BOOKMAIKS .
1.1 DevelopmeNnt CYClE . ..o
Creating and Deleting INAeXeSo e e e e e
DIagnoStiC TOOISo
Django and MoONQOD Bo e e
Getting Started
International DOCUMENTALION ottt ettt e e e et e e e e
1o 11 (o] ¢ T
Older DOWNIOAAS oottt et e e e e e
PYMONGO aNnd MOO_WSOI . . . o ottt et e e e e e e e e e e e e e e
Python TULOMAlo
Recommended Production ArChiteCtUres
V0.8 DAl . . oo
Building SpIiderMOnKeYo
DOCUMENEALIONot
DOt N O A ON . . Lo
DOt NOTAtION . . o e e
Getting the SOfWaArE
LaNQUAGE SUPDOI . . oottt e e e e e e e e e
Mongo AdmINIStration GUIAE
Working with Mongo Objects and Classes in RUDY e
MoNgoDB Language SUPPOIT e e e e
COMMUNIEY INf0 . Lo e e e
BNl . o
TrEENAVIGA ON . . . ottt e e e e
Ol PagES . .ottt
SIOMNG DAtA . . . oot
INAEXES IN MONQO . . oot e e e e e e e e e
HOW T O o e
Searching and RetrieVINGot e e e e
LOCKING . . oot

MONGO DeVEIOPEIS GUIAEottt e e e e e
LOCKING IN MONQO . o ot e e e e e e e e e e
Mongo Database AdMINISIrationttt e e e
Mongo Concepts and TerMINOIOGYottt et e et e e e e e e e e e e e e e
MONGODB - A DEVEIOPEI'S TOUN . .o ot ittt e e e e e e et e e e e e e e e
L8 F= 1=
Structuring Data for MONGOo o
DESIGN OVEIVIEBW . o . o ittt ettt e e et e e e e e e e e e e e
Document-Oriented Datastore e
Why so many "Connection Accepted” messages [0gged?t
Why are my datafiles SO large? o
SHOMING RIS o o
Introduction - HOW MONGO WOTKS . . . oo e e e
Optimizing MONQO PerfOrManCeo e e e e e e e
MONGO USAGE BaSICSottt ittt e
SEIVEr-Side PrOCESSING o ittt et e e e e e e
HOMIE
QUICKS At .. e e
QUICKSTAIt O X .ot e
QUICKSTAI UNIX ..ot e e e e e
QUICKSTArt WINAOWS . . .o e e
DOWNIOAASottt

1.0 Changelisto

12X RelEASE NOES . . .o

L4 Release NOtES

L6 RelEaSE NOES . ..o
CentOS and Fedora PaCKagesttt e

Ubuntu and Debian packagesot

VErSiON NUMDDEIS . . e

(D177

C LaNgUAgE CoMIer ..ottt e e e

(O V(o T-

C Sharp Language CeNErttt ittt et et et et e e e e e e

Driver Syntax Table
Javascript Language CeNErot et e e
MO0, TS L

JVM LAGNQUAGES . . . oottt et e et et e e e e e e e e e e e e

Python Language Centert e e ettt e e e e e e

PHP Language Center . .. e e e e e e
Installing the PHP DIiVer e e e e e e

PHP Libraries, Frameworks, and TOOIS

PHP - Storing Files and Big Dataottt
Troubleshooting the PHP DIVl e e e e e e e

RUDY Language Centert et e e e e

RUDY U0l . . . 38

Replica Pairs in RUDYo 43
Replica Sets IN RUDYo 44
GRS N RUDY . oo e 46
Rails - Getting Started e 49
Rails 3 - Getting Started 50
MongoDB Data Modeling and Rails o 53
Object Mappers for Ruby and MONGODB e 56
USING MONQOIA . . . oo e e e 58
RUDY EXternal RESOUICESottt e e e e e e e e e e e e 60
Frequently Asked QUESHIONS - RUDYo 61
Java Language CeNterttt e e e e 64
Java DriVEr CONCUITENCY . . o . ot ittt e e e et e e e et e e e e e e e e e e e e et e e e e e e e e 64
Java - Saving Objects Using DBODJECTottt e e e e 65
Java TULOMTAl . . oo e e 65
JAVA TY PO ittt e e 70
G4 LangUage CaNter . . oottt e e 72
CHt BSON Library ..o 72
CHt TULOMAl . . 73
CONNECHING . o .ottt e e et e e e e 78
Perl Language CeNtErottt e e 78
Contributing to the Perl DIiVEr 79
Per TULOMIAl . . o 80
Online API DOCUMENTALIONottt et e e e e et e e e e e e e e 80
WItING DRAVErS @nd TOO0ISottt e e e e e e e 80
Overview - Writing Drivers and TOOISot e e e e 81
DS ONSPEC. Org . . oo 81
MONQO Driver REQUINEMENTS o ottt ettt e e e e e e e e e e e e e e e e 81
Spec, Notes and Suggestions for MONGO DIVEIS i e e e 85
Feature Checklist for MONGO DIVEISottt e e e e e e e e e e e e e 85
Conventions for MONGO DIIVEISo o et e e e e e e e e e e e 86
DrIVEr TeSHNG TOO0IS . . ottt e e e e e e e e e e 86
MONGo WIre ProtOCOlo 86
B O ON L 91
MOoNgo EXtENded JSONo e e 93
GridFS SPeCifiCationo 95
Implementing Authentication iN @ DIIVEr e e e 97
Notes on Pooling for MONQO DIIVEISot et e e e e e e e e 98
Driver and INtegration CENTETttt e et e e e e e e e 101
Connecting Drivers to RepliCa SetS e 101
Error Handling in MONQO DIiVEISttt e e e e e e 101
DEVEIOPEr ZONE . . . 102
COOKbOOK.MONGOOD.OMg . . . oo 103
TULOMIAl . 103
MaNUAL .o 109
CONNECHIONS . . o ittt ettt et e e e e e e e 110
DataDaSES . .. 111
COMMANGS . . . oottt ettt e e e e e e e e e e 111
MONQO Metadata e 119
(0] [1=T 1T o 120
Capped ColleCtiONS 120
Using a Large Number of ColleCtionso 121
Data Types and CONVENLIONSottt ettt e e e e et e e e e et e e e e e e e e e e 122
Internationalized StrNGSo 122
OB ECE IDS . ot ittt 122
Database References 123
GRS oo 125
When to use GHiARS 126
INOEXES o 126
Using Multikeys to Simulate a Large Number of IndexXes e 129
Geospatial INdeXiNgo e 130
Indexing as a Background Operationttt 133
MUK Y S . . o 134
Indexing AdVIiCe and FAQttt e 135
L ES= 1 oo 138
Legal Key Names . ..o 140
SCNEMA DESION . . o ottt 140
Trees in MONGODB 142
OPtMIZALION . . o o e e e e 144
OptimIzINg ODJECE IDSot e e e 147
Optimizing Storage of Small ObJeCES i e 147
QUEY OPEIMIZEr . o e e e e 148
QUEIYING oottt e e e 148
MONQO QUETY LANQUAGE . . . o ottt e e e e e e e e e e e 150

