. and Canada.

Examiner.com migrated their site from Cold Fusion and SQL Server to Drupal 7 and
MongoDB. Details of the deployment are outlined in an Acquia case study

https://10gen.wufoo.com/forms/production-deployment-details/
http://www.shutterfly.com/
http://www.slideshare.net/mongosf/implementing-mongodb-at-shutterfly-kenny-gorman
http://blip.tv/file/3593780
http://foursquare.com/
http://docs.google.com/present/view?id=dhkkqm6q_13gm6jq5fv
http://blip.tv/file/3704098
http://bit.ly/
http://blip.tv/file/3704043
http://intuit.com/
http://sourceforge.net/
http://www.oscon.com/oscon2010/public/schedule/detail/13669
http://www.infoq.com/presentations/MongoDB-at-SourceForge
http://us.pycon.org/2010/conference/schedule/event/110/
http://sourceforge.net/blog/sourceforge-releases-ming/
http://compoundthinking.com/blog/index.php/2009/07/16/turbogears-on-sourceforge/
http://www.etsy.com/
http://codeascraft.etsy.com/2010/05/19/mongodb-at-etsy/
http://codeascraft.etsy.com/2010/07/03/mongodb-at-etsy-part-2/
http://www.nytimes.com
http://open.blogs.nytimes.com/2010/05/25/building-a-better-submission-form/
http://hackshackers.com/2010/07/28/a-behind-the-scenes-look-at-the-new-york-times-moment-in-time-project/
http://www.examiner.com
http://acquia.com/resources/library/case-study-examinercom

BoxedIce's server monitoring solution - - stores 600 million+ documentsServer Density
in MongoDB.

BoxedIce blog posts:
Automating partitioning, sharding and failover with MongoDB
Why we migrated from mysql to mongodb
Notes from a production deployment
Humongous Data at Server Density: Approaching 1 Billion Documents
in MongoDB

Presentations:
Humongous Data at Server Density - MongoUK Presentation (June
2010)
MongoDB in Production at Boxed Ice - Webinar (May 2010)

 stores its entire text corpus in MongoDB - 1.2TB of data in over 5 billionWordnik
records. The speed to query the corpus was cut to 1/4 the time it took prior to migrating
to MongoDB. More about MongoDB at Wordnik:

B is for Billion - Wordnik Blog (July 2010)
MongoDB: Migration from Mysql at Wordnik - Scalable Web Architectures
(May 2010)
Tony Tam's Presentation at MongoSF (April 2010)
What has technology done for words lately? - Wordnik blog (February 2010)

 makes it easy to share ideas and get to the good stuff online. ShareThis isShareThis
the world’s largest sharing network reaching over 400 million users across 150,000
sites and 785,000 domains across the web

 has been using MongoDB since the beginning of 2008. All of the site'sBusiness Insider
data, including posts, comments, and even the images, are stored on MongoDB. For
more information:

How This Web Site Uses MongoDB (November 2009 Article)
How Business Insider Uses MongoDB (May 2010 Presentation)

, the social coding site, is using MongoDB for an internal reporting application.GitHub

 is an invitation only luxury shopping site. Gilt uses MongoDB for real timeGilt Groupe
ecommerce analytics.

Gilt CTO Mike Bryzek's presentation at in April 2010.MongoSF
Hummingbird - a real-time web traffic visualization tool developed by Gilt and
powered by MongoDB

, a unit of News Corporation, is a leading Internet media andIGN Entertainment
services provider focused on the videogame and entertainment enthusiast markets.
IGN’s properties reached more than 37.3 million unique users worldwide February
2010, according to Internet audience measurement firm comScore Media Metrix.
MongoDB powers IGN’s real-time traffic analytics and RESTful Content APIs.

 is a free online platform that helps people discover amazing products; shareOpenSky
them with their friends, family and followers; and earn money. OpenSky uses
MongoDB, Symfony 2, Doctrine 2, PHP 5.3, PHPUnit 3.5, jQuery, node.js, Git (with
gitflow) and a touch of Java and Python. OpenSky uses MongoDB for just about
everything (not just analytics). Along the way they've developed andMongoODM (PHP)
MongoDB drivers for Mule and CAS.

 is a comedy website. MongoDB is used in CollegeHumor for internalCollegeHumor
analytics and link exchange application.

 uses MongoDB for analytics and quick reporting.Evite

Tracking and visualizing mail logs with MongoDB and gviz_api - Grig
Gheorghiu's blog (July 2010)

http://www.serverdensity.com/
http://blog.boxedice.com/2010/08/03/automating-partitioning-sharding-and-failover-with-mongodb/
http://blog.boxedice.com/2009/07/25/choosing-a-non-relational-database-why-we-migrated-from-mysql-to-mongodb/
http://blog.boxedice.com/2010/02/28/notes-from-a-production-mongodb-deployment/
http://www.10gen.com/webinars/event_boxedice_10may5
http://www.10gen.com/webinars/event_boxedice_10may5
http://skillsmatter.com/podcast/cloud-grid/mongodb-humongous-data-at-server-density
http://www.10gen.com/webinars/event_boxedice_10may5
http://www.wordnik.com
http://blog.wordnik.com/b-is-for-billion
http://www.royans.net/arch/mongodb-migration-from-mysql-at-wordnik/
http://www.10gen.com/event_mongosf_10apr30#wordnik
http://blog.wordnik.com/what-has-technology-done-for-words-lately
http://sharethis.com
http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://www.slideshare.net/ibwhite/how-business-insider-uses-mongodb
http://github.com/
http://www.gilt.com
http://www.10gen.com/event_mongosf_10apr30#gilt
http://mnutt.github.com/hummingbird/
http://www.ign.com/
http://shopopensky.com/
http://www.doctrine-project.org/blog/mongodb-for-ecommerce
http://www.collegehumor.com/
http://www.evite.com/
http://agiletesting.blogspot.com/2010/07/tracking-and-visualizing-mail-logs-with.html

 is an innovative blog-commenting system.Disqus

 provides a hosting platform for MongoDB and also uses MongoDB as theMongoHQ
back-end for its service. Our page provides more information abouthosting centers
MongoHQ and other MongoDB hosting options.

 is the easy, fun, and fast way to share live video online. MongoDB powersJustin.tv
Justin.tv's internal analytics tools for virality, user retention, and general usage stats
that out-of-the-box solutions can't provide. Read more about Justin.tv's broadcasting

.architecture

 is a revolutionary real-time analytics service that enables people toChartbeat
understand emergent behaviour in real-time and exploit or mitigate it. Chartbeat stores
all historical analytics data in MongoDB.

The Secret Weapons Behind Chartbeat - Kushal's coding blog (April 2010)
Kushal Dave's Presentation at MongoNYC (May 2010)

 is a social tool that organizes conversations around events. For moreHot Potato
information:

Hot Potato's presentation about using Scala and MongoDB at the New York
 (March 2010)Tech Talks Meetup

Hot Potato presentation at (April 2010)MongoSF
Hot Potato Infrastructure from Hot Potato blog (May 2010)
Hot Potato presentation at (May 2010)MongoNYC

 gives you all the online tools you need to bring people together for an eventEventbrite
and sell tickets. EventBrite uses MongoDB to track page views.

Why you should track page views with MongoDB - EventBrite Blog (June
2010)

 is a modern web-based team messenger, that helps your team to becomeFlowdock
more organized simply by chatting. Flowdock backend uses MongoDB to store all
messages.

Why Flowdock migrated from Cassandra to MongoDB - Flowdock Blog (July
2010)

The Chicago Tribune uses MongoDB in its ,Illinois School Report Cards application
which is generated from a nearly 9,000 column denormalized database dump produced
annually by the State Board of Education. The application allows readers to search by
school name, city, county, or district and to view demographic, economic, and
performance data for both schools and districts.

 uses MongoDB to power the backend of its preview feedback mechanism.Sugar CRM
It captures users' comments and whether they like or dislike portions of the application
all from within beta versions of Sugar.

 is a local search and recommendation service that helps people discoverWHERE®
places, events and mobile coupons in their area. Using WHERE, people can find
everything from the weather, news, and restaurant reviews, to the closest coffee shop,
cheapest gas, traffic updates, movie showtimes and offers from local merchants.
WHERE is available as a mobile application and as a web service at Where.com. here,
Inc. uses MongoDB to store geographic content for the WHERE application and for
WHERE Ads™ - a hyper-local ad network.

 is a service that automatically transcribes voicemail to text and delivers it inPhoneTag
real-time via e-mail and SMS. PhoneTag stores the metadata and transcriptions for
every voicemail it process in MongoDB.

http://www.disqus.com
http://www.mongohq.com/
http://justin.tv
http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html
http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html
http://chartbeat.com/
http://codeshal.tumblr.com/post/499713180/the-secret-weapons-behind-the-chartbeat-beta
http://blip.tv/file/3701052
http://www.hotpotato.com
http://www.livestream.com/nytechtalks
http://www.livestream.com/nytechtalks
http://www.10gen.com/event_mongosf_10apr30#hotpotato
http://blog.hotpotato.com/post/574255351/hot-potato-infrastructure-mongodb
http://www.slideshare.net/mongodb/building-a-mongo-dsl-in-scala-at-hot-potato
http://www.eventbrite.com/
http://blog.eventbrite.com/guest-post-why-you-should-track-page-views-with-mongodb
http://www.flowdock.com/
http://blog.nodeta.fi/2010/07/26/flowdock-migrated-from-cassandra-to-mongodb/
http://schools.chicagotribune.com/
http://www.sugarcrm.com/crm/
http://www.where.com/
http://phonetag.com/

 is a powerful web-based platform for creating and managing websites. ItHarmony
helps developers with content editors work together with unprecedented flexibility and
simplicity. From stylesheets, images and templates, to pages, blogs, and comments,
every piece of Harmony data is stored in MongoDB. Switching to MongoDB from
MySQL drastically simplified Harmony's data model and increased the speed at which
we can deliver features.

Steve Smith's presentation about Harmony at MongoSF (April 2010)

 is an expert web design and development group. Hashrocket built Hashrocket
, a fully-featured Medication Management application in Ruby on Rails. ThePharmMD

system contains functionality for identifying and resolving drug-related problems for
millions of patients.

 offers Performance Analytics, a cloud service that monitors, ranks and analyzesYottaa
the performance of millions of web sites, providing an open database to answer
questions such as “why performance matters” and “how fast is my site”. Yottaa is using
Ruby on Rails and MongoDB to build their scalable analytics engine.

How Yottaa Uses MongoDB - Jared Rosoff's presentation at MongoBoston
(September 2010)
Scalable Event Analytics with MongoDB and Ruby - Jared Rosoff's
presentation at RubyConfChina (June 2010)

 is a trends aggregator that uses a web crawler and human editors to findBuzzFeed
and link to popular stories around the web. BuzzFeed moved an analytics system
tracking over 400 million monthly events from MySQL to MongoDB.

The Mozilla open-source project uses MongoDB for back-end storage. Ubiquity Herd
Source code is available on .bitbucket

Codaset is an open system where you can browse and search through open source
projects, and check out what your friends are coding.

The awesomeness that is MongoDB and NoSQL, is taking over Codaset -
Codaset Blog (May 2010)
Handling Dates in MongoDB - Codaset Blog (July 2010)

 uses Mongo as a data store for its shopping search engine, where theyShopwiki
commit all the data generated, such as custom analytics. Mongo's performance is such
that ShopWiki uses it in cases where MySQL would just not be practical. ShopWiki is
also using it as a storage engine for all R&D and data-mining efforts where MongoDB's
document oriented architecture offers maximum flexibility.

Avery's Talk at MongoNYC - ShopWiki Dev Blog (June 2010)

 is a start to finish party planning site that uses MongoDB forMyPunchbowl.com
tracking user behavior and datamining.

Ryan Angilly on Replacing MySQL with MongoDB (Zero to Mongo) on The
Bitsource
MongoDB for Dummies: How MyPunchbowl went from 0 to production in under
3 days - Presentation at MongoNYC (May 2010)

 is a community of open source developers and designers dedicated toSunlight Labs
opening up our government to make it more transparent, accountable and responsible.
MongoDB powers the , and the , which is anNational Data Catalog Drumbone API
aggregator of data about members of Congress.

Civic Hacking - Video from Luigi Montanez's presentation at MongoNYC (May
2010)
How We Use MongoDB at Sunlight blog post (May 2010)

http://get.harmonyapp.com/
http://www.10gen.com/event_mongosf_10apr30#harmonyapp
http://hashrocket.com/
http://hashrocket.com/work/view/pharmmd/
http://www.yottaa.com
http://blog.yottaa.com/2010/09/how-yottaa-uses-mongodb/
http://www.slideshare.net/jrosoff/scalable-event-analytics-with-mongodb-ruby-on-rails
http://www.buzzfeed.com/
https://ubiquity.mozilla.com/herd/
http://bitbucket.org/fernandotakai/herd/src/
http://codaset.com/codaset/codaset/blog/the-awesomeness-that-is-mongodb-and-nosql-is-taking-over-codaset
http://developingwithstyle.com/articles/2010/07/09/handling-dates-in-mongodb.html
http://www.shopwiki.com/
http://devblog.shopwiki.com/post/660499806/averys-talk-at-mongonyc
http://www.mypunchbowl.com/
http://www.thebitsource.com/featured-posts/mongosf-zero-to-mongodb/
http://www.thebitsource.com/featured-posts/mongosf-zero-to-mongodb/
http://blip.tv/file/3704046
http://blip.tv/file/3704046
http://sunlightlabs.com/
http://nationaldatacatalog.com
http://services.sunlightlabs.com/docs/Drumbone_API/
http://blip.tv/file/3680481
http://sunlightlabs.com/blog/2010/how-we-use-mongodb-sunlight/

 streams image data from flickr and uses MongoDB as it's only database.photostre.am

MongoDB in Production at photostre.am - photostre.am blog (June 2010)

 uses MongoDB as storage backend for its copy of wikipedia data, storage forFotopedia
users and albums timelines, a feature that is currently under heavy refactoring, and as
the "metacache", an index of every tiny html fragment in its varnish cache for proactive
invalidation of stale content.

MongoDB: Our Swiss Army Datastore - Presentation at MongoFR in June
2010: and Slides Video

 currently uses Mongo to manage over one million unique user sessionsGrooveshark
per day.

 is a fun and social way to attach digital content to real world objects.Stickybits

MongoDB is being used for the game feeds component. It caches game data from
different sources which gets served to , and the EA downloadea.com rupture.com
manager.

 develops technology that personalises the contents and design of online displayStruq
advertising in real time.

 is using MongoDB for their year-end readers survey and internal analytics.Pitchfork

, a web toolkit for creating directories, leverages MongoDB for back-endFloxee Twitter
storage. The award-winning is powered by Floxee.TweetCongress

 is an email service provider that uses MongoDB for click-stream analysis andSailthru
reporting.

 keeps track of your contacts and conversations from multiple platforms andSilentale
allows you to search and access them from anywhere. Silentale is using MongoDB as
the back-end for indexing and searching on millions of stored messages of different
types. More details on Silentale can be found in this article.TechCrunch

One Year with MongoDB presentation from MongoUK (June 2010): and Slides
Video

 helps people find local and online classes by empowering teachers withTeachStreet
robust tools to manage their teaching businesses. MongoDB powers our real-time
analytics system which provide teachers with insight into the performance and
effectiveness of their listings on TeachStreet.

Slides from Mongo Seattle - TeachStreet blog (July 2010)

 is a comment-spam blocker that uses MongoDB for back-end storage.Defensio

 is a web service for backing up, searching, and tagging your tweets.TweetSaver
TweetSaver uses MongoDB for back-end storage.

's AdGear platform is a next-generation ad platform. MongoDB is used forBloom Digital
back-end reporting storage for AdGear.

http://photostre.am
http://ananasblau.com/2010/6/11/mongodb-in-my-photostre-am
http://www.fotopedia.com
http://www.scribd.com/doc/33558074/MongoDB-our-Swiss-Army-Knife-database
http://lacantine.ubicast.eu/videos/21-06-2010-104603-partie-1/
http://listen.grooveshark.com/
http://www.stickybits.com/
http://www.ea.com
http://www.rupture.com
http://www.struq.com/
http://www.pitchfork.com
http://floxee.com/
http://twitter.com
http://tweetcongress.org/
http://www.sailthru.com/
https://silentale.com/
http://uk.techcrunch.com/2009/09/08/silentale-lets-you-archive-and-search-your-every-conversation/
http://www.slideshare.net/silentale/one-year-with-mongodb-at-silentale-mongofr-mongouk
http://skillsmatter.com/podcast/cloud-grid/one-year-with-mongodb-at-silentale
http://www.teachstreet.com/
http://blog.teachstreet.com/uncategorized/slides-mongo-seattle/?utm_source=twitterfeed&utm_medium=twitter&utm_campaign=Feed:+teachstreet+(TeachStreet+-+Find+Great+Classes.++Learn+Something+New.)
http://defensio.com/
http://tweetsaver.com
http://www.bloomdigital.com/

 designs, develops and markets asset monitoring solutions whichKLATU Networks
helps companies manage risk, reduce operating costs and streamline operations
through proactive management of the status, condition, and location of cold storage
assets and other mission critical equipment. KLATU uses MongoDB to store
temperature, location, and other measurement data for large wireless sensor networks.
KLATU chose MongoDB over competitors for scalability and query capabilities.

 lets you track your favorite artists so you never miss a gig again.songkick

Speeding up your Rails app with MongoDB - Presentation at MongoUK (June
2010)

 is a cool application to find LaTeX symbols easily. It uses MongoDB forDetexify
back-end storage. Check out the for more on why Detexfy is using MongoDB.blog post

 is built on MongoDB, mongodb_beaker, and .http://sluggy.com/ MongoKit

From MySQL to MongoDB at Sluggy.com - Brendan McAdams' presentation at
MongoNYC (May 2010)

 is using MongoDB to store opinions from social media, blogs, forums andStylesignal
other sources to use in their sentiment analysis system, Zeitgeist.