Retrieving @ Subset of Fields 150

AdVaNCEA QUEIIES . . ittt e e 151

Dot Notation (Reaching into ObJECES)ot e e e 158

Full Text Search in MONQOo o e e e e 161

min and max QUErY SPECIfIEIS 162

OR 0perations in QUENY EXPIreSSIONSottt it et et e et e e e e e e e e e e 162
QUENIES AN CUISOIS . o ottt ittt et e e e et e e e e e e e e e e e e e e e e 163
Server-side Code EXECULION 165

Sorting and Natural Order 168
AGOrEOALION . o . ot 168
REMIOVING . . .o 172
UPatiNg . oottt 172
ALOMIC OPEIALIONS . . .o ottt ettt e e e e e e e e e e e e e 177
findandmodify Command 178
Updating Data in MONQOottt e e e e e e 180
MaPREAUCEo 181
Data Processing ManuUalttt e 184
mMongo - The Interactive Shell e 185
Overview - The MongoDB Interactive Shell e e 186
dbshell Reference 188
DeVeloper FAQ . .o 190
Do | Have to Worry About SQL INJECHONottt e et e e e e e e e 192
HOW d0ES CONCUITENCY WOTK . . o . ottt e e e e e e e e e et e e e e e e e e e e 192
SQL to Mongo Mapping Chart e 194
What is the Compare Order for BSON TyPeSottt e e e e e e e e e e 196
AdMIN ZONE . . 197
Production NOTES 197
Rl At ON . ..o 198
Verifying Propagation of Writes with getLastEITor 199
RPN SOt . . .o 199
About the local database 200

Data Center AWAIENESSttt et ittt et e et e e e e 200
Reconfiguring a replica set when members are dOWNttt e 201
Reconfiguring when Members are Up 202

Replica Set DesigN CONCEPLS u ittt ettt e e et e e e e e e e e 202

Replica Sets TroublesShooting o 202

Replica Set TUOMIAlo e 202

Replica Set Configuration e 206
Upgrading to RepliCa SetS 208

Replica Set Admin Ul ... 210

Replica Set ComMMaNdSo 211

Replica Set FAQ 213
Connecting to Replica Sets from ClientS 213

Replica Sets LImMitS 213
Resyncing a Very Stale Replica Set Member 214

Replica Set INternals 214

MaSTEr SlAVE . . . oot 217
ONe Slave TWO MASEEISottt ettt e e e e e e e e e e 220

REPIICA PailS e 221
Master Master RepliCation 223
Replication Oplog Length 224
Halted RepICatioN e 225
SRAIING . o oo 226
Sharding INtrodUCTHION oot e e 227
Configuring Sharding o 231

A Sample Configuration SESSIONttt 233
Upgrading from a Non-Sharded System 235
Sharding AdmiNiStration e e 236
Sharding and Failover 237
Sharding Limits . .o 238
Sharding INtEINaAlS o 238
MOVING ChUNKS . o 239
Sharding Config SChemMao 239
Sharding DESIgNo 241
Sharding USE CaseS . ..ttt ittt it ettt e e e e e 242

Shard OWNErSNID . .. 242
SPIItiNG CRUNKS . oo 243
ShardiNg FAQ . . .o 244
HOSHING CONter . . oot e 245
AMAzZON EC2 . .. 245
10 | 246
Monitoring and DIagNOSHICSottt e e e e 246
Checking Server Memory USAgE ittt e e e e e e e e 248
Database Profiler 248
Munin configuration eXamples 250

HED INtEI aCE . .. oo 253

MONQGOSTAL . . oo oo e 256

MONGOSNIIT L o 256
BaCKUDS . .o 257
How to do Snapshotted Queries in the Mongo Databasettt e 257
IMPOrt EXPOIt TOOIS . . oo e e 258
Durability and RePairo 262
Security and AUTNENTICALIONo e 264
AAMIN UIS L 265
Starting and StOpPINg MONQOottt 269
[T T 11T R 271
Command Line Parameters 271