 @trackmeet helps you take notes with twitter, and is built on MongoDB

leverages the Google Earth Browser Plugin and MongoDB to provideeFlyover
interactive flyover tours of over two thousand golf courses worldwide.

 is a multi-topic question and answer site in the style of Stack Overflow. Shapado
Shapado is written in Rails and uses MongoDB for back-end storage.

 enables students to help each other with their studies. Students can shareSifino
notes, course summaries, and old exams, and can also ask and respond to questions
about particular courses.

 provides mobile apps that replace pencil-and-paper scorekeeping andGameChanger
online tools that distribute real-time game updates for amateur sports.

Tornado, MongoDB, and the Realtime Web - Kiril Savino's presentation at
MongoNYC (May 2010)
GameChanger and MongoDB: a case study in MySQL conversion - Kiril
Savino's blog (September 2010)

 is a map-based ad listings site that uses MongoDB for storage.soliMAP

 uses MongoDB for the iPhone app's back-end server.MyBankTracker iPhone App

 uses MongoDB to store all user data, including large amounts of billingBillMonitor
information. This is used by the live site and also by BillMonitor's internal data analysis
tools.

 allows you to create easy to remember links to YouTube videos. It's built onTubricator
MongoDB and Django.

 uses MongoDB for user registration and as a backend server for its iPhone PushMu.ly
notification service. MongoDB is mu.ly's Main backend database and absolute mission
critical for mu.ly.

http://www.klatunetworks.com/
http://www.songkick.com/
http://skillsmatter.com/podcast/cloud-grid/speeding-up-your-rails-application-with-mongodb
http://detexify.kirelabs.org/
http://detexifyblog.kirelabs.org/past/2009/8/12/new_backend_new_server_android_app/
http://sluggy.com/
http://bitbucket.org/namlook/mongokit/wiki/Home
http://blip.tv/file/3704023
http://stylesignal.com
http://eflyover.com
http://shapado.com/
http://sifino.se/
http://www.gamechanger.io/
http://prezi.com/owkppjicpers/mongonyc/
http://aurum.tumblr.com/post/1045864983/gamechanger-and-mongodb-a-case-study-in-mysql
http://solimap.com/
http://http://www.mybanktracker.com/iphone/
http://www.billmonitor.com/
http://www.tubricator.com/
http://mu.ly/

 is a Content Management System (CMS) built on the Vork enterprise frameworkAvinu
and powered by MongoDB.

 is a social shopping portal for product recommendations.edelight

MongoDB: Wieso Edelight statt MySQL auf MongoDB setzt - Exciting
Ecommerce blog (September 2010)

 is a search engine powered by Tweets that uses Mongo for realtime logTopsy
processing and analysis.

 is using MongoDB and GridFS for storing pastes.Codepeek

 is an online platform, created to connect users with people and productsSimilaria.pl
that match them.

 uses Mongo to store information about events in its portal and also to storeToTuTam
and organise information about users preferences.

 is a free, user driven movie database that uses MongoDB as itsthemoviedb.org
primary database.

 is a search engine for OpenCourseWare. It stores all the course materialsOCW Search
in MongoDB and uses Sphinx to index these courses.

Full Text Search with Sphinx - Presentation from MongoUK (June 2010)

 is the new generation Twitter client for people who value their time and are tiredMixero
of information noise. Mixero uses Mongo to store users' preferences and data.

 is an advanced site constructor with e-commerce modules. Biggo usesBiggo
MongoDB for stats collection.

 is a web development firm specializing in Ruby on Rails and Java / J2EE.Kabisa
Kabisa uses MongoDB for many of its client projects, including a mobile news
application for iPhone and Android.

 makes it easy and automatic for users to find, work on and share the latestDokDok
version of any document - right from their inbox. DokDok migrated to a Mongo backend
in August 2009. See Bruno Morency's presentation for moreMigrating to MongoDB
information.

http://www.avinu.org/
http://www.edelight.de
http://www.excitingcommerce.de/2010/09/edelight-mongodb.html
http://topsy.com/
http://codepeek.com/paste
http://www.similaria.pl/index.php
http://totutam.pl/
http://www.themoviedb.org/
http://www.ocwsearch.com/
http://skillsmatter.com/podcast/cloud-grid/mongodb-full-text-search-with-sphinx
http://www.mixero.com/
http://cms.biggo.ru/
http://www.kabisa.nl/
http://dokdok.com/
http://www.slideshare.net/dokdok/confoo-migrating-to-mongo-db

 is a swedish website for finding, and comparing, rental cars. MongoDB is used forEnbil
storing and querying data about geographical locations and car rental stations.

 is a content management system designed for individual Web developers andWebsko
cooperative teams. MongoDB's lack of schema gives unlimited possibilities for defining
manageable document oriented architecture and is used for back-end storage for all
manageable structure and data content. Websko is written in Rails, uses MongoMapper
gem and in-house crafted libraries for dealing with Mongo internals.

 is a bookmarking service that makes your bookmarks available via full-textmarkitfor.me
search so you don't have to remember tags or folders. You can just search for what
you're looking for and the complete text of all of your bookmarked pages will be
searched. MongoDB is used as the datastore for the marked pages.

 is a website that displays backpage.com adult classified listings as anBackpage Pics
image gallery. MongoDB is used to store listing data. Please note that this website is
NSFW.

 uses MongoDB for its back-end reporting services.Joomla Ads

 keeps track of what artists and bands publish on the social web.musweet

 is a software development firm that has been usingEiwa System Management, Inc.
MongoDB for various projects since January 2010.

 is an internet strategy consultancy based in London, which uses MongoDB inMorango
production on several client projects.

Building a Content Management System with MongoDB - Presentation from
MongoUK (June 2010)

 discovers everyone's expertise and connects you to the best person toPeerPong
answer any question. We index users across the entire web, looking at public profiles,
real-time streams, and other publicly available information to discover expertise and to
find the best person to answer any question.

 ("I build, I bond") is a social network using MongoDB for its dashboard feeds.ibibo
Each feed is represented as a single document containing an average of 1000 entries;
the site currently stores over two million of these documents in MongoDB.

 is the leader in the new and rapidly growing world of digital media trading.MediaMath

 is a new way to discover YouTube videos that people are talking about onZoofs
Twitter. Zoofs camps in Twitter searching for tweets with YouTube video links, and then
ranks them based on popularity.

 is an online classifieds marketplace that serves up more than 15 million visits aOodle
month and is the company behind the popular . Oodle is usingFacebook Marketplace
Mongo for storing user profile data for our millions of users and has also open sourced
its .Mongo ORM layer

http://enbil.nu/
http://websko.pl/
http://markitfor.me/
http://www.backpagepics.com/
http://www.joomlaads.com/
http://musweet.com/
http://www.esm.co.jp/
http://morango.co.uk/
http://skillsmatter.com/podcast/cloud-grid/building-a-content-management-system-with-mongodb
http://peerpong.com/
http://www.ibibo.com/
http://www.mediamath.com/
http://zoofs.com/
http://www.oodle.com/
http://apps.facebook.com/marketplace
http://github.com/lunaru/MongoRecord

 relaunched using the MongoDB and MongoMapper. Read the FunadviceFunadvice
CTO's from May 2010 for more details.post to MongoDB User Forum

 is using MongoDB for the backend storage of business listings. Yasabe.comYa Sabe
is the first local search engine built for Hispanics in the US with advanced search
functionality. You can find and discover more than 14 million businesses via the web or
your mobile phone. All the information is in both Spanish and in English.

 is a Fantasy Soccer Portal recently launched for the World SoccerLoteriaFutbol.com
Cup: South Africa 2010. Mongo has been used entirely to store data about users,
groups, news, tournaments and picks. It uses the PHP driver with a Mongo module for
Kohana v3 (Mango).

 switched over to MongoDB 1 year ago after exhausting other cloud andKehalim
relational options. As a contextual affiliate network, Kehalim stores all of its advertisers,
ads and even impressions on top of MongoDB. MongoDB has outed both MySQL and
memcached completely and also provides great hadoop-like alternative with its own
map-reduce.

 is an innovative web publishing platform that consists of a fully hostedSquarespace
and managed GUI environment for creating and maintaining websites. Squarespace's
new social modules utilize Mongo to store large amounts of social data that is pulled in
from around the Internet and displayed in native widgets that are fully integrated with
the platform.

 is an e-commerce music site that allows people to buy beats (musicGivemebeats.net
instrumentals) produced by some of the best producers in the world. Now we entirely
use MongoDB to store users profile, beats information, and transaction statistics.

, a search engine for chemical properties, is built on top of MongoDB. For aCheméo
fairly extensive explanation of the tools and software used and some MongoDB tips,
please go to .chemeo.com/doc/technology

 is place were you can read all your favourite websites in one place. MongoDBPlanetaki
has replaced MySQL for the storage backend that does all the heavy lifting and caching
of each website's news feed.

Planetaki Powered by MongoDB - SamLown.com (June 2010)

 is the leading and largest vertical portal and community for creative[ChinaVisual.com]
people in China. ChinaVisual.com moved from mysql to mongoDB in early 2009.
Currently MongoDB powers its most major production and service, like file storage,
session server, and user tracking.

 is an easy social media monitoring solution that allows people to trackRowFeeder
tweets and Facebook posts in a spreadsheet. RowFeeder uses MongoDB to keep up
with the high volume of status updates across multiple social networks as well as
generate basic stats.

MongoDB for Real Time Data Collection and Stats Generation - Presentation
at Mongo Seattle (July 2010)

 is designed to facilitate medical care for all members of the public.Mini Medical Record
While useful for everyone, it is especially useful for travelers, professional road
warriors, homeless, substance dependent, and other members of the public who
receive care through multiple medical systems.

http://www.funadvice.com
http://groups.google.com/group/mongodb-user/browse_thread/thread/e2b4a5d198b398cf/547e3f3206c5dd37?lnk=gst&q=funadvice#547e3f3206c5dd37
http://www.yasabe.com/
http://en.loteriafutbol.com/
http://www.kehalim.com/
http://www.squarespace.com/
http://www.givemebeats.net
http://www.chemeo.com
http://chemeo.com/doc/technology
http://www.planetaki.com/
http://www.samlown.com/en/planetaki_powered_by_mongodb
https://rowfeeder.com
http://www.slideshare.net/dacort/mongodb-realtime-data-colleciton-and-stats-generation
http://www.minimedrec.com/

 is a restaurant data and food ordering platform that provides aOpen Dining Network
RESTful API to take web and mobile orders. MongoDB is used to manage all
restaurant, customer, and order information.

 is a small web application to create and share list of links. The web applicationURLi.st
is coded in Python (using the pylons framework) and uses MongoDB (with pymongo
1.6) in production to power its data layer.

 is a community to share collections of things you love. Pinterest is built inPinterest
Python and uses MongoDB for its internal analytics tools and huge data sets like
contacts imported from gmail and yahoo.

LearnBoost is a free and amazing web app that leverages MongoDB for itsgradebook
data storage needs. LearnBoost is the creator of , a JavaScript async ORMMongoose
for MongoDB that is flexible, extensible and simple to use.

Mongoose - LearnBoost blog (May 2010)

 is a safe online playground for children up to 13, with advanced parentalKidiso
controls. In the current setup, we are using MongoDB for logging, analysis tasks, and
background jobs that aggregate data for performance (ie search results and allowed
content).

 provides an open platform that aggregates carbon and green houseCarbon Calculated
gas emissions for everything in the world, from passenger transport, raw materials,
through to consumer goods. Built on top of this platform, Carbon Calculated offers a
suite of products that make carbon calculation accessible and intuitive.

 is a simple platform for telling the world about all the people, places and thingsVowch
that matter most to you. It is a platform for making positive, public endorsements for
anyone or anything from a Twitter account.

View a vowch for MongoDB: http://vow.ch/2ij

 is the most comprehensive health and wellness portal available inHolaDoctor.com
Spanish for the global online Hispanic community. MongoDB is being used to store all
the content for the site, including GridFS to store article images. Session data is also
being persisted on our MongoDB cluster using a custom PHP save handler.

 is the first Russian public spending monitoring project. It includesRos Spending
information about 1,400,000 federal government and 210,000 regional government
contracts, as well as information about more than 260,000 suppliers and 26,000
customers. MongoDB stores all reports, customer and supplier information, stats and
pre-cached queries. The project was initiated by the Institute of Contemporary

 and launched publicly in July 2010 during the Tver economic forum.Development

 designs and develops iPhone and iPad applications and specializes inBlueSpark
Adobe Flash development, we have a passion for creating great user experiences and
products that feel simple to use.

 is a time attendance application specially designed for the requirements of the[Aghora]
Brasilian governmental requirements. Our whole application is based on PHP and
MongoDB. for more information.Click here

Man of the House is the real man's magazine, a guide for the jack of all trades trying to
be better – at work and at home, as a father and as a husband. The entire backend of
the site depends on MongoDB.

http://www.opendining.net/
http://urli.st/
http://pinterest.com/
http://www.learnboost.com/
http://github.com/learnboost
http://www.learnboost.com/mongoose/
http://www.kidiso.com/
http://www.carboncalculated.com/
http://vow.ch/
http://vow.ch/2ij
http://holadoctor.com/es/
http://www.rosspending.ru
http://www.insor-russia.ru/en/_about_us
http://www.insor-russia.ru/en/_about_us
http://bluespark.co.nz/
http://bit.ly/cajdYS
http://manofthehouse.com/

PeerIndex is an algorithmic authority ranking web service that uses MongoDB to scale
processing of the firehose of social media, as a distributed data store and middle cache
for fast site performance.

sahibinden.com is an online classifieds marketplace that serves more than 14.5 million
unique visitors and over 1.5 billion pageviews a month. sahibinden.com is using
MongoDB for storing classifieds data and caching.

Remembersaurus is a flashcard website targeted at language learners which helps the
learners focus on the cards that they are having the hardest time remembering.We're
using MongoDB for all of our backend storage, but it's been particularly useful for
helping log how well each user knows each of the cards they are studying.

Shadelight is a unique fantasy roleplaying game where you play one of the legendary
Guardians of Elumir. Set out on magical quests, battle mysterious creatures and
explore a truly unique fantasy world.

Ylastic is using MongoDB extensively in production. For example, MongoDB powers
Ylastic's monitors capability.

BRAINREPUBLIC is a social network for anyone to wants to talk face-to-face - or just
audio or chat - with like-minded people from anywhere at anytime.

Friendmaps is a tool that allows users to view all of their social networks on a single
map.

The affiliate marketing platform has gone live using MongoDB as the mainJounce
storage solution for its search data. As of August 2010, ~10 million offers are stored in
the database.

Virb Looking for a place to park your portfolio, your band, your website? Build an
elegantly simple website with Virb. You provide the content, we’ll help with the rest —
for only $10/month.

Deal Machine is a streamlined CRM that makes sales fun and effective. We use
MongoDB as our main storage. It has helped us a lot to make the web app better and
more scalable.

arrivalguides.com is the largest network of free online (and pdf) travel guides.
arrivalguides.com recently launched a new site where they rewrote the whole
application switching from SQL server to MongoDB using the NoRM Driver for C#. The
website is purely driven by MongoDB as the database backend.

The Hype Machine keeps track of emerging music on the web. We use MongoDB to
accelerate storage and retrieval of user preferences, and other core site data.
MongoDB's web-native design and high performance in our workloads was what got
our attention. It's from the future!

http://www.peerindex.net/
http://www.sahibinden.com/
http://remembersaurus.com/
http://playshadelight.com/
http://ylastic.com/
http://www.brainrepublic.com/
http://www.friendmaps.com/
http://www.jounce.com/
http://virb.com/
http://dealmachine.net/
http://beta.arrivalguides.com/en
http://hypem.com/

Scrabbly is a massively multiplayer online crossword. Uses MongoDBscrabble
geospatial indexing.

Building a Scrabble MMO in 48 Hours - Startup Monkeys Blog (September
2010)

ChatPast synchronizes your chat history from multiple chat clients (Live, Skype, etc.),
across multiple computers. Search them, slice them, and get just the data you want.
Find everything you've ever talked about. Business users can push important IM
conversations into SalesForce and 37 Signals products (Highrise, BaseCamp, etc)
seamlessly.

Stockopedia initially began using MongoDB for its internal analytics system - tracking
all activity around 20000+ stocks, sectors and investment topics. Stockopedia is now
confidently using the same foundation for building real time analytics, recommendation,
categorization and discovery features for both publishers and investors conducting and
publishing investment research on the Stockopedia platform.

TravelPost is a community built by travel enthusiasts for travel enthusiasts. Today, the
site has millions of reviews, photos and blogs. TravelPost uses MongoDB for backend
storage and analytics applications.

SoulGoal stores or caches all user data and facebook information in MongoDB.

Top Twitter Trends is an experimental and on-going project built with today's trending
and cutting-edge technologies such as node.js, nginx, and MongoDB.

bongi.mobi is a place for you to build your own mobi free site from your mobile device!
Technologies include: fast document orientated database (MongoDB), full handset
detection, image/font resizing (based on handset capabilities), mobile ad serving,
geolocation, multimedia (images, video, music), analytics and tracking, click-2-call,
SMS, email modules, 3rd party API integration.

CoStore is an online platform for data exchange, collaboration and data entry. CoStore
helps you with importing, transforming and collaborating on all sorts of data files.
CoStore also provides reporting tools, such as charts, graphs and network
visualizations. CoStore runs in the browser, so you can access it wherever you need it.
MongoDB is used as the backend; it stores the data and also runs query steps, which
are MapReduce operations.

Vuzz answers questions like "What are everyone else's opinions?" through showing
people's ranking charts. At Vuzz, people can vote, talk about, create and share
rankings, and communicate with people that share the same interests as you. By
adding up people's votes and showing ranking charts, Vuzz wants to be your time
machine that shows people's interests and changes in trend from the past to current.
Vuzz has been listed on and . Vuzz uses MongoDB as theKillerstartups jp.Techcrunch
main applicatin database.

Bakodo is a barcode search engine with a social component that helps users make
informed decisions while they are shopping. Users can scan barcodes using the
camera in their mobile phone and get information about the products they are looking
at: where to buy it, lower prices, local stores, and most importantly, what their friends
think about it. Bakodo uses MongoDB to store their massive index of million of
products.