File Based Configuration e 273
GrIARS TO0IS . .o 274
DBA Operations from the Shell 275
Architecture and COMPONENTSttt et e et e e e e e e e e e e 276
TrOUDIESNOO NG . . ittt 276
EXCESSIVE DISK SPACE . ..ot e 277
TOo Many Open Files ..o 278
GOt DUIONS . L 278
JS Benchmarking Harnesso 279
MongoDB kernel code developmeNnt TUIES i 279
Git ComMMIt RUIES . . .o e 279
Kernel Class TUIES . . .o 279
Kernel Code Style . ..o 280
KEINEI CONCUITENCY TUIBSottt et e 281
Kernel exception arChiteCtUre e e e e e 281
KErNel LOGGiNg . . o .ottt et et e e e e e 281
Kernel string manipulation 282
NG TSt o oottt e e 282
PrOJECE IdBAS oot 283
Ul e 284
SOUICE COOB . ..ttt et e 284
BUIIING . . oo 284
BUIlAING BOOSEot 285
Building for Fre@BSDo 285
BUIldiNg fOr LINUX . . oo 286
BUIIING fOr O X . o 287
Building for SOIaris 291
BUilding for WINAOWSo e 291
Boost 1.41.0 Visual Studio 2010 BiNAryt 291

Boost and WINGOWS 292
Building the Mongo Shell on WINAOWSo e e e 292
Building with Visual Studio 2008 293
Building with Visual Studio 2010o 294

Building Spider MONKEYo e e 296
SCOMIS . ittt it e e e e e 297
Database INternals 298
(7= Tod 11 T 298
LT 5= £ 298
ErTOr GO0 . o oottt 298
Internal CommaNOS e e 298
Replication INtErNalSo 299
SIMOKE TS S . . oottt e 300
PairiNg INterNalS 301
Contributing to the DOCUMENTALIONot e e e e e e 301
Emacs tips for MONGODB WOTIKo e e e e 301
Mongo Documentation Style GUILEttt e e e 301
COMMUNILY .« o ettt e et e e e et e e e e e e e e e e e e 304
MongoDB Commercial SErviCes ProVIErSt et e e 304
User Feedback 305
JOD BOard ... 306
AU . o 307
PhilOSOPNY . . 307
USE CaSES . ottt it 307
Use Case - SESSION ObJECESot 308
Production DeploymMeENtSo 308
Mongo-Based AppPliCatiONS 320
BV NS 321
Video & Slides from Recent Events and Presentations i 323
Slde Gallery . .. 326
ATl o o 326
BenChmMarKS . . 327
B o 327
Product COmMPariSONSot et e e 328

Interop Demo (Product COMPANISONS) o . vttt e ettt e e e et e e e e e e e e e 328

MongoDB, CouchDB, MySQL Compare Gridttt e e e e e e e e e e 328

Comparing Mongo DB and CouCh DBo e 329
LICBNSING . oo 330
OO S .ottt e e e e 331
INtErNAtiONAl DOCS oot e e e e 331
BOOKS . 332

DOC INEX .ottt e e 332

.bookmarks

@ Recent bookmarks in MongoDB

This page is a container for all the bookmarks in this space. Do not delete or move it or you will lose all your bookmarks.
Bookmarks in MongoDB | Links for MongoDB

%1 The 15 most recent bookmarks in MongoDB

There are no bookmarks to display.

1.1 Development Cycle

1 Redirection Notice
This page should redirect to [1.2.0 Release Notes].

Creating and Deleting Indexes

1 Redirection Notice
This page should redirect to Indexes.

Diagnostic Tools

1 Redirection Notice
This page should redirect to Monitoring and Diagnostics.

Django and MongoDB

1 Redirection Notice
This page should redirect to Python Language Center.

Getting Started

http://www.mongodb.org/spaces/space-bookmarks.action?spaceKey=DOCS
http://www.mongodb.org/spaces/space-bookmarks.action?spaceKey=DOCS

Redirection Notice
This page should redirect to Quickstart.

International Documentation

Redirection Notice
This page should redirect to International Docs.

Monitoring

Redirection Notice
This page should redirect to Monitoring and Diagnostics.

Older Downloads

Redirection Notice
This page should redirect to Downloads.

PyMongo and mod_wsgi

Redirection Notice
This page should redirect to Python Language Center.

Python Tutorial

Redirection Notice
This page should redirect to Python Language Center.

Recommended Production Architectures

' Redirection Notice
This page should redirect to Production Notes.

v0.8 Detalls

Existing Core Functionality

Basic Mongo database functionality: inserts, deletes, queries, indexing.
Master / Slave Replication

Replica Pairs

Server-side javascript code execution

New to v0.8

Drivers for Java, C++, Python, Ruby.
db shell utility

(Very) basic security

$or

Clean up logging

Performance test baseline
getlasterror

Large capped collections

Bug fixes (compound index keys, etc.)
Import/Export utility

Allow any _id that is unique, and verify uniqueness

Wanted, but may not make it
AMI's
Unlock eval()?

Better disk full handling

°
L]
°
® better replica pair negotiation logic (for robustness)

Building SpiderMonkey

' Redirection Notice
This page should redirect to Building Spider Monkey.

Documentation

' Redirection Notice
This page should redirect to Home.

Dot Notation

Redirection Notice
This page should redirect to Dot Notation (Reaching into Objects).

Dot Notation

Redirection Notice
This page should redirect to Dot Notation (Reaching into Objects).

Getting the Software

Placeholder - $$$ TODO

Language Support

Redirection Notice
This page should redirect to Drivers.

Mongo Administration Guide

Redirection Notice
This page should redirect to Admin Zone.

Working with Mongo Objects and Classes in Ruby

Redirection Notice
This page should redirect to Ruby Language Center.

MongoDB Language Support

Redirection Notice
This page should redirect to Language Support.

Community Info

. Redirection Notice
This page should redirect to Community.

Internals

Cursors

Tailable Cursors

See p/db/dbclient.h for example of how, on the client side, to support tailable cursors.

Set

...

Option_CursorTailable = 2
in the quer yOpt i ons i nt field to indicate you want a tailable cursor.

If you get back no results when you query the cursor, keep the cursor live if cursorid is still nonzero. Then, you can issue future get Mor e
requests for the cursor.

If a get Mor e request has the resul t Fl ag Resul t Fl ag_Cur sor Not Found set, the cursor is not longer valid. It should be marked as "dead"
on the client side.

See the Queries and Cursors section of the Mongo Developers' Guide for more information about cursors.

See Also

® The Queries and Cursors section of the Mongo Developers' Guide for more information about cursors

TreeNavigation

Old Pages

Storing Data

' Redirection Notice
This page should redirect to Inserting.

Indexes in Mongo

! Redirection Notice
This page should redirect to Indexes.

HowTo

' Redirection Notice
This page should redirect to Developer FAQ.

Searching and Retrieving

1 Redirection Notice
This page should redirect to Querying.

Locking

' Redirection Notice
This page should redirect to Atomic Operations.

Mongo Developers' Guide

1 Redirection Notice
This page should redirect to Manual.

Locking in Mongo

' Redirection Notice
This page should redirect to Developer FAQ.

Mongo Database Administration

' Redirection Notice
This page should redirect to Admin Zone.

Mongo Concepts and Terminology

! Redirection Notice
This page should redirect to Manual.

MongoDB - A Developer's Tour

' Redirection Notice
This page should redirect to Manual.

Updates

1 Redirection Notice
This page should redirect to Updating.

Structuring Data for Mongo

! Redirection Notice
This page should redirect to Inserting.

Design Overview

' Redirection Notice
This page should redirect to Developer Zone.

Document-Oriented Datastore

1 Redirection Notice
This page should redirect to Databases.

Why so many "Connection Accepted" messages logged?

' Redirection Notice
This page should redirect to Developer FAQ.

Why are my datafiles so large?

! Redirection Notice
This page should redirect to Developer FAQ.

Storing Files

' Redirection Notice
This page should redirect to GridFS.

Introduction - How Mongo Works

1 Redirection Notice
This page should redirect to Developer Zone.

Optimizing Mongo Performance

! Redirection Notice
This page should redirect to Optimization.

Mongo Usage Basics

' Redirection Notice
This page should redirect to Tutorial.

Server-Side Processing

1 Redirection Notice
This page should redirect to Server-side Code Execution.

Home

Events

® Follow us on Facebook and Twitter to get all of the latest updates!
®* MongoDB Conferences:

® Mongo Chicago - October 20

® Mongo DC - November 18

® MongoSV - December 3

¢ Slides and Video: MongoSeattle | MongoFR | MongoUK | MongoNYC | MongoSF
* More events...

Getting Started

Quickstart | Downloads | Tutorial

Development

® Manual
® C|C++ | C# & .NET | ColdFusion | Erlang | Factor | Java | Javascript | PHP | Python | Ruby | Perl | More...

Production

Production Notes | Security | Replication | Sharding | Backup

Support

Forum | IRC | Bug tracker | Commercial support | Training | Consulting | Hosting

Community

Blog | Articles | Twitter | [Forum] | Facebook | LinkedIn | Job Board | User groups: NY and SF

Meta

Use Cases | Philosophy | License

Translations

| Deutsch | Espafiol | Francais | Italiano | | Portugués | |

Quickstart

® Quickstart OS X
® Quickstart Unix

® Quickstart Windows

@ For an even quicker start go to http://try.mongodb.org/.

See Also

® SQL to Mongo Mapping Chart

Quickstart OS X

http://www.facebook.com/#!/pages/MongoDB/397955415556
http://www.twitter.com/mongodb
http://bit.ly/mongochicago
http://bit.ly/mongodc2010
http://bit.ly/mongosv2010
http://www.10gen.com/conferences/mongoseattle2010
http://www.10gen.com/conferences/event_mongofr_21june10
http://www.10gen.com/conferences/event_mongouk_18june10
http://www.10gen.com/event_mongony_10may21
http://www.10gen.com/event_mongosf_10apr30
http://github.com/mongodb/mongo-c-driver
http://api.mongodb.org/python
http://groups.google.com/group/mongodb-user
irc://irc.freenode.net/#mongodb
http://jira.mongodb.org/
http://www.10gen.com/support
http://www.10gen.com/training
http://blog.mongodb.org/
http://twitter.com/mongodb
http://bit.ly/mongofb/
http://www.linkedin.com/groups?mostPopular=&gid=2340731
http://www.meetup.com/New-York-MongoDB-User-Group/
http://www.meetup.com/San-Francisco-MongoDB-User-Group/
http://www.mongodb.org/display/DOCSCN
http://www.mongodb.org/display/DOCSDE
http://www.mongodb.org/display/DOCSES
http://www.mongodb.org/display/DOCSFR
http://www.mongodb.org/display/DOCSIT
http://www.mongodb.org/display/DOCSJP
http://www.mongodb.org/display/DOCSPT
http://www.mongodb.org/display/DOCSRU
http://www.mongodb.org/display/DOCSRS
http://try.mongodb.org/

Install MongoDB
The easiest way to install MongoDB is to use a package manager or the pre-built binaries:
Package managers

If you use the Homebrew package manager, run:

$ brew install nongodb

$ sudo port install nongodb

This will take a while to install.

32-bit binaries

Note: 64-bit is recommended.

...

$ curl http://downl oads. nongodb. or g/ osx/ nongodb- osx-i 386-1.4.4.tgz > nongo.tgz
$ tar xzf nongo.tgz

...