See also

MongoDB Apps
Use Cases
User Feedback

http://scrabb.ly/
http://www.startupmonkeys.com/2010/09/building-a-scrabble-mmo-in-48-hours/
http://chatpast.com/
http://www.stockopedia.co.uk/
http://www.travelpost.com
http://soulgoal.com/
http://www.toptwittertrends.com/
http://bongi.mobi/
http://costore.net/
http://vuzz.com
http://www.killerstartups.com/Web20/vuzz-com-share-what-you-like-with-everybody
http://jp.techcrunch.com/archives/jp-20100922-vuzz-is-a-social-ranking-site-that-can-vote-what-do-you-want-to-eat-today/
http://bako.do

Mongo-Based Applications

Please list applications that leverage MongoDB here. If you're using MongoDB for your application, we'd love to list you here! Email
meghan@10gen.com.

See Also

Production Deployments - Companies and Sites using MongoDB
Hosting Center

Applications Using MongoDB

CMS

HarmonyApp

Harmony is a powerful web-based platform for creating and managing websites. It helps connect developers with content editors, for
unprecedented flexibility and simplicity. For more information, view Steve Smith's presentation on Harmony at (April 2010).MongoSF

c5t

Content-management using TurboGears and Mongo

Websko

Websko is a content management system designed for individual Web developers and cooperative teams.

Graylog2

Graylog2 is an open source syslog server implementation that stores logs in MongoDB and provides a Rails frontend.

Analytics

Hummingbird

Hummingbird is a real-time web traffic visualization tool developed by Gilt Groupe

Events

Follow us on and to get all of the latest updates!Facebook Twitter

Mongo Conferences 10gen Weekly "Office
Hours"

Submit a proposal to present at an upcoming MongoDB conference!

Mongo Berlin October 4

One day, bilingual conference in Berlin, Germany. Talks in both
English and German.
Click here for conference agenda and registration.

Mongo Chicago October 20

One day conference in Chicago, IL.
Click here for conference agenda and registration.

Mongo DC November 18

One day conference in Washington, DC.
Click here for conference agenda and registration.

New York: Wednesdays 4 - 6:30pm ET

10gen holds weekly open "office hours" with whiteboarding, hack
sessions, etc., in NYC. Come over to 10gen headquarters to
meet the MongoDB team.

17 West 18th Street - 8th Floor
Between 5th & 6th Ave
* Please note that the doorbell says "ShopWiki"

San Francisco: Mondays 5 - 7pm PT

On the west coast? Stop by the Epicenter Cafe in San Francisco
on Mondays to meet 10gen Software Engineer Aaron Staple.
Look for a laptop with a "Powered by MongoDB" sticker.

Epicenter Cafe
764 Harrison St
Between 4th St & Lapu St

http://get.harmonyapp.com/
http://www.10gen.com/event_mongosf_10apr30#harmonyapp
http://bitbucket.org/percious/c5t/wiki/Home
http://websko.pl/
http://www.graylog2.org/
http://mnutt.github.com/hummingbird/
http://www.facebook.com/#!/pages/MongoDB/397955415556
http://www.twitter.com/mongodb
http://www.10gen.com/talkproposal
http://www.10gen.com/conferences/mongoberlin2010
http://www.10gen.com/conferences/mongochicago2010
http://www.10gen.com/conferences/mongodc2010
https://www.10gen.com/
http://www.epicentercafe.com/Epicenter_Cafe/Home.html

Mongo SV December 3

One day conference in Mountain View, CA
Click here for conference agenda and registration.

MongoDB Webinars Training

Deployment Best Practices

October 12 at 12:30pm ET / 9:30am PT
Register

Keeping your data safe: replication,
backup/restore, mongodump

November 1 at 12:30pm ET / 9:30am PT
Register

San Francisco

MongoDB Training for Administrators
September 28 & 29
More Info and Registration

Check out the MongoDB Meetup groups:

New York MongoDB User Group San Francisco MongoDB User Group

Conferences and
Meetups

United States Europe Asia

Northeast

Databases and Data Driven
Applications Series 1, Class 1:
Intro to OOP
girldevelopit
October 6 - October 27
New York, NY

Mongo and Ecommerce: A
Perfect Combination
Steve Francia, VP Engineering,
OpenSky
New York MongoDB User Group
October 19

Midwest

Mongo Chicago October 20
One day conference in Chicago,
IL.
Click here for conference agenda
and registration.

Inside MongoDB: The Internals
of an Open Source Database
Eliot Horowitz, CTO, 10gen
ChicagoDB
October 18

West Coast

Silicon Valley NoSQL Meetup
A NoSQL Evening in Palo Alto
Palo Alto, CA
October 26

ZendCon 2010
Converting your MySQL app to
NoSQL with MongoDB
MongoDB for Mobile
Applications
Alvin Richards, 10gen
Santa Clara, CA
November 2

QCon 2010
Consistency Models in New
Generation Databases
Dwight Merriman, 10gen
San Francisco, CA
November 4

Southwest

South

Introduction to MongoDB
Mohammad Azam, Sogeti
Houston Tech Fest

Mongo - one year later
Marcin Szajek (Programa.pl) and
Mciej Dziardziel (Adwertajzing)
PyCon Ukraine
October 23-24

MongoDB - The NoSQL
madness continues
Jan Krutisch
Codebits
Lisbon
November 11-13

Building Web Applications with
MongoDB
Roger Bodamer, SVP Products
and Engineering, 10gen
Devoxx
Metropolis Antwerp, Belgium
November 15

http://www.10gen.com/conferences/mongosv2010
http://www.10gen.com/webinars/deployment
http://www.10gen.com/webinars/migration
http://www.10gen.com/training
http://www.meetup.com/r/inbound/0/0/shareimg/http://www.meetup.com/New-York-MongoDB-User-Group/?a=shareimg
http://www.meetup.com/r/inbound/0/0/shareimg/http://www.meetup.com/an-Francisco-MongoDB-User-Group/?a=shareimg
http://www.meetup.com/New-York-MongoDB-User-Group/
http://www.meetup.com/San-Francisco-MongoDB-User-Group
http://www.meetup.com/girldevelopit/calendar/14842420/
http://www.meetup.com/girldevelopit/calendar/14842420/
http://www.meetup.com/girldevelopit/calendar/14842420/
http://www.meetup.com/New-York-MongoDB-User-Group/calendar/14481853/
http://www.meetup.com/New-York-MongoDB-User-Group/calendar/14481853/
http://www.10gen.com/conferences/mongochicago2010
http://www.10gen.com/conferences/mongochicago2010
http://gathers.us/events/chicagodb-october-meeting
http://www.meetup.com/Silicon-Valley-NoSQL/calendar/14727419/
http://zendcon.com/
http://qconsf.com/sf2010/presentation/Consistency+Models+in+New+Generation+Databases
http://www.houstontechfest.com/dotnetnuke/HoustonTechFest/Sessions/tabid/56/CodecampId/3/SessionId/205/Default.aspx
http://ua.pycon.org/
http://codebits.eu/intra/s/proposal/54
http://codebits.eu/intra/s/proposal/54
http://www.devoxx.com/display/Devoxx2K10/Building+Web+Applications+with+MongoDB
http://www.devoxx.com/display/Devoxx2K10/Building+Web+Applications+with+MongoDB

October 9

Media from Recent Events and Conferences

Slide Gallery | More Presentations and Video

If you're interested in having someone present MongoDB at your conference or meetup, or if you would like to list your MongoDB event on this
page, contact meghan at 10gen dot com. Want some MongoDB stickers to give out at your talk? Complete the .Swag Request Form

Video & Slides from Recent Events and Presentations

Table of Contents:

[] [] [] [] [] []MongoDB Conferences Ruby/Rails Python Alt.NET User Experiences More about MongoDB

MongoDB Conferences

One-day conferences hosted by . 10gen develops and supports MongoDB.10gen

MongoUK Video (June 2010)
MongoFR Video (June 2010)
MongoNYC (May 2010) and MongoSF (April 2010) Video
MongoSF (April 2010) Slides & Video

Ruby/Rails

Practical Ruby Projects with MongoDB
Alex Sharp, OptimisCorp
Ruby Midwest - June 2010

Scalable Event Analytics with MongoDB and Ruby
Jared Rosoff, Yottaa
RubyConfChina - June 26, 2010

The MongoDB Metamorphosis (Kyle Banker, 10gen)
 (Obie Fernandez & Durran Jordan, Hashrocket)Million Dollar Mongo

 (Blythe Dunham)Analyze This!
RailsConf
Baltimore, MD
June 7-10

MongoDB
Seth Edwards
London Ruby Users Group
London, UK
Wednesday April 14
Video & Slides

MongoDB: The Way and its Power
Kyle Banker, Software Engineer, 10gen
RubyNation
Friday April 9 & Saturday April 10
Reston, VA

 | Slides Video

MongoDB Rules
Kyle Banker, Software Engineer, 10gen
Mountain West Ruby Conference
Salt Lake City, UT
Thursday March 11 & Friday March 12
Slides

MongoDB & Mongoid
Durran Jordan, Hashrocket
RubyJax
February 23, 2010
Video

http://www.10gen.com/swag
http://www.10gen.com/
http://skillsmatter.com/event/cloud-grid/mongouk
http://lacantine.ubicast.eu/categories/mongofr/
http://mongodb.blip.tv/
http://www.10gen.com/event_mongosf_10apr30
http://www.slideshare.net/drumwurzel/practical-ruby-projects-with-mongo-db-ruby-midwest-4777566
http://www.slideshare.net/jrosoff/scalable-event-analytics-with-mongodb-ruby-on-rails
http://en.oreilly.com/rails2010/public/schedule/detail/12005
http://en.oreilly.com/rails2010/public/schedule/detail/11265
http://en.oreilly.com/rails2010/public/schedule/detail/14166
http://en.oreilly.com/rails2010
http://lrug.org/meetings/2010/03/19/april-2010-meeting/
http://skillsmatter.com/podcast/ajax-ria/seth-edwards-mongodb/zx-486
http://rubynation.org/speakers#kyle_banker
http://www.slideshare.net/kbanker/mongodb-the-way-and-its-power
http://rubynation.blip.tv/file/3664683/
http://mtnwestrubyconf.org/2010/
http://www.slideshare.net/kbanker/mongodb-rules-mwrc-2010
http://vimeo.com/9864311

MongoDB Isn't Water
Kyle Banker, Software Engineer, 10gen
Chicago Ruby
February 2, 2010

 | | Video Slides Photos

Introduction to Mongo DB
Joon Yu, RubyHead
teachmetocode.com
Nov-Dec, 2009
Screencasts

Python

How Python, TurboGears, and MongoDB are Transforming SourceForge.net
Rick Copeland, SourceForge.net
PyCon - Atlanta, GA
February 21, 2010
Slides

Alt.NET

.NET and MongoDB - Building Applications with NoRM and MongoDB
Alex Hung
July 28, 2010

User Experiences

The Future of Content Technologies
Scaling Web Applications with NonSQL Databases: Business Insider Case Study
Ian White, Lead Developer, Business Insider
Gilbane Conference
San Francisco, CA
Thursday, May 20
Slides

Chartbeat and MongoDb - a perfect marriage
Kushal Dave, CTO, Chartbeat & Mike Dirolf, Software Engineer, 10gen
New York City Cloud Computing Meetup
New York, NY
May 18
Slides

Why MongoDB is Awesome
John Nunemaker, CTO, Ordered List
DevNation Chicago
May 15
Slides

Humongous Data at Server Density: Approaching 1 Billion Documents in MongoDB
David Mytton, Founder, Boxed Ice
Webinar
Wednesday May 5
Recording & Slides

Humongous Drupal
DrupalCon San Francisco
Karoly Negyesi, Examiner.com
Saturday April 17

 | Slides Video

MongoDB: huMONGOus Data at SourceForge
Mark Ramm, Web Developer, SourceForge
QCon London
Thursday March 11
Slides

Migrating to MongoDB
Bruno Morency, DokDok
Confoo.ca
March 10 - 12
Slides

http://vimeo.com/9173770
http://www.slideshare.net/kbanker/mongodb-isnt-water-3072252
http://picasaweb.google.com/jangdiafoto/ChicagoRuby20100202#
http://blog.rubyhead.com/
http://www.teachmetocode.com/screencasts/tag/mongoDB
http://us.pycon.org/2010/conference/schedule/event/110/
http://vimeo.com/13804625
http://gilbanesf.com/conference_program.html#t8
http://www.slideshare.net/ibwhite/how-business-insider-uses-mongodb
http://www.meetup.com/nyccloudcomputing/calendar/13253018/
http://docs.google.com/present/view?id=0AbjNQDixwHSzZGhrOG5yMnJfNDZncmd2c3dnNg&hl=en
http://www.slideshare.net/jnunemaker/why-mongodb-is-awesome
http://www.10gen.com/webinars/event_boxedice_10may5
http://sf2010.drupal.org/conference/core-developer-summit
http://www.examiner.com/
http://www.slideshare.net/chx1975/mongodb-san-francisco-drupalcon-2010
http://www.archive.org/details/Mongodb-HumongousDrupal
http://qconlondon.com/london-2010/presentation/MongoDB:+huMONGOus+Data+at+SourceForge
http://qconlondon.com/london-2010/file?path=/qcon-london-2010/slides/MarkRamm_MongoDBHuMONGOusDataAtSourceForge.pdf
http://www.confoo.ca/en/2010/session/migrating-to-mongodb
http://www.slideshare.net/dokdok/confoo-migrating-to-mongo-db

More about MongoDB

Recording of Michael Dirolf on MongoDB @ E-VAN 07 June 2010

NoSQL-Channeling the Data Explosion
Dwight Merriman, CEO, 10gen
Inside MongoDB: the Internals of an Open-Source
Mike Dirolf, Software Engineer, 10gen
Gluecon
Denver, CO
Wednesday May 26 & Thursday May 27

Schema Design with MongoDB
Kyle Banker, Software Engineer, 10gen
Webinar
Tuesday April 27
Recording and Slides

Dropping ACID with MongoDB
Kristina Chodorow, Software Engineer, 10gen
San Francisco MySQL Meetup
San Francisco, CA
Monday, April 12
Video

Introduction to MongoDB
Mike Dirolf, Software Engineer, 10gen
Emerging Technologies for the Enterprise Conference
Philadelphia, PA
Friday, April 9
Slides

Indexing with MongoDB
Aaron Staple, Software Engineer, 10gen
Webinar
Tuesday April 6, 2010

 | Video Slides

TechZing Interview with Mike Dirolf, Software Engineer, 10gen
Monday, April 5
Podcast

Hot Potato and MongoDB
New York Tech Talks Meetup
Justin Shaffer and Lincoln Hochberg
New York, NY
Tuesday March 30
Video

MongoDB Day
Geek Austin Data Series
Austin, TX
Saturday March 27
Photo

Mongo Scale!
Kristina Chodorow, Software Engineer, 10gen
Webcast
Friday March 26
Webcast

NoSQL Live Boston
Boston, MA
Thursday March 11
Recap with slides and MP3

MongoDB: How it Works
Mike Dirolf, Software Engineer, 10gen
Monday March 8, 12:30 PM Eastern Time
Slides

Intro to MongoDB
Alex Sharp, Founder / Lead Software Architect, FrothLogic

http://europevan.blogspot.com/2010/06/recording-of-michael-dirolf-on-mongodb.html
http://www.slideshare.net/mongodb/nosql-session-gluecon-may-2010
http://dirolf.com/2010/05/27/inside-mongodb.html
http://www.10gen.com/event_schemadesign_10apr27
http://www.sfmysql.org/calendar/12622481/?eventId=12622481&action=detail
http://www.ustream.tv/recorded/6146875
http://phillyemergingtech.com/sessions/intro-to-mongodb
http://www.chariotsolutions.com/downloads/presentations/show/309
http://www.10gen.com/event_indexing_10apr6
http://vivu.tv/portal/archive.jsp?flow=783-586-4282&id=1270584002677
http://www.slideshare.net/mongodb/indexing-with-mongodb
http://techzinglive.com/?p=192
http://www.meetup.com/NYC-Tech-Talks/calendar/12754545/
http://www.livestream.com/nytechtalks
http://geekaustin.org/2010/01/31/mongodb-day-geek-austin-data-series
http://www.flickr.com/photos/patramsey/4482017141/
http://www.phparch.com/tek�x-webcast-series/
http://www.phparch.com/2010/04/27/webcast-mongo-scale/
http://nosqlboston.eventbrite.com/
http://blog.10gen.com/post/452801966/nosql-live-boston-recap
http://www.slideshare.net/mdirolf/mongodb-how-it-works

LA WebDev Meetup
February 23, 2010
Slides

Introduction to MongoDB
Kristina Chodorow, Software Engineer, 10gen
FOSDEM - Brussels, Belgium
February 7, 2010

 | | Video Slides Photos

If you're interested in having someone present MongoDB at your conference or meetup, or if you would like to list your MongoDB event on this
page, contact meghan at 10gen dot com.

Slide Gallery

 to visit our full listing of videos & slides from recent events and presentations.Click here

Introduction to MongoDB User Experience

 | Get your SlideShare Playlist | Get your SlideShare Playlist

Ruby/Rails Python

 | Get your SlideShare Playlist | Get your SlideShare Playlist

Java PHP

 | Get your SlideShare Playlist | Get your SlideShare Playlist

MongoDB & Cloud Services More About MongoDB

 | Get your SlideShare Playlist | Get your SlideShare Playlist

Articles

See also the page for community presentations, blog posts, and more.User Feedback

Best of the MongoDB Blog

What is the Right Data Model? - (for non-relational databases)
Why Schemaless is Good
The Importance of Predictability of Performance
Capped Collections - one of MongoDB's coolest features
Using MongoDB for Real-time Analytics
Using MongoDB for Logging
http://blog.mongodb.org/tagged/best+of

Articles / Key Doc Pages

On Atomic Operations
Reaching into Objects - how to do sophisticated query operations on nested JSON-style objects
Schema Design
Full Text Search in Mongo
MongoDB Production Deployments

Videos

MongoDB Blip.tv Channel

http://www.slideshare.net/drumwurzel/intro-to-mongodb
http://www.parleys.com/#sl=1&st=5&id=1864
http://www.scribd.com/doc/26506063/Introduction-To-MongoDB
http://www.snailinaturtleneck.com/blog/2010/02/08/fosdem-some-pictures/
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://blog.mongodb.org/post/142940558/what-is-the-right-data-model
http://blog.mongodb.org/post/119945109/why-schemaless
http://blog.mongodb.org/post/133678552/databases-and-predictability-of-performance
http://blog.mongodb.org/post/116405435/capped-collections
http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics
http://blog.mongodb.org/post/172254834/mongodb-is-fantastic-for-logging
http://blog.mongodb.org/tagged/best+of
http://mongodb.blip.tv/

MongoDB for Rubyists (February 2010 Chicago Ruby Meetup)
Introduction to MongoDB (FOSDEM February 2010)
NY MySql Meetup - NoSQL, Scaling, MongoDB
Teach Me To Code - Introduction to MongoDB
DCVIE

Benchmarks

If you've done a benchmark, we'd love to hear about it! Let us know at .kristina at 10gen dot com

March 9, 2010 - benchmarks creating, editing, and deleting.Speed test between django_mongokit and postgresql_psycopg2

February 15, 2010 - flatfile, Memcached, MySQL, Redis, and MongoDB compared.Benchmarking Tornado's Sessions

January 23, 2010 - and against MySQL, CouchDB, and Memcached.Inserts queries

May 10, 2009 - MongoDB vs. CouchDB vs. Tokyo Cabinet

July 2, 2009 - MongoDB vs. MySQL

September 25, 2009 - inserts using Java.MongoDB

August 11, 2009 - inserts and queries using PHP.MySQL vs. MongoDB vs. Tokyo Tyrant vs. CouchDB

August 23, 2009 - MySQL vs. MongoDB in PHP: , , aginst InnoDB with and without the query log and MyISAM.Part 1 (inserts) Part 2 (queries)

November 9, 2009 - MySQL vs. MongoDB in PHP and Ruby inserts (,)original Russian English translation

Disclaimer: these benchmarks were created by third parties not affiliated with MongoDB. MongoDB does not guarantee in any way the
correctness, thoroughness, or repeatability of these benchmarks.

See Also

http://blog.mongodb.org/post/472834501/mongodb-1-4-performance

FAQ

This FAQ answers basic questions for new evaluators of MongoDB. See also:

Developer FAQ
Sharding FAQ

MongoDB Intro FAQ

MongoDB Intro FAQ
What kind of database is the Mongo database?
What languages can I use to work with the Mongo database?
Does it support SQL?
Is caching handled by the database?
What language is MongoDB written in?
What are the 32-bit limitations?

What kind of database is the Mongo database?

MongoDB is an document-oriented DBMS. Think of it as MySQL but JSON (actually,) as the data model, not relational. There are noBSON
joins. If you have used object-relational mapping layers before in your programs, you will find the Mongo interface similar to use, but faster, more
powerful, and less work to set up.

What languages can I use to work with the Mongo database?

Lots! See the page.drivers

Does it support SQL?

No, but MongoDB does support ad hoc queries via a JSON-style query language. See the and pages for moreTour Advanced Queries
information on how one performs operations.

Is caching handled by the database?

http://vimeo.com/9173770
http://www.parleys.com/#id=1864&st=5&sl=2
http://www.leadit.us/hands-on-tech/MongoDB-High-Performance-SQL-Free-Database
http://www.teachmetocode.com/screencasts/21
http://ia301535.us.archive.org/2/items/dc_vie_09/dcvie09_mungo_db.ogg
http://www.peterbe.com/plog/speed-test-between-django_mongokit-and-postgresql_psycopg2
http://milancermak.posterous.com/benchmarking-tornados-sessions-0
http://www.idiotsabound.com/howd-that-mongo-get-so-fast
http://www.idiotsabound.com/did-i-mention-mongodb-is-fast-way-to-go-mongo
http://bcbio.wordpress.com/2009/05/10/evaluating-key-value-and-document-stores-for-short-read-data/
http://obvioushints.blogspot.com/2009/07/benchmarking-mongodb-vs-mysql.html
http://thinkberg.com/space/start/2009-09-25/1
http://jayant7k.blogspot.com/2009/08/document-oriented-data-stores.html
http://blog.jasonmooberry.com/2009/08/mongodb-and-symfony-yes-part-1-inserts/
http://blog.jasonmooberry.com/2009/08/mongodb-and-symfony-yes-part-2-simple-queries/
http://habrahabr.ru/blogs/webdev/74683/
http://translate.google.com/translate?js=y&prev=_t&hl=en&ie=UTF-8&u=http%3A%2F%2Fbit.ly%2F4D4Cd3&sl=auto&tl=en&history_state0=
http://blog.mongodb.org/post/472834501/mongodb-1-4-performance

For simple queries (with an index) Mongo should be fast enough that you can query the database directly without needing the equivalent of
memcached. The goal is for Mongo to be an alternative to an stack. Some MongoDB users do like to mix it withORM/memcached/mysql
memcached though.

What language is MongoDB written in?

The database is written in C++. Drivers are usually written in their respective languages, although some use C extensions for speed.

What are the 32-bit limitations?

MongoDB uses memory-mapped files. When running on a 32-bit operating system, the total storage size for the server (data, indexes,
everything) is 2gb. If you are running on a 64-bit os, there is virtually no limit to storage size. See for more information.the blog post

Product Comparisons

Interop Demo (Product Comparisons)

Interop 2009 MongoDB Demo

Code: http://github.com/mdirolf/simple-messaging-service/tree/master

MongoDB, CouchDB, MySQL Compare Grid

pending...

 CouchDB MongoDB MySQL

Data Model Document-Oriented () JSON Document-Oriented () BSON Relational

Data Types string,number,boolean,array,object string, int, double, boolean, date,
bytearray, object, array, others

link

Large Objects
(Files)

Yes (attachments) Yes () GridFS blobs?

Horizontal
partitioning
scheme

CouchDB Lounge Auto-sharding (v1.6) ?

Replication Master-master (with developer supplied
conflict resolution)

Master-slave (and " ") replica sets Master-slave

Object(row)
Storage

One large repository Collection based Table based

Query Method Map/reduce of javascript functions to lazily
build an index per query

Dynamic; object-based query
language

Dynamic; SQL

Secondary
Indexes

Yes Yes Yes

Atomicity Single document Single document Yes - advanced

Interface REST ; REST Native drivers add-on Native drivers

Server-side
batch data
manipulation

? Map/Reduce, server-side javascript Yes (SQL)

Written in Erlang C++ C++

Concurrency
Control

MVCC Update in Place

Geospatial
Indexes

 GeoCouch . (As of June 2010, coordinateYes
system is cartesian. Spherical coming
soon.)

?

http://blog.mongodb.org/post/137788967/32-bit-limitations
http://github.com/mdirolf/simple-messaging-service/tree/master
http://www.json.org/
http://blog.mongodb.org/post/114440717/bson
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/
http://vmx.cx/cgi-bin/blog/index.cgi/geocouch-the-future-is-now:2010-05-03:en,CouchDB,Python,Erlang,geo

Distributed
Consistency
Model

Eventually consistent (master-master
replication with versioning and version
reconciliation)

Strong consistency. Eventually
consistent reads from secondaries are
available.

Strong consistency. Eventually
consistent reads from secondaries are
available.

See Also

Comparing Mongo DB and Couch DB

Comparing Mongo DB and Couch DB

We are getting a lot of questions "how are mongo db and couch different?" It's a good question: both are document-oriented databases with
schemaless JSON-style object data storage. Both products have their place -- we are big believers that databases are specializing and "one size
fits all" no longer applies.

We are not CouchDB gurus so please let us know in the if we have something wrong.forums

MVCC

One big difference is that CouchDB is based, and MongoDB is more of a traditional update-in-place store. MVCC is very good for certainMVCC
classes of problems: problems which need intense versioning; problems with offline databases that resync later; problems where you want a large
amount of master-master replication happening. Along with MVCC comes some work too: first, the database must be compacted periodically, if
there are many updates. Second, when conflicts occur on transactions, they must be handled by the programmer manually (unless the db also
does conventional locking -- although then master-master replication is likely lost).

MongoDB updates an object in-place when possible. Problems require high update rates of objects are a great fit; compaction is not necessary.
Mongo's replication works great but, without the MVCC model, it is more oriented towards master/slave and auto failover configurations than to
complex master-master setups. With MongoDB you should see high write performance, especially for updates.

Horizontal Scalability

One fundamental difference is that a number of Couch users use replication as a way to scale. With Mongo, we tend to think of replication as a
way to gain reliability/failover rather than scalability. Mongo uses (auto) sharding as our path to scalabity (sharding is GA as of 1.6). In this sense
MongoDB is more like Google BigTable. (We hear that Couch might one day add partitioning too.)

Query Expression

Couch uses a clever index building scheme to generate indexes which support particular queries. There is an elegance to the approach, although
one must predeclare these structures for each query one wants to execute. One can think of them as materialized views.

Mongo uses traditional dynamic queries. As with, say, MySQL, we can do queries where an index does not exist, or where an index is helpful but
only partially so. Mongo includes a query optimizer which makes these determinations. We find this is very nice for inspecting the data
administratively, and this method is also good when we want an index: such as insert-intensive collections. When an index correspondsdon't
perfectly to the query, the Couch and Mongo approaches are then conceptually similar. We find expressing queries as JSON-style objects in
MongoDB to be quick and painless though

Atomicity

Both MongoDB and CouchDB support . Both forego complex transactions involving large numbersconcurrent modifications of single documents
of objects.

Durability

The products take different approaches to durability. CouchDB is a "crash-only" design where the db can terminate at any time and remain
consistent. MongoDB take a different approach to durability. On a machine crash, one then would run a repairDatabase() operation when
starting up again (similar to MyISAM). MongoDB recommends using replication -- either LAN or WAN -- for true durability as a given server could
permanently be dead. To summarize: CouchDB is better at durability when using a single server with no replication.

Map Reduce

Both CouchDB and MongoDB support map/reduce operations. For CouchDB map/reduce is inherent to the building of all views. With MongoDB,
map/reduce is only for data processing jobs but not for traditional queries.

Javascript

Both CouchDB and MongoDB make use of Javascript. CouchDB uses Javascript extensively including in the building of .views

MongoDB supports the use of Javascript but more as an adjunct. In MongoDB, query expressions are typically expressed as JSON-style query
objects; however one may also specify a as part of the query. MongoDB also supports javascript expression running arbitrary javascript functions

http://blog.mongodb.org/post/475279604/on-distributed-consistency-part-1
http://blog.mongodb.org/post/475279604/on-distributed-consistency-part-1
http://blog.mongodb.org/post/475279604/on-distributed-consistency-part-1
http://groups.google.com/group/mongodb-user/browse_thread/thread/757d7f1e5f1765e8
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views

 and uses javascript for operations.server-side map/reduce

REST

Couch uses REST as its interface to the database. With its focus on performance, MongoDB relies on language-specific database drivers for
access to the database over a proprietary binary protocol. Of course, one could add a REST interface atop an existing MongoDB driver at any
time -- that would be a very nice community project. Some early stage REST implementations exist for MongoDB.

Performance

Philosophically, Mongo is very oriented toward performance, at the expense of features that would impede performance. We see Mongo DB
being useful for many problems where databases have not been used in the past because databases are too "heavy". Features that give
MongoDB good performance are:

client driver per language: native socket protocol for client/server interface (not REST)
use of memory mapped files for data storage
collection-oriented storage (objects from the same collection are stored contiguously)
update-in-place (not MVCC)
written in C++

Use Cases

It may be helpful to look at some particular problems and consider how we could solve them.

if we were building Lotus Notes, we would use Couch as its programmer versioning reconciliation/MVCC model fits perfectly. Any
problem where data is offline for hours then back online would fit this. In general, if we need several eventually consistent master-master
replica databases, geographically distributed, often offline, we would use Couch.
if we had very high performance requirements we would use Mongo. For example, web site user profile object storage and caching of
data from other sources.
for a problem with very high update rates, we would use Mongo as it is good at that. For example, updating real time analytics counters
for a web sites (pages views, visits, etc.)

Generally, we find MongoDB to be a very good fit for building web infrastructure.

Licensing

If you are using a vanilla MongoDB server from either source or binary packages you have NO obligations. You can ignore the
rest of this page.

MongoDB Database
Free Software Foundation's .GNU AGPL v3.0
Commercial licenses are also available from .10gen

Drivers:
mongodb.org "Supported Drivers": .Apache License v2.0
Third parties have created too; licenses will vary there.drivers

Documentation: .Creative Commons

From our on the AGPL:blog post

Our goal with using AGPL is to preserve the concept of copyleft with MongoDB. With traditional GPL, copyleft was associated
with the concept of distribution of software. The problem is that nowadays, distribution of software is rare: things tend to run in
the cloud. AGPL fixes this “loophole” in GPL by saying that if you use the software over a network, you are bound by the
copyleft. Other than that, the license is virtually the same as GPL v3.

Note however that it is required that applications using mongo be published. The copyleft applies only to the mongod andnever
mongos database programs. This is why Mongo DB drivers are all licensed under an Apache license. Your application, even
though it talks to the database, is a separate program and “work”.

If you intend to modify the server and distribute or provide access to your modified version you are required to release the full source code for the
modified MongoDB server. To reiterate, you need to provide the source for the MongoDB server and not your application (assuming you useonly
the provided interfaces rather than linking directly against the server).

A few example cases of when you'd be required to provide your changes to MongoDB to external users:

Case Required

Hosting company providing access MongoDB servers yes

Public-facing website using MongoDB for content yes

http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics
http://www.fsf.org/licensing/licenses/agpl-3.0.html
http://www.apache.org/licenses/LICENSE-2.0
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://blog.mongodb.org/post/103832439/the-agpl

Internal use website using MongoDB no

Internal analysis of log files from a web site no

Regardless of whether you are to release your changes we request that you do. The preferred way to do this is via a fork. Thenrequired github
we are likely to include your changes so everyone can benefit.

Windows

Windows Quick Links and Reference Center

Running MongoDB on Windows

See the for info on how to install and run the database for the first time.Quickstart page

Running as a Service

See the page.Windows Service

The MongoDB Server

Get pre-built binaries on the page. Binaries are available for both 32 bit and 64 bit Windows. MongoDB uses memory-mapped files forDownloads
data storage, so for servers managing more than 2GB of data you will definitely need the 64 bit version (and a 64 bit version of Windows).

Writing Apps

You can write apps in almost any programming language – see the page. In particular C#, .NET, PHP, C and C++ work just fine.Drivers

C Sharp Language Center

Building

We recommend using the pre-built binaries, but Mongo builds fine with Visual Studio 2008 and 2010. See the page.Building for Windows

Versions of Windows

We have successfully ran MongoDB (mongod etc.) on:

Windows Server 2008 R2 64 bit
Windows 7 (32 bit and 64 bit)
Windows XP
Vista

International Docs

Most documentation for MongoDB is currently written in English. We are looking for volunteers to contribute documentation in
other languages. If you're interested in contributing to documentation in another language please email roger at 10gen dot

.com

Language Homepages

 Deutsch
 Español
 Français

[!hu.png! Magyar]
 Italiano

 Português

http://github.com/mongodb/mongo
http://www.mongodb.org/display/DOCSCN
http://www.mongodb.org/display/DOCSDE
http://www.mongodb.org/display/DOCSES
http://www.mongodb.org/display/DOCSFR
http://www.mongodb.org/display/DOCSIT
http://www.mongodb.org/display/DOCSJP
http://www.mongodb.org/display/DOCSPT
http://www.mongodb.org/display/DOCSRU

Books

Now Available

MongoDB: The Definitive Guide
By Kristina Chodorow and Mike Dirolf

Available for Pre-Order

The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing

By Peter Membrey

MongoDB for Web Development
By Mitch Pirtle

MongoDB in Action
by Kyle Banker

Doc Index

Space Index

0-9 ... 5 A ... 13 B ... 19 C ... 29

F ... 7 G ... 9 H ... 7 I ... 16

L ... 8 M ... 31 N ... 2 O ... 13

R ... 27 S ... 28 T ... 7 U ... 13

X ... 0 Y ... 0 Z ... 0 !@#$... 0

0-9

 1.0 Changelist
Wrote MongoDB. See documentation

 1.1 Development Cycle

 1.2.x Release Notes
New Features More indexes per collection Faster index creation Map/Reduce Stored
JavaScript functions Configurable fsync time Several small features and fixes DB Upgrade
Required There are some changes that will require doing an upgrade ...

 1.4 Release Notes
We're pleased to announce the 1.4 release of MongoDB. 1.4 is a drop in replacement for 1.2.
To upgrade you just need to shutdown mongod, then restart with the new binaries. (Users
upgrading from release 1.0 should review the 1.2 release notes 1.2.x ...

 1.6 Release Notes

A

 A Sample Configuration Session
following example uses two shards (one server each), one config db, and one mongos process, all running on a single
test server. In addition to the script below, a python script for starting and configuring shard components on a single
machine ...

 About

 About the local database
mongod}} reserves the database {{local}} for special functionality. It is special in that its contents are never replicated.
Using the database for enduser data You may place end user application data in local, if you would like it to not
replicate to other servers. Put ...

 Adding a New Set Member
Adding a new node to an existing replica set is easy. The new node should either have an empty data directory or a
recent copy of the data from another set member. When we start the new node, we ...

http://www.mongodb.org/display/DOCSRS
http://www.amazon.com/gp/product/1449381561?ie=UTF8&tag=wwwmongodborg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1449381561
http://www.amazon.com/gp/product/1430230517?ie=UTF8&tag=wwwmongodborg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430230517
http://www.amazon.com/gp/product/0321705335?ie=UTF8&tag=wwwmongodborg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321705335
http://manning.com/banker/

MongoDB 1.6 is a dropin replacement for 1.4. To upgrade, simply shutdown {{mongod}} then
restart with the new binaries. \ Please note that you should upgrade to the latest version of
whichever driver you're using. Certain drivers, including the Ruby driver, will require the
upgrade ...