$ curl http://downl oads. nongodb. or g/ osx/ nongodb- osx- x86_64-1. 4. 4.tgz > nongo. tgz
$ tar xzf nongo.tgz

Create a data directory

By default MongoDB will store data in / dat a/ db, but it won't automatically create that directory. To create it, do:

...

You can also tell MongoDB to use a different data directory, with the - - dbpat h option.

Run and connect to the server

First, start the MongoDB server in one terminal:

...

...

$./ nongodb- xxxxxxx/ bi n/ mongo
> db.foo.save({ a: 11})
> db. foo. find()

Congratulations, you've just saved and retrieved your first document with MongoDB!

Learn more

Once you have MongoDB installed and running, head over to the Tutorial.

http://mxcl.github.com/homebrew/
http://www.macports.org/
http://blog.mongodb.org/post/137788967/32-bit-limitations

Quickstart Unix

Install MongoDB

Note: If you are running an old version of Linux and the database doesn't start, or gives a floating point exception, try the "legacy static" version
on the Downloads page instead of the versions listed below.

Package managers
Ubuntu and Debian users can now install nightly snapshots via apt. See Ubuntu and Debian packages for details.

CentOS and Fedora users should head to the CentOS and Fedora Packages page.

32-bit Linux binaries

Note: 64 bit is recommended.

...

$ curl http://downl oads. nongodb. or g/ | i nux/ nongodb- | i nux-i 686-1.4.4.tgz > npngo.tgz
$ tar xzf nongo.tgz

...

$ curl http://downl oads. nongodb. or g/ | i nux/ nongodb- | i nux-x86_64-1.4.4.tgz > nongo. tgz
$ tar xzf nongo.tgz

Other Unixes

See the Downloads page for some binaries, and also the Building page for information on building from source.

Create a data directory

By default MongoDB will store data in / dat a/ db, but it won't automatically create that directory. To create it, do:

...

$ sudo nkdir -p /data/db/
$ sudo chown “id -u" /data/db

You can also tell MongoDB to use a different data directory, with the - - dbpat h option.

Run and connect to the server

First, start the MongoDB server in one terminal:

$./ nmongodb- xxxxxxx/ bi n/ rongo
> db.foo.save({ a: 11})
> db. foo. find()

...

Congratulations, you've just saved and retrieved your first document with MongoDB!

Learn more

http://blog.mongodb.org/post/137788967/32-bit-limitations

Once you have MongoDB installed and running, head over to the Tutorial.

Quickstart Windows

®* Download
® 32-bit binaries
® 64-bit binaries
® Unzip
® Create a data directory
® Run and connect to the server
® |earn more

Download

The easiest (and recommended) way to install MongoDB is to use the pre-built binaries.

32-bit binaries

Download and extract the 32-bit .zip. The "Production” build is recommended.

64-bit binaries

Download and extract the 64-bit .zip.

Note: 64-bit is recommended, although you must have a 64-bit version of Windows to run that version.
Unzip

Unzip the downloaded binary package to the location of your choice. You may want to rename mongo-xxxxxxx to just “mongo" for convenience.

Create a data directory

By default MongoDB will store data in \ dat a\ db, but it won't automatically create that folder, so we do so here:

C\> nkdir \data
C.\> nkdir \data\db

Or you can do this from the Windows Explorer, of course.

Run and connect to the server

The important binaries for a first run are:

®* nmongod. exe - the database server
® nongo. exe - the administrative shell

To run the database, click nongod. exe in Explorer, or run it from a CMD window.

C\> cd \ny_nongo_dir\bin
C:\ ny_nongo_di r\ bin > nongod

Note: It is also possible to run the server as a Windows Service. But we can do that later.

Now, start the administrative shell, either by double-clicking mongo. exe in Explorer, or from the CMD prompt. By default mongo.exe connects to
a nongod server running on | ocal host and uses the database named t est . Run mongo - - hel p to see other options.

http://blog.mongodb.org/post/137788967/32-bit-limitations

C:\> cd \ny_nongo_dir\bin
C:\ ny_nongo_di r\ bi n> nongo
> [/ the nongo shell

> 3+3
6

test

> /] the first wite will
> db.foo.insert({ a:

> db. foo. find()

i\ >db
L id:

., a1}

is a javascript shell

11})

create the db:

connected to the db

Congratulations, you've just saved and retrieved your first document with MongoDB!

Learn more

® Tutorial

® Windows quick links
® [Mongo Shell]

Mongo Shell Info

Downloads

See also Packages.

Version
Production

(Recommended)

1.4.3

nightly
Previous
Release

125

nightly

Dev (unstable)

153

1.5.x nightly

Archived
Releases

0OS X 32
bit

0s x 10.5+
os x 10.4

0s x 10.5+
0sx10.4

0s x 10.5+
0sx10.4

0s x 10.5+
os x10.4

0s x 10.5+
0s x 10.4

0s x 10.5+
0sx10.4

list

® See Version Numbers
® The linux legacy-static builds are only recommended for older systems. If you try to run and get a floating point exception, try the
legacy-static builds. Otherwise you should use the regular ones.