 Adding an Arbiter
Arbiters are nodes in a replica set that only participate in elections: they don't have a copy of the data and will never
become the primary node (or even a readable secondary). They are mainly useful for breaking ties during elections
(e.g. if a set only has two members ...

 Admin UIs
Several administrative user interfaces, or GUIs, are available for MongoDB. Tim Gourley's blog
http://blog.timgourley.com/post/453680012/tuesdaynighttechmongodbuiedition has a good summary of the tools. #Fang
of Mongo Futon4Mongo http://github.com/sbellity/futon4mongo Mongo3 http://github.com/derailed/mongo3 #MongoHub
#MongoVUE Mongui ...

 Admin Zone
Community AdminRelated Articles boxedice.com notes from a production deployment
http://blog.boxedice.com/2010/02/28/notesfromaproductionmongodbdeployment/ Survey of Admin UIs for MongoDB
http://blog.timgourley.com/post/453680012/tuesdaynighttechmongodbuiedition MongoDB Nagios Check
http://tag1consulting.com/blog/mongodbnagioscheck MongoDB Cacti Graphs http://tag1consulting.com ...

 Advanced Queries
Introduction MongoDB offers a rich query environment with lots of features. This page lists some of those features.
Queries in MongoDB are represented as JSONstyle objects, very much like the documents we actually store in the
database. For example: // i.e., select ...

 Aggregation
Mongo includes utility functions which provide serverside {{count, distinct,}} and {{group by}} operations. More
advanced aggregate functions can be crafted using MapReduce http://www.mongodb.org/display/DOCS/MapReduce.
Count {{count()}} returns the number of objects ...

 Amazon EC2
MongoDB runs well on Amazon EC2 http://aws.amazon.com/ec2/ . This page includes some notes in this
regard. Instance Types MongoDB works on most EC2 types including Linux and Windows. We recommend you
use a 64 ...

 Architecture and Components
MongoDB has two primary components to the database server. The first is the mongod process which is the
core database server. In many cases, mongod may be used as a selfcontained system similar to how one would
use mysqld on a server ...

 Articles
See also the User Feedback DOCS:User Feedback page for community presentations, blog posts, and more. Best of
the MongoDB Blog What is the Right Data Model? http://blog.mongodb.org/post/142940558/whatistherightdatamodel \
(for nonrelational databases) Why Schemaless is Good http://blog.mongodb.org ...

 Atomic Operations
MongoDB supports atomic operations on single documents. MongoDB does not support traditional locking and
complex transactions for a number of reasons: First, in sharded environments, distributed locks could be expensive and
slow. Mongo DB's goal is to be lightweight and fast ...

B

 Backups
Several strategies exist for backing up MongoDB databases. A word of warning: it's not
safe to back up the mongod data files (by default in /data/db/) while the database is running
and writes are occurring; such a backup may turn out to be corrupt. ...

 Benchmarks
you've done a benchmark, we'd love to hear about it\! Let us know at kristina at 10gen
dot com. March 9, 2010 Speed test between djangomongokit and postgresqlpsycopg2
http://www.peterbe.com/plog/speedtestbetweendjangomongokitandpostgresqlpsycopg2
benchmarks creating, editing, and deleting ...

 Books
Now Available By Kristina Chodorow and Mike Dirolf Available for PreOrder By Peter Membrey
By Mitch Pirtle !bankercover.jpg! MongoDB in Action http://manning.com/banker/ by Kyle
Banker

 Boost 1.41.0 Visual Studio 2010 Binary
OLD and was for the VS2010 BETA. See the new Boost and Windows page instead. The
following is a prebuilt boost http://www.boost.org/ binary (libraries) for Visual Studio 2010 beta
2. The MongoDB vcxproj files assume this package is unzipped under c:\Program ...

 Boost and Windows
Visual Studio 2010 Prebuilt from mongodb.org Click here
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032 for a prebuilt
boost library for Visual Studio 2010. 7zip http://www.7zip.org/ format. Building Yourself
Download the boost source ...

 BSON
bsonspec.org http://www.bsonspec.org/ BSON is a bin­aryen­coded seri­al­iz­a­tion of JSONlike
doc­u­ments. BSON is designed to be lightweight, traversable, and efficient. BSON, like JSON,
supports the embedding of objects and arrays within other objects ...

 bsonspec.org

C

 C Language Center
C Driver {}The MongoDB C Driver is the 10gensupported driver for MongoDB. It's written in pure C. The goal is to be
super strict for ultimate portability, no dependencies, and very embeddable anywhere. Tutorial C Tutorial C Driver
README http://github.com/mongodb/mongocdriver ...

 C Sharp Language Center
C# Drivers mongodbcsharp driver http://github.com/samus/mongodbcsharp/tree/master simplemongodb driver
http://code.google.com/p/simplemongodb/ NoRM http://github.com/atheken/NoRM F# F# Example
http://gist.github.com/218388 Community Articles A List ...

 C Tutorial
document is an introduction to usage of the MongoDB database from a C program. First, install Mongo \\ see the
Quickstart for details. Next, you may wish to take a look at the Developer's Tour DOCS:MongoDB A Developer's Tour
guide for a language independent ...

 C++ BSON Library
Overview The MongoDB C driver library includes a bson package that implements the BSON specification (see
http://www.bsonspec.org/). This library can be used standalone for object serialization and deserialization even when
one is not using MongoDB at all. Include {{bson/bson.h ...

 C++ Language Center
C\ driver is available for communicating with the MongoDB. As the database is written in C, the driver actually
uses some core MongoDB code \\ this is the same driver that the database uses itself for replication. The driver has
been compiled successfully on Linux, OS X ...

 C++ Tutorial
document is an introduction to usage of the MongoDB database from a C\ program. First, install Mongo \\ see the
Quickstart for details. Next, you may wish to take a look at the Developer's Tour DOCS:MongoDB A Developer's Tour
guide for a language independent ...

 Caching
Memory Mapped Storage Engine This is the current storage engine for MongoDB, and it uses memorymapped files for
all disk I/O. Using this strategy, the operating system's virtual memory manager is in charge of caching.

 Building
section provides instructions on setting up your environment to write Mongo drivers or other
infrastructure code. For specific instructions, go to the document that corresponds to your
setup. Note: see the Downloads DOCS:Downloads page for prebuilt binaries\! Subsections of
this section ...

 Building Boost
MongoDB uses the www.boost.org Boost C\ libraries. Windows See also the prebuilt libraries
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032 page. By
default c:\boost\ is checked for the boost files. Include files should be under \boost\boost ...

 Building for FreeBSD
FreeBSD 8.0 and later, there is a mongodb port you can use. For FreeBSD <= 7.2: # Get the
database source: http://www.github.com/mongodb/mongo. # Update your ports tree: $ sudo
portsnap fetch && portsnap extract The packages that come by default on 7.2 ...

 Building for Linux
General Instructions # Install Dependencies see platform specific below # get source git clone
git://github.com/mongodb/mongo.git # pick a stable version unless doing true dev git tag l #
Switch to a stable branch (unless ...

 Building for OS X
set up your OS X computer for MongoDB development: Upgrading to Snow Leopard If you
have installed Snow Leopard, the builds will be 64 bit \\ so if moving from a previous OS
release, a bit more setup may be required ...

 Building for Solaris
MongoDB server currently supports little endian Solaris operation. (Although most
drivers not the database server work on both.) Community: Help us make this rough page
better please\! (And help us add support for big ...

 Building for Windows
MongoDB can be compiled for Windows (32 and 64 bit) using Visual C. SCons
http://www.scons.org/ is the make mechanism, although a .vcproj/.sln is also included in the
project for convenience when using the Visual Studio IDE. There are several dependencies ...

 Building Spider Monkey
MongoDB uses SpiderMonkey http://www.mozilla.org/js/spidermonkey/ for serverside
Javascript execution. The mongod project requires a file js.lib when linking. This page details
how to build js.lib. Note: V8 http://code.google.com/p/v8/ Javascript support is under ...

 Building SpiderMonkey

 Building the Mongo Shell on Windows
You can build the mongo shell with either scons or a Visual Studio 2010 project file. Scons
scons mongo Visual Studio 2010 Project File A VS2010 vcxproj file is availabe for building the
shell. From the mongo directory open ...

 Building with Visual Studio 2008
MongoDB can be compiled for Windows (32 and 64 bit) using Visual C. SCons
http://www.scons.org/ is the make mechanism, although a solution file is also included in the
project for convenience when using the Visual Studio IDE. There are several dependencies
exist ...

 Building with Visual Studio 2010
MongoDB can be compiled for Windows (32 and 64 bit) using Visual C. SCons
http://www.scons.org/ is the make mechanism, although a solution file is also included in the
project for convenience when using the Visual Studio IDE. There are several dependencies
exist ...

This has several implications: There is no redundancy ...

 Capped Collections
Capped collections are fixed sized collections that have a very high performance autoFIFO ageout feature (age out is
based on insertion order). In addition, capped collections automatically, with high performance, maintain insertion order
for the objects in the collection; this is very powerful ...

 CentOS and Fedora Packages
10gen now publishes yuminstallable RPM packages for CentOS 5.4 (x86 and x8664) and Fedora 12 and 13 (x6464
only for the moment). For each revision in stable, unstable, and snapshot, there are four packages, e.g., mongostable,
mongostableserver, mongostabledevel, mongostabledebuginfo, for each of the client ...

 Checking Server Memory Usage
Checking using DB Commands The serverStatus() command provides memory usage information. > db.serverStatus()
{}add: how to interpret. what would indicate a memory leak{} Checking via Unix Commands {{mongod}} uses
memorymapped files; thus the memory ...

 Clone Database
MongoDB includes commands for copying a database from one server to another. // copy an entire database from one
name on one server to another // name on another server. omit <fromhostname> to copy from one // name to another
on the same ...

 Collections
MongoDB collections are essentially named groupings of documents. You can think of them as roughly equivalent to
relational database tables. Details A MongoDB collection is a collection of BSON BSON documents. These documents
are usually have the same structure, but this is not a requirement since MongoDB ...

 Command Line Parameters
MongoDB can be configured via command line parameters in addition to file based configuration. You can see the
currently supported set of command line options by running the database with {{\h \ \help \}} as a single parameter: $
./mongod help Information on usage ...

 Commands
Introduction The Mongo database has a concept of a database command. Database commands are ways to ask the
database to perform special operations, or to request information about its current operational status. List of Database
Commands A command is sent to the database as a query to a special ...

 Community
General Community Resources User Mailing List The user list http://groups.google.com/group/mongodbuser is for
general questions about using, configuring, and running MongoDB and the associated tools and drivers. The list is open
to everyone IRC chat irc://irc.freenode.net/#mongodb ...

 Community Info

 Comparing Mongo DB and Couch DB
We are getting a lot of questions "how are mongo db and couch different?" It's a good question: both are
documentoriented databases with schemaless JSONstyle object data storage. Both products have their place \\
we are big believers that databases are specializing ...

 Configuring Sharding
Introduction This document describes the steps involved in setting up a basic sharding cluster. A sharding cluster
requires, at minimum, three components: 1. Two or more shards. 2. At least one config server. 3. A {{mongos}} routing
process. For testing ...

 Connecting
C\ driver includes several classes for managing collections under the parent class DBClientInterface. In general, you
will want to instantiate either a DBClientConnection object, or a DBClientPaired object. DBClientConnection is
our normal connection class for a connection to a single MongoDB database ...

 Connecting Drivers to Replica Sets
Ideally a MongoDB driver can connect to a cluster of servers which represent a replica set DOCS:Replica Sets, and
automatically find the right set member with which to communicate. Failover should be automatic too. The
general steps are: # The user ...

 Connecting to Replica Sets from Clients
Most drivers have been updated to provide ways to connect to a replica set. In general, this is very similar to how the
drivers support connecting to a replica pair. Instead of taking a pair of hostnames, the drivers will typically take a
comma separated list of host ...

 Connections
MongoDB is a database server: it runs in the foreground or background and waits for connections from the user. Thus,
when you start MongoDB, you will see something like: /$./mongod # # some logging output # Tue Mar 9 11:15:43
waiting ...

 Contributing to the Documentation
Qualified volunteers are welcome to assist in editing the wiki documentation. Contact us for more information

 Contributing to the Perl Driver
easiest way to contribute is to file bugs and feature requests on Jira http://jira.mongodb.org/browse/PERL. If you would
like to help code the driver, read on... Finding Something to Help With Fixing Bugs You can choose a bug on Jira http ...

 Contributors
10gen Contributor Agreement http://www.10gen.com/contributor

 Conventions for Mongo Drivers

Interface Conventions It is desirable to keep driver interfaces consistent when possible. Of course, idioms vary by
language, and when they do adaptation is appropriate. However, when the idiom is the same, keeping the interfaces
consistent across drivers is desirable. Terminology In general, use ...

 cookbook.mongodb.org

 Creating and Deleting Indexes

 Cursors

D

 Data Center Awareness
1.6.0 build of replica sets does not support much in terms of data center awareness. However
additional functionality will be added in the future. Below are some suggestions configurations
which work today. Primary plus DR site Use one site ...

 Data Processing Manual
DRAFT TO BE COMPLETED. This guide provides instructions for using MongoDB batch data
processing oriented features including map/reduce DOCS:MapReduce. By "data processing",
we generally mean operations performed on large sets of data, rather than small ...

 Data Types and Conventions
MongoDB (BSON) Data Types Mongo uses special data types in addition to the basic JSON
types of string, integer, boolean, double, null, array, and object. These types include date,
object id Object IDs, binary data, regular ...

 Database Internals
section provides information for developers who want to write drivers or tools for MongoDB, \
contribute code to the MongoDB codebase itself, and for those who are just curious how it
works internally. Subsections of this section

 Database Profiler
Mongo includes a profiling tool to analyze the performance of database operations. See also
the currentOp DOCS:Viewing and Terminating Current Operation command. Enabling Profiling
To enable profiling, from the {{mongo}} shell invoke: > db.setProfilingLevel(2); >
db.getProfilingLevel() 2 Profiling ...

 Database References
MongoDB is nonrelational (no joins), references ("foreign keys") between documents are
generally resolved clientside by additional queries to the server. Two conventions are common
for references in MongoDB: first simple manual references, and second, the DBRef standard,
which many drivers support ...

 Databases
Each MongoDB server can support multiple databases. Each database is independent, and
the data for each database is stored separately, for security and ease of management. A
database consists of one or more collections, the documents (objects) in those collections, and
an optional set ...

 DBA Operations from the Shell
page lists common DBAclass operations that one might perform from the MongoDB shell
DOCS:mongo The Interactive Shell. Note one may also create .js scripts to run in the shell for
administrative purposes. help show help show ...

 dbshell Reference
Command Line {{\help}} Show command line options {{\nodb}} Start without a db, you can
connect later with {{new Mongo()}} or {{connect()}} {{\shell}} After running a .js file from the
command line, stay in the shell rather than ...

 Design Overview

 Developer FAQ
Also check out Markus Gattol's excellent FAQ on his website
http://sunoano.name/ws/publicxhtml/mongodb.html. What's a "namespace"? MongoDB stores
BSON objects in collections. The concatenation of the database name and the collection name
(with a period in between) is called a namespace ...

 Developer Zone
Tutorial Shell mongo The Interactive Shell Manual Databases Collections Indexes Data Types
and Conventions GridFS Inserting Updating Querying Removing Optimization Developer FAQ
Cookbook http://cookbook.mongodb.org If you have a comment or question about anything,
please ...

 Diagnostic Tools

 Django and MongoDB

 Do I Have to Worry About SQL Injection
Generally, with MongoDB we are not building queries from strings, so traditional SQL Injection
http://en.wikipedia.org/wiki/SQLinjection attacks are not a problem. More details and some
nuances are covered below. MongoDB queries are represented as BSON objects. Typically
the programming ...

E

 Emacs tips for MongoDB work
You can edit confluence directly from emacs: First, follow the basic instructions on
http://code.google.com/p/confluenceel/ Change the confluenceurl in their sample setup to
http://mongodb.onconfluence.com/rpc/xmlrpc Might also want to change the default space to DOCS ...

 Error Codes
Error Code \\ Description \\ Comments \\ 10003 objects in a capped ns cannot grow 11000 duplicate key error \\ \id
values must be unique in a collection \\ 11001 duplicate key on update \\ 12000 idxNo fails \\ an internal error 12001 ...

 Error Handling in Mongo Drivers
an error occurs on a query (or getMore operation), Mongo returns an error object instead of user data. The error object
has a first field guaranteed to have the reserved key {{$err}}. For example: The {{$err}} value can be of any type ...

 Events
Follow us on Facebook http://www.facebook.com/#!/pages/MongoDB/397955415556 and Twitter
http://www.twitter.com/mongodb to get all of the latest updates! Mongo Conferences 10gen Weekly "Office Hours"
Submit a proposal http://www.10gen.com/talkproposal to present at an upcoming MongoDB ...

 Excessive Disk Space
You may notice that for a given set of data the MongoDB datafiles in /data/db are larger than the data set inserted into
the database. There are several reasons for this. Preallocation Each datafile is preallocated to a given
size. (This is done to prevent file system ...

 Doc Index

 Document-Oriented Datastore

 Documentation

 Dot Notation

 Dot Notation

 Dot Notation (Reaching into Objects)
MongoDB is designed for store JSONstyle objects. The database understands the
structure of these objects and can reach into them to evaluate query expressions. Let's
suppose we have some objects of the form: > db.persons.findOne() { name: "Joe", address: ,
likes: 'scuba', 'math ...

 Downloads
See also #Packages. Version OS X 32 bit OS X 64 bit Linux 32 bit Linux 64 bit Windows 32 bit
Windows 64bit Solaris i86pc Solaris 64 Source Date Change ...

 Driver and Integration Center

 Driver Syntax Table
wiki generally gives examples in JavaScript, so this chart can be used to convert those
examples to any language. JavaScript Python PHP Ruby Java C\ Perl \ \ \\ {{array()}} \\
{{BasicDBList}} BSONObj \ \ {} {} {{new stdClass}} {} {{BasicDBObject}} BSONObj {} \ \
{{array('x ...