OS X 64
bit

download

download

download

download

download

download

list

Linux 32
bit

download *
legacy-static

download *
legacy-static

download *
legacy-static

download *
legacy-static

download *
legacy-static

download *
legacy-static

list

Linux 64
bit

download *
legacy-static

download *
legacy-static

download *
legacy-static

download *
legacy-static

download *
legacy-static

download *
legacy-static

list

Windows
32 bit

download

download

download

download

download

download

list

Windows
64-bit

download

download

download

download

download

download

list

Solaris
i86pc

download

download

download

download

download

download

list

Solaris
64

download

download

download

download

download

download

list

Source

tgz zip

tgz zip

tgz zip

tgz zip

tgz zip

tgz zip

list

Date

5/24/2010

Daily

4/7/2010

Daily

6/17/2010

Daily

http://downloads.mongodb.org/osx/mongodb-osx-i386-1.4.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-1.4.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.4.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-1.4.3.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-1.4.3.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-1.4.3.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-1.4.3.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-1.4.3.tgz
http://downloads.mongodb.org/src/mongodb-src-r1.4.3.tar.gz
http://downloads.mongodb.org/src/mongodb-src-r1.4.3.zip
http://downloads.mongodb.org/osx/mongodb-osx-i386-v1.4-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-v1.4-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-v1.4-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-v1.4-latest.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-v1.4-latest.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-v1.4-latest.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-v1.4-latest.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-v1.4-latest.tgz
http://github.com/mongodb/mongo/tarball/v1.4
http://github.com/mongodb/mongo/zipball/v1.4
http://downloads.mongodb.org/osx/mongodb-osx-i386-1.2.5.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-1.2.5.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.2.5.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-1.2.5.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-1.2.5.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-1.2.5.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-1.2.5.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-1.2.5.tgz
http://downloads.mongodb.org/src/mongodb-src-r1.2.5.tar.gz
http://downloads.mongodb.org/src/mongodb-src-r1.2.5.zip
http://downloads.mongodb.org/osx/mongodb-osx-i386-v1.2-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-v1.2-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-v1.2-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-v1.2-latest.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-v1.2-latest.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-v1.2-latest.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-v1.2-latest.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-v1.2-latest.tgz
http://github.com/mongodb/mongo/tarball/v1.2
http://github.com/mongodb/mongo/zipball/v1.2
http://downloads.mongodb.org/osx/mongodb-osx-i386-1.5.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-1.5.3.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-1.5.3.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-1.5.3.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-1.5.3.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-1.5.3.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-1.5.3.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-1.5.3.tgz
http://downloads.mongodb.org/src/mongodb-src-r1.5.3.tar.gz
http://downloads.mongodb.org/src/mongodb-src-r1.5.3.zip
http://downloads.mongodb.org/osx/mongodb-osx-i386-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-i386-tiger-latest.tgz
http://downloads.mongodb.org/osx/mongodb-osx-x86_64-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-i686-static-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-latest.tgz
http://downloads.mongodb.org/linux/mongodb-linux-x86_64-static-legacy-latest.tgz
http://downloads.mongodb.org/win32/mongodb-win32-i386-latest.zip
http://downloads.mongodb.org/win32/mongodb-win32-x86_64-latest.zip
http://downloads.mongodb.org/sunos5/mongodb-sunos5-i86pc-latest.tgz
http://downloads.mongodb.org/sunos5/mongodb-sunos5-x86_64-latest.tgz
http://github.com/mongodb/mongo/tarball/master
http://github.com/mongodb/mongo/zipball/master
http://dl.mongodb.org/dl/osx/i386
http://dl.mongodb.org/dl/osx/x86
http://dl.mongodb.org/dl/linux/i686
http://dl.mongodb.org/dl/linux/x86_64
http://dl.mongodb.org/dl/win32/386
http://dl.mongodb.org/dl/win32/x86_64
http://dl.mongodb.org/dl/sunos5/i86pc
http://dl.mongodb.org/dl/sunos5/x86_64
http://dl.mongodb.org/dl/src/

® Currently the mongod server must run on little-endian cpu (intel) so if you are using a ppc os x, mongod will not work.
® 32-bit builds are limited 2gb of data. See http://blog.mongodb.org/post/137788967/32-bit-limitations for more info
® See http://buildbot.mongodb.org/waterfall for details of builds and completion times.

Included in Distributions

The MongoDB database server
The MongoDB shell

Backup and restore tools
Import and export tools

GridFS tool

The MongoDB C++ client

Drivers

Information on how to separately download or install the drivers and tools can be found on the Drivers page.

Language Packages Source APl Reference
Python bundles github api
PHP pecl github api
Ruby gemcutter github api
Java jar github api
Perl cpan github api
C++ included in database | github api

See Drivers for more information and other languages.

Source Code

Source code for MongoDB and all drivers

Packages
MongoDB is included in several different package managers:

For MacPorts, see the mongodb and mongodb-devel packages.
For FreeBSD, see the mongodb and mongodb-devel packages.
For Homebrew, see the mongodb formula.

For ArchLinux, see the mongodb package in the AUR.

For Debian and Ubuntu, see Ubuntu and Debian packages.

For Fedora and CentOS, see CentOS and Fedora Packages.

Documentation

Pre-Exported

You can export yourself: HTML, PDF, or XML.

Logos

MongoDB logos are available for download as attachments on this page.
Powered By MongoDB Badges

We've made badges in beige, brown, blue and green for use on your sites that are powered by MongoDB. They are available below and in
multiple sizes as attachments on this page.

powered by

mongoDB | .monguDB J ’mangoDB

http://blog.mongodb.org/post/137788967/32-bit-limitations
http://buildbot.mongodb.org/waterfall
http://pypi.python.org/pypi/pymongo/
http://github.com/mongodb/mongo-python-driver
http://api.mongodb.org/python
http://pecl.php.net/package/mongo
http://github.com/mongodb/mongo-php-driver
http://us.php.net/manual/en/book.mongo.php
http://gemcutter.org/gems/mongo
http://github.com/mongodb/mongo-ruby-driver
http://api.mongodb.org/ruby
http://github.com/mongodb/mongo-java-driver/downloads
http://github.com/mongodb/mongo-java-driver
http://api.mongodb.org/java
http://search.cpan.org/dist/MongoDB/
http://github.com/mongodb/mongo-perl-driver
http://search.cpan.org/dist/MongoDB/lib/MongoDB.pm
http://github.com/mongodb/mongo
http://api.mongodb.org/cplusplus
http://www.macports.org/
http://www.FreeBSD.org
http://github.com/mxcl/homebrew
http://archlinux.org/
http://www.debian.org
http://www.ubuntu.com
http://fedoraproject.org/
http://centos.org
http://dl.mongodb.org/dl/docs/
http://www.mongodb.org/spaces/exportspacehtml.action?key=DOCS
http://www.mongodb.org/spaces/flyingpdf/flyingpdf.action?key=DOCS
http://www.mongodb.org/spaces/exportspacexml.action?key=DOCS
http://www.mongodb.org/pages/viewpageattachments.action?pageId=132305

Training
If you're just getting started with MongoDB, consider registering for an upcoming training course.