 Driver Testing Tools
Object IDs driverOIDTest for testing toString > db.runCommand

 Drivers
MongoDB currently has client support for the following programming languages: mongodb.org
Supported C C Language Center C\ C Language Center Java Java Language Center
Javascript Javascript Language Center Perl Perl Language Center ...

 Durability and Repair
Single Server Durability The v1.8 release of MongoDB will have single server durability. You
can follow the Jira here : http://jira.mongodb.org/browse/SERVER980. We recommend using
replication to keep copies of data for now and likely forever as a single server ...

F

 FAQ
FAQ answers basic questions for new evaluators of MongoDB. See also: Developer FAQ
DOCS:Sharding FAQ MongoDB Intro FAQ What kind of database is the Mongo database?
MongoDB is an documentoriented DBMS. Think of it as MySQL but JSON (actually ...

 Feature Checklist for Mongo Drivers
Functionality Checklist This section lists tasks the driver author might handle. Essential BSON
serialization/deserialization Basic operations: {{query}}, {{save}}, {{update}}, {{remove}},
{{ensureIndex}}, {{findOne}}, {{limit}}, {{sort}} Fetch more data from a cursor when necessary ...

 File Based Configuration
addition to accepting command line parameters, MongoDB can also be configured using a
configuration file. A configuration file to use can be specified using the {{\f}} or {{\\config}}
command line options. On some packaged installs of MongoDB (for example Ubuntu & Debian
...

 findandmodify Command
Find and Modify (or Remove) v1.3.0 and higher MongoDB 1.3\ supports a "find, modify, and
return" command. This command can be used to atomically modify a document (at most
one) and return it. Note that, by default, the document returned will not include the
modifications made on the update ...

 Frequently Asked Questions - Ruby
list of frequently asked questions about using Ruby with MongoDB. If you have a question
you'd like to have answered here, please add it in the comments. Can I run \insert command
name here\ from the Ruby driver? Yes ...

 fsync Command
Version 1.3.1 and higher The fsync command allows us to flush all pending writes to
datafiles. More importantly, it also provides a lock option that makes backups easier.
fsync Command The fsync command forces the database to flush all ...

 Full Text Search in Mongo
Introduction Mongo provides some functionality that is useful for text search and tagging.
Multikeys (Indexing Values in an Array) The Mongo multikey feature can automatically index
arrays of values. Tagging is a good example of where this feature is useful. Suppose you ...

G

 Geospatial Indexing
v1.3.3\ MongoDB supports twodimensional geospatial indexes. It is designed with locationbased queries in mind, such
as "find me the closest N items to my location." It can also efficiently filter on additional criteria, such as "find me the
closest N museums to my location ...

 getLastError
Most drivers, and the db shell, support a getlasterror capability. This lets one check the error code on the last
operation. Database commands DOCS:Commands, as well as queries, have a direct return code. getlasterror is
primarily useful for write ...

 Getting Started

 Getting the Software
Placeholder $$$ TODO

 Git Commit Rules
commit messages should have the case in the message SERVERXXX commit messages should be descriptive enough
that a glance can tell the basics commits should only include 1 thought

 GridFS
GridFS is a specification for storing large files in MongoDB. All of the officially supported driver implement the GridFS
spec DOCS:GridFS Specification. Rationale The database supports native storage of binary data within BSON
DOCS:BSON objects. However ...

 GridFS in Ruby
GridFS, which stands for "Grid File Store," is a specification for storing large files in MongoDB. It works by dividing a file
into manageable chunks and storing each of those chunks as a separate document. GridFS requires two collections to
achieve this: one collection stores ...

 GridFS Specification
Introduction GridFS is a storage specification for large objects in MongoDB. It works by splitting large object into small
chunks, usually 256k in size. Each chunk is stored as a separate document in a {{chunks}} collection. Metadata about
the file, including the filename, content type ...

 GridFS Tools
File Tools {{mongofiles}} is a tool for manipulating GridFS DOCS:Storing Files from the command line. Example: $
./mongofiles list connected to: 127.0.0.1 $./mongofiles put libmongoclient.a connected to: 127.0.0.1 done! $
./mongofiles list connected to: 127.0.0.1 libmongoclient.a 12000964 $ cd ...

H I

 Halted Replication
instructions are for master/slave replication. For replica sets, see DOCS:Resyncing a Very
Stale Replica Set Member instead. If you're running mongod with masterslave replication
DOCS:Master Slave, there are certain scenarios where the slave will halt replication because
...

 Home
Events Follow us on Facebook http://www.facebook.com/#!/pages/MongoDB/397955415556
and Twitter http://www.twitter.com/mongodb to get all of the latest updates\! MongoDB
Conferences: Mongo Chicago http://bit.ly/mongochicago \ October 20 Mongo DC
http://bit.ly/mongodc2010 ...

 Hosting Center
CloudStyle provides cloudstyle hosted MongoDB instances is currently in private beta
Dedicated Servers offers preconfigured, dedicated MongoDB servers supports MongoDB on
its private cloud. VPS 's is an excellent choice for . offers instant configuration and deployment
of MongoDB ...

 How does concurrency work
mongos For sharded DOCS:Sharding environments, mongos can perform any number of
operations concurrently. This results in downstream operations to mongod instances.
Execution of operations at each mongod is independent; that is, one mongod does not block
another. mongod The original mongod ...

 How to do Snapshotted Queries in the Mongo Database
document refers to query snapshots. For backup snapshots of the database's datafiles, see the
fsync lock page fsync Command. MongoDB does not support full pointintime snapshotting.
However, some functionality is available which is detailed below. Cursors A MongoDB query ...

 HowTo

 Http Interface
REST Interfaces Sleepy Mongoose (Python) Sleepy Mongoose
http://www.snailinaturtleneck.com/blog/2010/02/22/sleepymongooseamongodbrestinterface/ is
a full featured REST interface for MongoDB which is available as a separate project. MongoDB
Rest (Node.js) MongoDB Rest http://github.com/tdegrunt/mongodbrest is an alpha ...

 Implementing Authentication in a Driver
current version of Mongo supports only very basic authentication. One authenticates a username and password
in the context of a particular database. Once authenticated, the user has full read and write access to the
database in question. The {{admin}} database is special ...

 Import Export Tools
you just want to do DOCS:Clone Database from one server to another you don't need these tools. These tool just work
with the raw data (the documents in the collection); they do not save, or load, the metadata like the defined indexes or
(capped ...

 Index-Related Commands
Create Index {{ensureIndex()}} is the helper function for this. Its implementation creates an index by adding its info to
the {{system.indexes}} table. > db.myCollection.ensureIndex(<keypattern>); > // same as: > db.system.indexes.insert();
Note: Once you've inserted the index, all subsequent document inserts for the given collection ...

 Indexes
Indexes enhance query performance, often dramatically. It's important to think about the kinds of queries your
application will need so that you can define relevant indexes. Once that's done, actually creating the indexes in
MongoDB is relatively easy. Indexes in MongoDB ...

 Indexes in Mongo

 Indexing Advice and FAQ
We get a lot of questions about indexing. Here we provide answers to a number of these. There are a couple of points
to keep in mind, though. First, indexes in MongoDB work quite similarly to indexes in MySQL, and thus many of the
techniques for building efficient indexes ...

 Indexing as a Background Operation
Slaves and replica secondaries build all indexes in the foreground in certain releases (including the latest). Thus even
when using background:true on the primary, the slave/secondary will be unavailable to service queries while the index
builds there. By default the {{ensureIndex()}} Indexes operation ...

 Inserting
When we insert data into MongoDB, that data will always be in documentform. Documents are data structure analogous
to JSON, Python dictionaries, and Ruby hashes, to take just a few examples. Here, we discuss more about
documentorientation and describe how to insert ...

 Installing the PHP Driver

 Internal Commands
Most commands Commands have helper functions and do not require the {{$cmd.findOne()}} syntax. These are
primarily internal and administrative. > db.$cmd.findOne() > db.$cmd.findOne() { "uptime" : 6 , "globalLock" : , "mem" :
, "ok" : 1 } > admindb.$cmd.findOne() // close all databases. a subsequent request ...

 Internals
Cursors Tailable Cursors See p/db/dbclient.h for example of how, on the client side, to support tailable cursors. Set
OptionCursorTailable = 2 in the {{queryOptions int}} field to indicate you want a tailable cursor. If you get back no
results when ...

 International Docs
Most documentation for MongoDB is currently written in English. We are looking for volunteers to contribute
documentation in other languages. If you're interested in contributing to documentation in another language please
email roger at 10gen dot com. Language Homepages !cn.png! ...

 International Documentation

 Internationalized Strings
MongoDB supports UTF8 for strings in stored objects and queries. (Specifically, BSON DOCS:BSON strings are
UTF8.) Generally, drivers for each programming language convert from the language's string format of choice to UTF8
when serializing and deserializing BSON ...

 Interop Demo (Product Comparisons)
Interop 2009 MongoDB Demo Code: http://github.com/mdirolf/simplemessagingservice/tree/master

 Introduction - How Mongo Works

J

 Java - Saving Objects Using DBObject
Java driver provides a DBObject interface to save custom objects to the database. For
example, suppose one had a class called Tweet that they wanted to save: public class Tweet
implements DBObject Then you can say: Tweet myTweet = new Tweet ...

 Java Driver Concurrency
Java MongoDB driver is thread safe. If you are using in a web serving environment, for
example, you should create a single Mongo instance, and you can use it in every
request. The Mongo object maintains an internal pool of connections ...

 Java Language Center
Basics Tutorial Java Tutorial API Documentation http://api.mongodb.org/java/index.html
Downloads http://github.com/mongodb/mongojavadriver/downloads Specific Topics
Concurrency Java Driver Concurrency Saving Objects Java Saving Objects Using DBObject
Data ...

K

 Kernel class rules
new classes By default, use {{explicit}} constructors Inherit from boost::noncopyable unless you have implemented copy
constructor and assignment. nonpublics Put the public interface at the top and the private stuff at the bottom. Except
when the compiler insists otherwise ...

 Kernel code style
case Use camelCase for most {{varNames}} {{\commandLineOptions}} \ inlines Put long inline functions in a {{inl.h}} file.
If your inline function is a single line long, put it and its decl on the same line e.g.: int length() const If a function is not
performance ...

 Kernel concurrency rules
All concurrency code must be placed under {{utils/concurrency}}. You will find several helper libraries there. Several
rules are listed below. Don't break them. If you think there is a real need let's have the group weigh in and get a
concensus ...

 Kernel exception architecture

 Java Tutorial
Introduction This page is a brief overview of working with the MongoDB Java Driver. For more
information about the Java API, please refer to the online API Documentation for Java Driver
http://api.mongodb.org/java/index.html A Quick Tour Using the Java driver is very ...

 Java Types
Object Ids {{com.mongodb.ObjectId}}
http://api.mongodb.org/java/0.11/com/mongodb/ObjectId.html is used to autogenerate unique
ids. ObjectId id = new ObjectId(); ObjectId copy = new ObjectId(id); Regular Expressions The
Java driver uses {{java.util.regex.Pattern}} http://java.sun.com ...

 Javascript Language Center
MongoDB can be Used by clients written in Javascript; Uses Javascript internally serverside
for certain options such as map/reduce; Has a shell DOCS:mongo The Interactive Shell that is
based on Javascript for administrative purposes. node.JS and V8 See the node.JS page.
node.JS ...

 Job Board
Redirecting

 Joyent
prebuilt DOCS:Downloads MongoDB Solaris 64 binaries work with Joyent accelerators.
Some newer gcc libraries are required to run \\ see sample setup session below. $ # assuming
a 64 bit accelerator $ /usr/bin/isainfo kv ...

 JS Benchmarking Harness
CODE: db.foo.drop(); db.foo.insert() ops = { op : "findOne" , ns : "test.foo" , query : } for (x = 1;
x<=128; x=2){ res = benchRun() print("threads: " x "\t queries/sec: " res.query) } More info:
http://github.com/mongodb/mongo/commit/3db3cb13dc1c522db8b59745d6c74b0967f1611c

 JVM Languages
moved to Java Language Center

several different types of assertions used in the MongoDB code. In brief: {{assert}} should be used for internal
assertions. However, massert is preferred. {{massert}} is an internal assertion with a message. {{uassert}} is used for a
user error {{wassert}} warn (log) and continue Both ...

 Kernel Logging
Basic Rules cout/cerr should never be used Normal Logging log(int x) debugging with levels of verbosity log()
informational warning() warnings error() errors Debugging Helpers PRINT = prints variable name and (string)
GEODEBUG, etc ...

 Kernel string manipulation
string manipulation, use the {{util/mongoutils/str.h}} library. {{mongoutils}} MongoUtils has its own namespace. Its code
has these basic properties: # are not database specific, rather, true utilities # are cross platform # may require boost
headers, but not libs ...

L

 Language Support

 Last Error Commands
Since MongoDB doesn't wait for a response by default when writing to the database, a couple
commands exist for ensuring that these operations have succeeded. These commands can be
invoked automatically with many of the drivers when saving and updating in "safe" mode. But
what's really happening ...

 Legal Key Names
Key names in inserted documents are limited as follows: The '$' character must not be the first
character in the key name. The '.' character must not appear anywhere in the key name

 Licensing
you are using a vanilla MongoDB server from either source or binary packages you have NO
obligations. You can ignore the rest of this page. MongoDB Database Free Software
Foundation's GNU AGPL v3.0 http://www.fsf.org/licensing/licenses/agpl3.0 ...

 List of Database Commands
iframe src ="http://api.mongodb.org/internal/current/commands.html" width="100%"
height="1000px" frameborder="0"> List of MongoDB
Commands </iframe> See the Commands page for details on how to invoke a command
...

 Locking

 Locking in Mongo

 Logging
MongoDB outputs some important information to stdout while its running. There are a number
of things you can do to control this Command Line Options \quiet less verbose output \v more
verbose output. use more v's (such as vvvvvv ...

M

 Manual
MongoDB manual. Except where otherwise noted, all examples are in JavaScript for use with the mongo shell
mongo The Interactive Shell. There is a table Driver Syntax Table available giving the equivalent syntax for each
of the drivers

 MapReduce
Map/reduce in MongoDB is useful for batch manipulation of data and aggregation operations. It is similar in spirit to
using something like Hadoop with all input coming from a collection and output going to a collection. Often, in a situation
where you would have used ...

 Master Master Replication
Mongo does not support full mastermaster replication. However, for certain restricted use cases mastermaster
can be used. Generally speaking, we don't recommend the using a mastermaster configuration with MongoDB.
Mastermaster usages is eventually consistent. To configure ...

 Master Slave
Configuration and Setup To configure an instance of Mongo to be a master database in a masterslave configuration,
you'll need to start two instances of the database, one in master mode, and the other in slave mode. The following
examples explicitly specify the location of the data files on the command ...

 min and max Query Specifiers
min()}} and {{max()}} functions may be used in conjunction with an index to constrain query matches to those having
index keys between the min and max keys specified. The {{min()}} and {{max()}} functions may be used individually or in
conjunction. The index to be used may ...

 mongo - The Interactive Shell
Introduction The MongoDB distribution Downloads includes {{bin/mongo}}, the MongoDB interactive shell. This utility is
a JavaScript shell that allows you to issue commands to MongoDB from the command line. (Basically, it is an extended
SpiderMonkey https://developer.mozilla.org/En/SpiderMonkey/IntroductiontotheJavaScriptshell ...

 Mongo Administration Guide

 Mongo Concepts and Terminology

 Mongo Database Administration

 Mongo Developers' Guide

 Mongo Documentation Style Guide
page provides information for everyone adding to the Mongo documentation on Confluence. It covers: #General Notes
on Writing Style Guide to Confluence markup for specific situations Some general notes about doc production General
Notes on Writing Style Voice Active ...

 Mongo Driver Requirements
highlevel list of features that a driver for MongoDB might provide. We attempt to group those features by priority. This
list should be taken with a grain of salt, and probably used more for inspiration than as law that must be adhered to. A
great way to learn about ...

 Mongo Extended JSON

Mongo's REST interface supports storage and retrieval of JSON documents. Special representations are used for
BSON types that do not have obvious JSON mappings, and multiple representations are allowed for some such types.
The REST interface supports three different modes for document ...

 Mongo Metadata
dbname>.system. namespaces in MongoDB are special and contain database system information. System
collections include: {{system.namespaces}} lists all namespaces. {{system.indexes}} lists all indexes. Additional
namespace / index metadata exists in the database.ns files, and is opaque. {{system.profile ...

 Mongo Query Language
Queries in MongoDB are expressed as JSON (BSON). Usually we think of query object as the equivalent of a SQL
"WHERE" clause: > db.users.find().sort(); // select from users where x=3 and y='abc' order by x asc; However, the
MongoDB server ...

 Mongo Usage Basics

 Mongo Wire Protocol
Introduction The Mongo Wire Protocol is a simple socketbased, requestresponse style protocol. Clients communicate
with the database server through a regular TCP/IP socket. The default port is 27017, but this is configurable and will
vary. Clients should connect to the database with a regular TCP/IP ...

 Mongo-Based Applications
Please list applications that leverage MongoDB here. If you're using MongoDB for your application, we'd love to list you
here\! Email meghan@10gen.com. See Also Production Deployments Companies and Sites using MongoDB
Hosting Center Applications ...

 MongoDB - A Developer's Tour

 MongoDB Commercial Services Providers
Note: if you provide consultative or support services for MongoDB and wish to be listed here, just let us know. Support
10gen began the MongoDB project, and offers commercial MongoDB support services. Training 10gen offers . Hosting
See the MongoDB ...

 MongoDB Data Modeling and Rails
tutorial discusses the development of a web application on Rails and MongoDB. MongoMapper will serve as our
object mapper. The goal is to provide some insight into the design choices required for building on
MongoDB. To that end, we'll be constructing a simple but nontrivial social ...