<#comment><#comment><#comment>

1.0 Changelist

Wrote MongoDB. See documentation.

1.2.x Release Notes

New Features

More indexes per collection
Faster index creation
Map/Reduce

Stored JavaScript functions
Configurable fsync time

Several small features and fixes

DB Upgrade Required

There are some changes that will require doing an upgrade if your previous version is <= 1.0.x. If you're already using a version >= 1.1.x then
these changes aren't required. There are 2 ways to do it:
® --upgrade
® stop your mongod process
® run ./mongod --upgrade
® start mongod again
® use aslave
® start a slave on a different port and data directory
® when its synced, shut down the master, and start the new slave on the regular port.

Ask in the forums or IRC for more help.
Replication Changes

® There have been minor changes in replication. If you are upgrading a master/slave setup from <= 1.1.2 you have to update the slave first.
mongoimport

® mongoimportjson has been removed and is replaced with mongoimport that can do json/csv/tsv

field filter changing

® We've changed the semantics of the field filter a little bit. Previously only objects with those fields would be returned. Now the field filter
only changes the output, not which objects are returned. If you need that behavior, you can use $exists

other notes

http://www.mongodb.org/display/DOCS/1.1+Development+Cycle

1.4 Release Notes

We're pleased to announce the 1.4 release of MongoDB. 1.4 is a drop in replacement for 1.2. To upgrade you just need to shutdown mongod,
then restart with the new binaries. (Users upgrading from release 1.0 should review the 1.2 release notes, in particular the instructions for
upgrading the DB format.)

Release 1.4 includes the following improvements over release 1.2:

Core server enhancements

® concurrency improvements
® indexing memory improvements

http://www.10gen.com/training

® background index creation
® better detection of regular expressions so the index can be used in more cases

Replication & Sharding

better handling for restarting slaves offline for a while

fast new slaves from snapshots (--fastsync)

configurable slave delay (--slavedelay)

replication handles clock skew on master

$inc replication fixes

sharding alpha 3 - notably 2 phase commit on config servers

Deployment & production

configure "slow threshold" for profiling

ability to do fsync + lock for backing up raw files

option for separate directory per db (--directoryperdb)

http://1ocal host: 28017/ _st at us to get serverStatus via http

REST interface is off by default for security (--rest to enable)

can rotate logs with a db command, logRotate

enhancements to serverStatus command (db.serverStatus()) - counters and replication lag stats
new mongostat tool

Query language improvements

$all with regex

$not

partial matching of array elements $elemMatch
$ operator for updating arrays

$addToSet

$unset

$pull supports object matching

$set with array indices

Geo

® 2d geospatial search
® geo $center and $box searches

1.6 Release Notes

MongoDB 1.6 is a drop-in replacement for 1.4. To upgrade, simply shutdown nongod then restart with the new binaries.*

* Please note that you should upgrade to the latest version of whichever driver you're using. Certain drivers, including the Ruby driver, will require
the upgrade, and all the drivers will provide extra features for connecting to replica sets.

Sharding

Sharding is now production-ready, making MongoDB horizontally scalable, with no single point of failure. A single instance of mongod can now be
upgraded to a distributed cluster with zero downtime when the need arises.

® Sharding Tutorial

® Sharding Documentation
® Upgrading a Single Server to a Cluster

Replica Sets

Replica sets, which provide automated failover among a cluster of n nodes, are also now available.
Plese note that replica pairs are now deprecated; we strongly recommend that replica pair users upgrade to replica sets.
® Replica Set Tutorial

® Replica Set Documentation
® Upgrading Existing Setups to Replica Sets

Other Improvements

®* The w option (and wtimeout) forces writes to be propagated to n servers before returning success (this works especially well with replica
sets)

$or queries

Improved concurrency

$slice operator for returning subsets of arrays

64 indexes per collection (formerly 40 indexes per collection)

64-bit integers can now be represented in the shell using NumberLong

The findAndModify command now supports upserts. It also allows you to specify fields to return
$showDiskLoc option to see disk location of a document

Support for IPv6 and UNIX domain sockets

Installation

® Windows service improvements
® The C++ client is a separate tarball from the binaries

1.5.x Release Notes

158
157
1.5.6
155
154
153
152
151
1.5.0

You can see a full list of all changes on Jira.

Thank you everyone for your support and suggestions!

CentOS and Fedora Packages

10gen now publishes yum-installable RPM packages for CentOS 5.4 (x86 and x86_64) and Fedora 12 and 13 (x64_64 only for the moment). For
each revision in stable, unstable, and snapshot, there are four packages, e.g., mongo-stable, mongo-stable-server, mongo-stable-devel,
mongo-stable-debuginfo, for each of the client, server, headers, and debugging information, respectively.

To use these packages, add one of the following files in /etc/yum.repos.d, and then yum update and yum install your preferred complement of
packages.