 MongoDB kernel code development rules
Coding conventions for the MongoDB C code

 MongoDB Language Support

 MongoDB, CouchDB, MySQL Compare Grid
pending... CouchDB \\ MongoDB \\ MySQL \\ Data Model \\ DocumentOriented (JSON http://www.json.org/) \\
DocumentOriented (BSON http://blog.mongodb.org/post/114440717/bson) \\ Relational \\ Data Types \\
string,number,boolean,array,object string, int, double, boolean, date, bytearray, object ...

 mongosniff
Unix releases of MongoDB include a utility called mongosniff. This utility is to MongoDB what tcpdump is to TCP/IP; that
is, fairly low level and for complex situations. The tool is quite useful for authors of driver tools. $./mongosniff help
Usage: mongosniff help forward ...

 mongostat
Use the mongostat utility to quickly view statistics on a running mongod instance. !mongostat.png
align=center,width=700!
http://www.mongodb.org/download/attachments/6914131/mongostat.png?version=3&modificationDate=1284744190242
Run mongostat help for help. Fields: inserts/s # of inserts ...

 Monitoring

 Monitoring and Diagnostics
Admin UIs Query Profiler Use the Database Profiler to analyze slow queries. Http Console The mongod process
includes a simple diagnostic screen at http://localhost:28017/. See the Http Interface docs for more information.
db.serverStatus() from mongo ...

 Moving Chunks
inc version try to set on from if set is successful, have it "locked" start transfer finish transfer commit result max version
for a shard is MAX(chunks on shard) this poses slight problem when moving last chunk off of a shard ...

 Multikeys
MongoDB provides an interesting "multikey" feature that can automatically index arrays of an object's values. A good
example is tagging. Suppose you have an article tagged with some category names: $ dbshell > db.articles.save() >
db.articles.find() We can ...

 Munin configuration examples
Overview Munin http://muninmonitoring.org can use be used monitoring aspects of you running system. The following is
a mini tutorial to help you setup and use the MongoDB plugin with munin. Setup Munin is made up of two components
agent and plugins ...

N

 node.JS
Node.js is used to write eventdriven, scalable network programs in serverside JavaScript. It is

O

 Object IDs
Documents in MongoDB are required to have a key, \id, which uniquely identifies them. Document IDs: \id Every

similar in purpose to Twisted, EventMachine, etc. It runs on Google's V8. Web Frameworks
ExpressJS http://expressjs.com Mature web framework with MongoDB session support. 3rd
Party ...

 Notes on Pooling for Mongo Drivers
Note that with the db write operations can be sent asynchronously or synchronously (the latter
indicating a getlasterror request after the write). When asynchronous, one must be careful to
continue using the same connection (socket). This ensures that the next operation will not
begin until after ...

MongoDB document has an \id field as its first attribute. This value usually a BSON ObjectId. Such an ...

 Object Mappers for Ruby and MongoDB
Although it's possible to use the Ruby driver by itself, sometimes you want validations, associations, and many of the
other conveniences provided by ActiveRecord. Here, then, is a list of the most popular object mappers available for
working with Ruby and MongoDB. Recommendations First we advise ...

 Old Pages

 Older Downloads

 One Slave Two Masters
mms.png align=center! This document shows an example session with one slave pulling data from two different
masters. Despite the example shown here, it is better, simpler, and generally recommended to have multiple {{mongod
slave}} processes on a single ...

 Online API Documentation
MongoDB API and driver documentation is available online. It is updated daily. Java Driver API Documentation
http://api.mongodb.org/java C Driver API Documentation http://api.mongodb.org/cplusplus Python Driver API
Documentation http://api.mongodb.org/python Ruby ...

 Optimization
Additional Articles DOCS:Optimizing Object IDs DOCS:Optimizing Storage of Small Objects Optimizing A Simple
Example This section describes proper techniques for optimizing database performance. Let's consider an example.
Suppose our task is to display the front ...

 Optimizing Mongo Performance

 Optimizing Object IDs
id field in MongoDB objects is very important and is always indexed. This page lists some recommendations. Use the
collections 'natural primary key' in the id field. id's can be any type, so if your objects have a natural unique identifier ...

 Optimizing Storage of Small Objects
MongoDB records have a certain amount of overhead per object (BSON DOCS:BSON document) in a collection.
This overhead is normally insignificant, but if your objects are tiny (just a few bytes, maybe one or two fields) it would
not be. Below ...

 OR operations in query expressions
Query objects in Mongo by default AND expressions together. Before 1.5.3 MongoDB did not include an "$or"
operator for such queries, however there are ways to express such queries. $in The $in operator indicates a "where
value in ..." expression. For expressions of the form x == a OR x == b ...

 Overview - The MongoDB Interactive Shell
Starting the Shell The interactive shell is included in the standard MongoDB distribution. To start the shell, go into the
root directory of the distribution and type ./bin/mongo It might be useful to add {{{}mongodistributionroot/bin}} to your
{{PATH}} so you can just type {{mongo ...

 Overview - Writing Drivers and Tools
section contains information for developers that are working with the lowlevel protocols of Mongo people who are
writing drivers and higherlevel tools. Documents of particular interest : BSON http://bsonspec.org Description of the
BSON binary document format. Fundamental to how Mongo and it's client software ...

P

 Pairing Internals
Policy for reconciling divergent oplogs In a paired environment, a situation may arise in which
each member of a pair has logged operations as master that have not been applied to the
other server. In such a situation, the following procedure will be used to ensure consistency
between the two ...

 Perl Language Center
Installing Start a MongoDB server instance ({{mongod}}) before installing so that the tests will
pass. The {{mongod}} cannot be running as a slave for the tests to pass. Some tests may be
skipped, depending on the version of the database you are running. CPAN $ sudo cpan
MongoDB ...

 Perl Tutorial

 Philosophy
Design Philosophy !featuresPerformace.png align=right! Databases are specializing the "one
size fits all" approach no longer applies. By reducing transactional semantics the db provides,
one can still solve an interesting set of problems where performance is very ...

 PHP - Storing Files and Big Data

 PHP Language Center
Using MongoDB in PHP To access MongoDB from PHP you will need: The MongoDB server
running the server is the "mongo{}d" file, not the "mongo" client (note the "d" at the end) The
MongoDB PHP driver installed Installing the PHP Driver \NIX Run ...

 PHP Libraries, Frameworks, and Tools
PHP community has created a huge number of libraries to make working with MongoDB easier
and integrate it with existing frameworks. CakePHP MongoDB datasource
http://github.com/ichikaway/mongoDBDatasource/downloads for CakePHP. There's also an

Q

 Queries and Cursors
Queries to MongoDB return a cursor, which can be iterated to retrieve results. The exact way to query will vary with
language driver. Details below focus on queries from the MongoDB shell DOCS:mongo The Interactive Shell (i.e. the
{{mongo}} process). The shell ...

 Query Optimizer
MongoDB query optimizer generates query plans for each query submitted by a client. These plans are executed
to return results. Thus, MongoDB supports ad hoc queries much like say, MySQL. The database uses an interesting
approach ...

 Querying
One of MongoDB's best capabilities is its support for dynamic (ad hoc) queries. Systems that support dynamic queries
don't require any special indexing to find data; users can find data using any criteria. For relational databases ...

 Quickstart
Quickstart OS X Quickstart Unix Quickstart Windows For an even quicker start go to http://try.mongodb.org/. See Also
DOCS:SQL to Mongo Mapping Chart

 Quickstart OS X
Install MongoDB The easiest way to install MongoDB is to use a package manager or the prebuilt binaries: Package
managers If you use the Homebrew http://mxcl.github.com/homebrew/ package manager, run: $ brew install mongodb
If you use MacPorts http://www.macports.org ...

 Quickstart Unix
Install MongoDB Note: If you are running an old version of Linux and the database doesn't start, or gives a floating point
exception, try the "legacy static" version on the Downloads page instead of the versions listed below. Package
managers Ubuntu and Debian ...

 Quickstart Windows
Download The easiest (and recommended) way to install MongoDB is to use the prebuilt binaries. 32bit binaries

introductory blog post http://markstory.com ...

 Product Comparisons

 Production Deployments
you're using MongoDB in production, we'd love to list you here\! Please complete this
web form https://10gen.wufoo.com/forms/productiondeploymentdetails/ or email
meghan@10gen.com and we will add you. <DIV mcestyle="textalign:center;margin:0" style ...

 Production Notes
Architecture Production Options Master Slave 1 master, N slaves failover is handled manually
Version 1.6: Replica Sets N servers, 1 is always primary, autofailover, autorecovery Backups
Import Export Tools Recommended Unix System ...

 Project Ideas
you're interested in getting involved in the MongoDB community (or the open source
community in general) a great way to do so is by starting or contributing to a MongoDB related
project. Here we've listed some project ideas for you to get started on. For some of these ideas
...

 PyMongo and mod_wsgi

 Python Language Center

 Python Tutorial

Download Downloads and extract the 32bit .zip. The "Production" build is recommended. 64bit binaries Download
Downloads and extract the 64bit .zip. Note: 64bit is recommended http ...

R

 Rails - Getting Started
Using Rails 3? See Rails 3 Getting Started This tutorial describes how to set up a simple Rails
application with MongoDB, using MongoMapper as an object mapper. We assume you're using
Rails versions prior to 3.0 ...

 Rails 3 - Getting Started
difficult to use MongoDB with Rails 3. Most of it comes down to making sure that you're not
loading ActiveRecord and understanding how to use Bundler
http://github.com/carlhuda/bundler/blob/master/README.markdown, the new Ruby
dependency manager. Install the Rails ...

 Recommended Production Architectures

 Reconfiguring a replica set when members are down
One may modify a set when some members are down as long as a majority is
established. In that case, simply send the reconfig command to the current primary.
DOCS:Reconfiguring when Members are Up If there is no primary (and this condition is not
transient), no majority is available. Reconfiguring ...

 Reconfiguring when Members are Up
Use the rs.reconfig() helper in the shell. You can also do this from other languages/drivers
using the replSetReconfig command directly. (Run "rs.reconfig" in the shell with no parenthesis
to see what it does.) $ mongo > // example : give 1st set member 2 ...

 Removing
Removing Objects from a Collection To remove objects from a collection, use the {{remove()}}
function in the mongo shell mongo The Interactive Shell. (Other drivers offer a similar function,
but may call the function "delete". Please check your driver's documentation ...

 Replica Pairs
Setup of Replica Pairs Replica Sets will soon replace replica pairs. If you are just now
setting up an instance, you may want to wait for that and use master/slave replication in the
meantime. Mongo supports a concept of replica ...

 Replica Pairs in Ruby
Replica Sets will replace replica pairs in MongoDB 1.6. If you are just now setting up an
instance, you may want to wait for that and use master/slave replication in the meantime. Here
follow a few considerations for those using ...

 Replica Set Admin UI
mongod}} process includes a simple administrative UI for checking the status of a replica set.
To use, first enable {{\rest}} from the {{mongod}} command line. The rest port is the db port
plus 1000 (thus, the default is 28017). Be sure this port is secure ...

 Replica Set Commands
Shell Helpers rs.help() show help rs.status() rs.initiate() initiate with default settings
rs.initiate(cfg) rs.add(hostportstr) add a new member to the set rs.add(membercfgobj) add a
new member to the set rs.addArb(hostportstr) add a new member which ...

 Replica Set Configuration
Command Line Each {{mongod}} participating in the set should have a {{\replSet}} parameter
on its command line. The syntax is mongod replSet setname {}setname is the logical name of
the set. The rest command line parameter is also recommended when using replica ...

 Replica Set Design Concepts
1. A write is only truly committed once it has replicated to a majority of members of the set. For

S

 Schema Design
Introduction With Mongo, you do less "normalization" than you would perform designing a relational schema because
there are no serverside "joins". Generally, you will want one database collection for each of your top level objects. You
do not want ...

 scons
Use scons to build MongoDB, and related utilities and libraries. See the SConstruct file for details. Run {{scons
\help}} to see all options. Targets Run {{scons <target>}}. {{scons .}} {{scons all}} {{scons mongod}} build mongod
{{scons ...

 Searching and Retrieving

 Security and Authentication
Running Without Security (Trusted Environment) This is the default option and is recommended. One valid way to run
the Mongo database is in a trusted environment, with no security and authentication (much like how one would use,
say, memcached). Of course, in such a configuration, one ...

 Server-side Code Execution
Mongo supports the execution of code inside the database process. {{$where}} Clauses and Functions in Queries In
addition to the regular documentstyle query specification for {{find()}} operations, you can also express the query either
as a string containing a SQLstyle WHERE predicate clause ...

 Server-Side Processing

 Shard Ownership
shard ownership we mean which server owns a particular key range. Early draft/thoughts will change: Contract the
master copy of the ownership information is in the config database mongos instances have cached info on which server
owns a shard ...

 Sharding
MongoDB scales horizontally via an autosharding architecture. Sharding offers: Scaling out to thousands of nodes Easy
addition of new machines Automatic balancing for changes in load and data distribution Zero single points of failure
Automatic failover Sharding ...

 Sharding Administration
Here we present a list of useful commands for obtaining information about a sharding cluster. To set up a sharding
cluster, see the docs on sharding configuration DOCS:Configuring Sharding. Identifying a Shard Cluster // Test if we're
speaking to a mongos process ...

 Sharding and Failover
properlyconfigured MongoDB shard cluster will have no single point of failure. This document describes the various
potential failure scenarios of components within a shard cluster, and how failure is handled in each situation. 1. Failure
of a {{mongos}} routing process. One {{mongos ...

 Sharding Config Schema
Sharding configuration schema. This lives in the config servers. Collections version This is a singleton that contains the
current metadata version number. > db.getCollection("version").findOne() settings Key/Value table for configurable
options (chunkSize) > db.settings.find() shards Stores information about the shards ...

 Sharding Design
concepts config database \ the top level database that stores information about servers and where things live. shard.
this can be either a single server or a replica pair. database \ one top level namespace. a database can be partitioned
or not chunk \ a region ...

 Sharding FAQ
How does sharding work with replication? Each shard is a logical collection of partitioned data. The shard could consist
of a single server or a cluster of replicas. Typically in production one would use a replica set replica sets for each shard.

important writes, the client should request acknowledgement of this with a {{getLastError(\)}}
DOCS:Verifying Propagation of Writes with getLastError call. 2. Writes which are committed at
the primary of the set ...

 Replica Set FAQ
How long does failover take? Failover thresholds are configurable. With the defaults, it may
take 2030 seconds for the primary to be declared down by the other members and a new
primary elected. During this window of time, the cluster is down for "primary" operations that is,
writes and strong ...

 Replica Set Internals
Design Concepts Check out the Replica Set Design Concepts for some of the core concepts
underlying MongoDB Replica Sets. Configuration Command Line We specify \replSet
setname/seedhostnamelist on the command line. seedhostnamelist is a (partial) list of some
members ...

 Replica Set Tutorial
tutorial will guide you through the basic configuration of a replica set on a single machine. If
you're attempting to deploy replica sets in production, be sure to read the comprehensive
replica set documentation Replica Sets. Also, do keep in mind that replica sets ...

 Replica Sets
v1.6.0 and higher. Replica sets are an elaboration on the existing master/slave replication
DOCS:Replication, adding automatic failover and automatic recovery of member nodes.
Replica Sets are "Replica Pairs version 2" and are available in MongoDB version 1.6. ...

 Replica Sets in Ruby
Here follow a few considerations for those using the Ruby driver Ruby Tutorial with MongoDB
and replica sets DOCS:Replica Sets. Setup First, make sure that you've configured and
initialized a replica set. Connecting to a replica set from the Ruby ...

 Replica Sets Limits
v1.6 Authentication mode not supported. JIRA http://jira.mongodb.org/browse/SERVER1567
Limits on config changes to sets at first. Especially when a lot of set members are down.
Map/reduce writes new collections to the server. Because of this, for now it may only ...

 Replica Sets Troubleshooting
can't get local.system.replset config from self or any seed (EMPTYCONFIG) Set needs to be
initiated. Run {{rs.initiate()}} from the shell. If the set is already initiated and this is a new node,
verify it is present in the replica set's configuration and there are no typos in the host names: >
// send ...

 Replication
MongoDB supports asynchronous replication of data between servers for failover and
redundancy. Only one server (in the set/shard) is active for writes (the primary, or master) at a
given time. With a single active master at any point in time, strong consistency semantics are
available ...

 Replication Internals
master mongod instance, the {{local}} database will contain a collection, {{oplog.$main}}, which
stores a highlevel transaction log. The transaction log essentially describes all actions
performed by the user, such as "insert this object into this collection." Note that the oplog is not
a lowlevel redo log ...

 Replication Oplog Length
Replication uses an operation log ("oplog") to store write operations. These operations replay
asynchronously on other nodes. The length of the oplog is important if a secondary is down.
The larger the log, the longer the secondary can be down and still recover. Once the oplog has
...

 Resyncing a Very Stale Replica Set Member
Error RS102 MongoDB writes operations to an oplog. For replica sets this data is stored
in collection local.oplog.rs. This is a capped collection and wraps when full
"RRD"style. Thus, it is important that the oplog collection is large enough to buffer ...

 Retrieving a Subset of Fields
default on a find operation, the entire object is returned. However we may also request that
only certain fields be returned. This is somewhat analogous to the list of column specifiers in a
SQL SELECT statement (projection). Regardless of what field specifiers are included ...

 Ruby External Resources
number of good resources appearing all over the web for learning about MongoDB and Ruby.
A useful selection is listed below. If you know of others, do let us know. Screencasts
Introduction to MongoDB Part I http://www.teachmetocode.com/screencasts ...

 Ruby Language Center
an overview of the available tools and suggested practices for using Ruby with MongoDB.
Those wishing to skip to more detailed discussion should check out the Ruby Driver Tutorial
Ruby Tutorial, Getting started with Rails Rails Getting Started Rails ...

 Ruby Tutorial
tutorial gives many common examples of using MongoDB with the Ruby driver. If you're
looking for information on data modeling, see MongoDB Data Modeling and Rails. Links to the

Where ...

 Sharding Internals
section includes internal implementation details for MongoDB auto sharding. See also the main sharding
documentation. DOCS:Sharding Note: some internals docs could be out of date \\ if you see that let us know so we ...

 Sharding Introduction
MongoDB supports an automated sharding architecture, enabling horizontal scaling across multiple nodes. For
applications that outgrow the resources of a single database server, MongoDB can convert to a sharded cluster,
automatically managing failover and balancing of nodes, with few or no changes ...

 Sharding Limits
Sharding Release 1 (MongoDB v1.6.0) Differences from Unsharded Configurations Sharding must be ran in trusted
security mode, without explicit security DOCS:Security and Authentication. Shard keys are immutable in the current
version. All (nonmulti)updates, upserts ...

 Sharding Use Cases
What specific use cases do we want to address with db partioning (and other techniques) that are challenging to scale?
List here for discussion. video site (e.g., youtube) (also, GridFS scaleup) seems straightforward: partition by video for
related videos ...

 Slide Gallery
Click here http://www.mongodb.org/pages/viewpage.action?pageId=17137769 to visit our full listing of videos & slides
from recent events and presentations. Introduction to MongoDB User Experience <div
style="width:422px;margin:auto;"><object style ...

 Smoke Tests
smoke.py lets you run a subsets of the tests in jstests. When it is running tests, it starts up an instance of mongod, runs
the tests, and then shuts it down again. For the moment, smoke.py must be run from the toplevel directory of a
mongo source ...

 Sorting and Natural Order
Natural order" is defined as the database's native ordering of objects in a collection. When executing a {{find()}} with no
parameters, the database returns objects in forward natural order. For standard tables, natural order is not particularly
useful because, although the order is often close to insertion ...

 Source Code
All source for MongoDB, it's drivers, and tools is open source and hosted at Github http://github.com/mongodb. Mongo
Database http://github.com/mongodb/mongo/tree/master (includes C\ driver) Python Driver
http://github.com/mongodb/mongopythondriver/tree ...

 Spec, Notes and Suggestions for Mongo Drivers
Assume that the BSON DOCS:BSON objects returned from the database may be up to 4MB. This size may change
over time but for now the limit is 4MB per object. We recommend you test your driver with 4MB objects. See ...

 Splitting Chunks
Normally, splitting chunks is done automatically for you. Currently, the splits happen as a side effect of inserting (and
are transparent). In the future, there may be other cases where a chunk is automatically split. A recently split chunk may
be moved immediately to a new shard if the system ...

 SQL to Mongo Mapping Chart
page not done. Please help us finish it\! MySQL Program Mongo Program {{mysqld}} \\ {{mongod}} \\ {{mysql}} \\
{{mongo}} \\ MongoDB queries are expressed as JSON (BSON DOCS:BSON) objects. This quick reference
chart shows examples as both SQL ...

 Starting and Stopping Mongo
MongoDB is run as a standard program from the command line. Please see Command Line Parameters for more
information on those options. The following examples assume that you are in the directory where the Mongo executable
is, and the Mongo executable is called {{mongod}}. Starting Mongo ...

 Storing Data

 Storing Files

 Structuring Data for Mongo

various object mappers are listed on our object mappers page http://www.mongodb.org ...

T

 Tailable Cursors
Tailable cursors are only allowed on capped collections and can only return objects in natural
order http://www.mongodb.org/display/DOCS/SortingandNaturalOrder. If the field you wish to
"tail" is indexed, simply requerying for \{ field : \ } is already quite efficient. Tailable ...

 Too Many Open Files
you receive the error "too many open files" or "too many open connections" in the mongod log,
there are a couple of possible reasons for this. First, to check what file descriptors are in use,
run lsof (some variations shown below): lsof grep ...

 TreeNavigation

 Trees in MongoDB
best way to store a tree usually depends on the operations you want to perform; see below for
some different options. In practice, most developers find that one of the "Full Tree in
Single Document", "Parent Links", and "Array of Ancestors" patterns ...

 Troubleshooting
mongod process "disappeared" Scenario here is the log ending suddenly with no error or
shutdown messages logged. On Unix, check /var/log/messages: $ grep mongod
/var/log/messages $ grep score /var/log/messages See Also Diagnostic ...

 Troubleshooting the PHP Driver

 Tutorial
Getting the Database First, run through the Quickstart guide for your platform to get up and
running. Getting A Database Connection Let's now try manipulating the database with the
database shell DOCS:mongo The Interactive Shell . (We could perform similar ...

U

 Ubuntu and Debian packages
Please read the notes on the Downloads page. Also, note that these packages are updated daily, and so if you
find you can't download the packages, try updating your apt package lists, e.g., with 'aptget update' or 'aptitude update'.
10gen ...

 UI
Spec/requirements for a future MongoDB admin UI. list databases repair, drop, clone? collections validate(), datasize,
indexsize, clone/copy indexes queries explain() output security: view users, adjust see replication status of slave and
master ...

 Updates

 Updating
MongoDB supports atomic, inplace updates as well as more traditional updates for replacing an entire document.
update() {{update()}} replaces the document matching criteria entirely with objNew. If you only want to modify some
fields, you should use ...

 Updating Data in Mongo
Updating a Document in the mongo Shell with {{save()}} As shown in the previous section, the {{save()}} method may
be used to save a new document to a collection. We can also use {{save()}} to update an existing document in a
collection. Continuing with the example database from ...

 Upgrading from a Non-Sharded System
mongod}} process can become part of a sharded cluster without any change to that process or downtime. If you haven't
done so yet, feel free to have a look at the Sharding Introduction
http://www.mongodb.org/display/DOCS/ShardingIntroduction to familiarize yourself ...

 Upgrading to Replica Sets
Upgrading From a Single Server If you're running MongoDB on a single server, upgrading to replica sets is trivial (and a
good idea\!). First, we'll initiate a new replica set with a single node. We need a name for the replica set in this case
we're ...

 Use Case - Session Objects
MongoDB is a good tool for storing HTTP session objects. One implementation model is to have a sessions collection,
and store the session object's \id value in a browser cookie. With its updateinplace design and general optimization to
make updates fast, the database is efficient ...

 Use Cases
See also the Production Deployments DOCS:Production Deployments page for a discussion of how companies like
Shutterfly, foursquare, bit.ly, Etsy, SourceForge, etc. use MongoDB. Use Case Articles Using MongoDB for Realtime
Analytics http://blog.mongodb.org/post/171353301/usingmongodbforrealtimeanalytics ...

 User Feedback
I just have to get my head around that mongodb is really \this\ good" \muckster, #mongodb "Guys at Redmond
should get a long course from you about what is the software development and support :) "
\kunthar@gmail.com, mongodbuser list ...

 Using a Large Number of Collections
technique one can use with MongoDB in certain situations is to have several collections to store information instead of a
single collection. By doing this, certain repeating data no longer needs to be stored in every object, and an index
on that key may be eliminated ...

 Using Mongoid
Mongoid is a mature ODM for MongoDB. Much work has gone into the project, and it sports an active user community
and excellent documentation. That said, we've seen a few of Mongoid's design decisions cause problems for users in
production. This page is an attempt ...

 Using Multikeys to Simulate a Large Number of Indexes
One way to work with data that has a high degree of options for queryability is to use the multikey DOCS:Multikeys
indexing feature where the keys are objects. For example: > x = { > ... id : "abc", > ... cost : 33, > ... attribs : > ... ,
> ... , > ... , > ... > ... }; > db.foo.insert(x); > db.foo.ensureIndex(); > db.foo.find ...

V

 v0.8 Details
Existing Core Functionality Basic Mongo database functionality: inserts, deletes, queries,
indexing. Master / Slave Replication Replica Pairs Serverside javascript code execution New to
v0.8 Drivers for Java, C, Python, Ruby. db shell utility ...

 Validate Command
Use this command to check that a collection is valid (not corrupt) and to get various statistics.
This command scans the entire collection and its indexes and will be very slow on large
datasets. From the {{mongo}} shell: > db.foo.validate() From a driver one might invoke the
driver's equivalent ...

 Verifying Propagation of Writes with getLastError
v1.5. A client can block until a write operation has been replicated to N servers. Use the
getlasterror command with a new parameter {{w}}: db.runCommand() If {{w}} is not set, or

W

 What is the Compare Order for BSON Types
MongoDB allows objects in the same collection which have values which may differ in type. When comparing
values from different types, a convention is utilized as to which value is less than the other. This (somewhat
arbitary but well ...

 When to use GridFS
page is under construction When to use GridFS Lots of files. GridFS tends to handle large numbers (many thousands)
of files better than many file systems. User uploaded files. When users upload files you tend ...

 Why are my datafiles so large?

 Why so many "Connection Accepted" messages logged?

 Windows
Windows Quick Links and Reference Center Running MongoDB on Windows See the Quickstart page

equals 1, the command returns immediately, implying the data is on 1 server ...

 Version Numbers
MongoDB uses the oddnumbered versions for development releases
http://en.wikipedia.org/wiki/Softwareversioning#Oddnumberedversionsfordevelopmentreleases.
There are 3 numbers in a MongoDB version: A.B.C A is the major version. This will rarely
change and signify very large changes B is the release number. This will include many
changes ...

 Video & Slides from Recent Events and Presentations
Table of Contents: MongoDB Conferences Oneday conferences hosted by 10gen
http://www.10gen.com/. 10gen develops and supports MongoDB. MongoUK Video (June 2010)
http://skillsmatter.com/event/cloudgrid/mongouk MongoFR Video (June 2010)
http://lacantine.ubicast.eu/categories ...

 Viewing and Terminating Current Operation
View Current Operation(s) in Progress > db.currentOp(); > // same as:
db.$cmd.sys.inprog.findOne() { inprog: { "opid" : 18 , "op" : "query" , "ns" : "mydb.votes" ,
"query" : " " , "inLock" : 1 } } Fields: opid an incrementing operation number. Use with
killOp(). op the operation type ...

DOCS:Quickstart Windows for info on how to install and run the database for the first time. Running as a Service See
the Windows Service page. The MongoDB Server Get ...

 Windows Service
windows mongod.exe has native support for installing and running as a windows service. Service Related Commands
The service related commands are: mongod install mongod service mongod remove mongod reinstall You may also
option pass the following to \install ...

 Working with Mongo Objects and Classes in Ruby

 Writing Drivers and Tools
See Also DOCS:Mongo Query Language mongosniff objcheck command line parameter DOCS:Command Line
Parameters

 Writing Tests
We have three general flavors of tests currently. Lightweight startup test. You can inherit from class {{UnitTest}} and
make a test that runs at program startup. These tests run EVERY TIME the program starts. Thus, they should be
minimal ...

X Y

Z !@#$

	.bookmarks
	1.1 Development Cycle
	Creating and Deleting Indexes
	Diagnostic Tools
	Django and MongoDB
	Getting Started
	International Documentation
	Monitoring
	Older Downloads
	PyMongo and mod_wsgi
	Python Tutorial
	Recommended Production Architectures
	v0.8 Details
	Building SpiderMonkey
	Documentation
	Dot Notation
	Dot Notation
	Getting the Software
	Language Support
	Mongo Administration Guide
	Working with Mongo Objects and Classes in Ruby
	MongoDB Language Support
	Community Info
	Internals
	TreeNavigation
	Old Pages
	Storing Data
	Indexes in Mongo
	HowTo
	Searching and Retrieving
	Locking

	Mongo Developers' Guide
	Locking in Mongo
	Mongo Database Administration
	Mongo Concepts and Terminology
	MongoDB - A Developer's Tour
	Updates
	Structuring Data for Mongo
	Design Overview
	Document-Oriented Datastore
	Why so many "Connection Accepted" messages logged?
	Why are my datafiles so large?
	Storing Files
	Introduction - How Mongo Works
	Optimizing Mongo Performance
	Mongo Usage Basics
	Server-Side Processing

	Home
	Quickstart
	Quickstart OS X
	Quickstart Unix
	Quickstart Windows

	Downloads
	1.0 Changelist
	1.2.x Release Notes
	1.4 Release Notes
	1.6 Release Notes
	CentOS and Fedora Packages
	Ubuntu and Debian packages
	Version Numbers

	Drivers
	C Language Center
	C Tutorial

	C Sharp Language Center
	Driver Syntax Table
	Javascript Language Center
	node.JS

	JVM Languages
	Python Language Center
	PHP Language Center
	Installing the PHP Driver
	PHP Libraries, Frameworks, and Tools
	PHP - Storing Files and Big Data
	Troubleshooting the PHP Driver

	Ruby Language Center
	Ruby Tutorial
	Replica Pairs in Ruby
	Replica Sets in Ruby

	GridFS in Ruby
	Rails - Getting Started
	Rails 3 - Getting Started
	MongoDB Data Modeling and Rails
	Object Mappers for Ruby and MongoDB
	Using Mongoid

	Ruby External Resources
	Frequently Asked Questions - Ruby

	Java Language Center
	Java Driver Concurrency
	Java - Saving Objects Using DBObject
	Java Tutorial
	Java Types

	C++ Language Center
	C++ BSON Library
	C++ Tutorial
	Connecting

	Perl Language Center
	Contributing to the Perl Driver
	Perl Tutorial

	Online API Documentation
	Writing Drivers and Tools
	Overview - Writing Drivers and Tools
	bsonspec.org
	Mongo Driver Requirements
	Spec, Notes and Suggestions for Mongo Drivers
	Feature Checklist for Mongo Drivers
	Conventions for Mongo Drivers

	Driver Testing Tools
	Mongo Wire Protocol
	BSON
	Mongo Extended JSON
	GridFS Specification
	Implementing Authentication in a Driver
	Notes on Pooling for Mongo Drivers
	Driver and Integration Center

	Connecting Drivers to Replica Sets
	Error Handling in Mongo Drivers

	Developer Zone
	cookbook.mongodb.org
	Tutorial
	Manual
	Connections
	Databases
	Commands
	Clone Database
	fsync Command
	Index-Related Commands
	Last Error Commands
	Windows Service
	Viewing and Terminating Current Operation
	Validate Command
	getLastError
	List of Database Commands

	Mongo Metadata

	Collections
	Capped Collections
	Using a Large Number of Collections

	Data Types and Conventions
	Internationalized Strings
	Object IDs
	Database References

	GridFS
	When to use GridFS

	Indexes
	Using Multikeys to Simulate a Large Number of Indexes
	Geospatial Indexing
	Indexing as a Background Operation
	Multikeys
	Indexing Advice and FAQ

	Inserting
	Legal Key Names
	Schema Design
	Trees in MongoDB

	Optimization
	Optimizing Object IDs
	Optimizing Storage of Small Objects
	Query Optimizer

	Querying
	Mongo Query Language
	Retrieving a Subset of Fields
	Advanced Queries
	Dot Notation (Reaching into Objects)
	Full Text Search in Mongo
	min and max Query Specifiers
	OR operations in query expressions
	Queries and Cursors
	Tailable Cursors

	Server-side Code Execution
	Sorting and Natural Order
	Aggregation

	Removing
	Updating
	Atomic Operations
	findandmodify Command
	Updating Data in Mongo

	MapReduce
	Data Processing Manual

	mongo - The Interactive Shell
	Overview - The MongoDB Interactive Shell
	dbshell Reference

	Developer FAQ
	Do I Have to Worry About SQL Injection
	How does concurrency work
	SQL to Mongo Mapping Chart
	What is the Compare Order for BSON Types

	Admin Zone
	Production Notes
	Replication
	Verifying Propagation of Writes with getLastError
	Replica Sets
	About the local database
	Data Center Awareness
	Reconfiguring a replica set when members are down
	Reconfiguring when Members are Up
	Replica Set Design Concepts
	Replica Sets Troubleshooting
	Replica Set Tutorial
	Replica Set Configuration
	Adding a New Set Member
	Adding an Arbiter

	Upgrading to Replica Sets
	Replica Set Admin UI
	Replica Set Commands
	Replica Set FAQ
	Connecting to Replica Sets from Clients
	Replica Sets Limits
	Resyncing a Very Stale Replica Set Member
	Replica Set Internals

	Master Slave
	One Slave Two Masters

	Replica Pairs
	Master Master Replication
	Replication Oplog Length
	Halted Replication

	Sharding
	Sharding Introduction
	Configuring Sharding
	A Sample Configuration Session

	Upgrading from a Non-Sharded System
	Sharding Administration
	Sharding and Failover
	Sharding Limits
	Sharding Internals
	Moving Chunks
	Sharding Config Schema
	Sharding Design
	Sharding Use Cases
	Shard Ownership
	Splitting Chunks

	Sharding FAQ

	Hosting Center
	Amazon EC2
	Joyent

	Monitoring and Diagnostics
	Checking Server Memory Usage
	Database Profiler
	Munin configuration examples
	Http Interface
	mongostat
	mongosniff

	Backups
	How to do Snapshotted Queries in the Mongo Database
	Import Export Tools

	Durability and Repair
	Security and Authentication
	Admin UIs
	Starting and Stopping Mongo
	Logging
	Command Line Parameters
	File Based Configuration

	GridFS Tools
	DBA Operations from the Shell
	Architecture and Components
	Troubleshooting
	Excessive Disk Space
	Too Many Open Files

	Contributors
	JS Benchmarking Harness
	MongoDB kernel code development rules
	Git Commit Rules
	Kernel class rules
	Kernel code style
	Kernel concurrency rules
	Kernel exception architecture
	Kernel Logging
	Kernel string manipulation
	Writing Tests

	Project Ideas
	UI
	Source Code
	Building
	Building Boost
	Building for FreeBSD
	Building for Linux
	Building for OS X
	Building for Solaris
	Building for Windows
	Boost 1.41.0 Visual Studio 2010 Binary
	Boost and Windows
	Building the Mongo Shell on Windows
	Building with Visual Studio 2008
	Building with Visual Studio 2010

	Building Spider Monkey
	scons

	Database Internals
	Caching
	Cursors
	Error Codes
	Internal Commands
	Replication Internals
	Smoke Tests
	Pairing Internals

	Contributing to the Documentation
	Emacs tips for MongoDB work
	Mongo Documentation Style Guide

	Community
	MongoDB Commercial Services Providers
	User Feedback
	Job Board

	About
	Philosophy
	Use Cases
	Use Case - Session Objects

	Production Deployments
	Mongo-Based Applications
	Events
	Video & Slides from Recent Events and Presentations

	Slide Gallery
	Articles
	Benchmarks
	FAQ
	Product Comparisons
	Interop Demo (Product Comparisons)
	MongoDB, CouchDB, MySQL Compare Grid
	Comparing Mongo DB and Couch DB

	Licensing

	Windows
	International Docs
	Books
	Doc Index