For CentOS 5.4 on x86_64:

[10gen]

name=10gen Repository

baseur| =htt p:// downl oads. nongodb. or g/ di stros/centos/ 5. 4/ os/ x86_64/
gpgcheck=0

For CentOS 5.4 on x86

[10gen]

nanme=10gen Repository

baseur| =ht t p: / / downl oads. nongodb. or g/ di stros/ centos/5. 4/ os/i 386/
gpgcheck=0

For Fedora 13:

[10gen]

nanme=10gen Repository

baseur| =htt p: // downl oads. nongodb. or g/ di stros/fedora/ 13/ 0os/ x86_64/
gpgcheck=0

For Fedora 12:

http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-%24or
http://www.mongodb.org/display/DOCS/Advanced+Queries#AdvancedQueries-%24sliceoperator
http://groups.google.com/group/mongodb-user/browse_thread/thread/b897c5d5037a4e19#
http://groups.google.com/group/mongodb-user/browse_thread/thread/398bf3e34456b3dd
http://groups.google.com/group/mongodb-user/browse_thread/thread/e25d0dd94fc7d1c4
http://groups.google.com/group/mongodb-user/browse_thread/thread/a0eef8f67bd30116
http://groups.google.com/group/mongodb-user/browse_thread/thread/dfcd15fc473fab57
http://groups.google.com/group/mongodb-user/browse_thread/thread/86c5102fd0b14d0c?hl=en
http://groups.google.com/group/mongodb-user/browse_thread/thread/f78104dc75627400
http://groups.google.com/group/mongodb-user/browse_thread/thread/ed204f4364527dd3
http://groups.google.com/group/mongodb-user/browse_thread/thread/5408497230c64f2d
http://jira.mongodb.org/secure/IssueNavigator.jspa?mode=hide&requestId=10107

[10gen]

nane=10gen Repository

baseur| =htt p: // downl oads. nongodb. or g/ di stros/ fedora/ 12/ os/ x86_64/
gpgcheck=0

For Fedora 11:

[10gen]

nane=10gen Repository

baseur| =htt p: // downl oads. nongodb. or g/ di stros/fedora/ 11/ os/ x86_64/
gpgcheck=0

For the moment, these packages aren't signed. (If anybody knows how to automate signing RPMs, please let us know!)

Ubuntu and Debian packages

‘1., Please read the notes on the Downloads page. Also, note that these packages are updated daily, and so if you find you can't
download the packages, try updating your apt package lists, e.g., with ‘apt-get update' or ‘aptitude update'.

10gen publishes apt-gettable packages. Our packages are generally fresher than those in Debian or Ubuntu. We publish 3 distinct packages,
named "mongodb-stable”, "mongodb-unstable"”, "mongodb-snapshot", corresponding to our latest stable release, our latest development release,
and the most recent git checkout at the time of building. Each of these packages conflicts with the others, and with the "mongodb" package in

Debian/Ubuntu.

The packaging is still a work-in-progress, so we invite Debian and Ubuntu users to try them out and let us know how the packaging might be
improved.

To use the packages, add a line to your /etc/apt/sources.list, then ‘aptitude update' and one of 'aptitude install mongodb-stable’, ‘aptitude install
mongodb-unstable' or ‘aptitude install mongodb-snapshot'.

For Ubuntu Lucid (10.4) (built using a prerelease installation):

These packages are snapshots of our git master branch, and we plan to
update them frequently, so package version numbers will be of the form
YYYYMMDD; when reporting issues with these packages, please include the
package version in your report.

The public gpg key used for signing these packages follows. It should be possible to import the key into apt's public keyring with a command like
this:

»
c
<%
o
o
°
S

\
x~
®

<
o
o
<

.
=
®

<
»
®
=
<
®
=
x~
®
<
»
®
=
<
®
=
c
o
c
S
=
c
o
o
3

\

\
L
®
o
<
~
3
e
w
=
o

To configure these packages beyond the defaults, have a look at /etc/mongodb.conf, and/or the initialization script, (/etc/init.d/mongodb on older,
non-Upstart systems, /etc/initmongodb.conf on Upstart systems). Most MongoDB operational settings are in /etc/mongodb.conf; a few other
settings are in the initialization script. Note that if you customize the userid in the initialization script or the dbpath or logpath settings in
/etc/mongodb.conf, you must ensure that the directories and files you use are writable by the userid you run the server as.

Packages for other distros coming soon!

----- BEG N PGP PUBLI C KEY BLOCK- - - - -
Ver sion: GhwuPG v1.4.10 (Darw n)

NMENBEt sQe8BCACTH R0/ ei 01 xyj VEp6EEt bEbWK1Q4dKaONt i CODWB8di +L8t | Ud
Ra5QYxeyV90C+dqdh34079enXxT6i dHf YYqDdob2/ KAPE6VFi 4sLnr W VGCRY++7
RPcl ZuezPnmlsx GLTRAYEsWOVZUE9of do@Bx| UZDyn2BSj GBOCT2e4or RglpHgzw2
n3hnWjJINuJS4j xcRIOxI 049THI Gt gBf F8bQoZw8C3Wgy/ R6pCghUf Nj pA6uF9KAH
gnqgr CoswZ1/ vw Jt 9f nvAl zkgLr ssYt KHOr Mdn5n4g5t JLqY5q/ Nr uHMg2r hoy 3r
4AMCIWBGTbP7qR83wAy al J 7x ACOKgx B3Sr DFJABEBAAGDI 1JpY2hhcnmgS3J1 dXRI
ci A8cnl j aGFyZEAXM=I bi 5) b20+i QE4BBVBAgAI BQILbEHv Ahs DBgs JCAcDAgYV
CAl JCgsEFgl DAQ eAQ XgAAKCRCey +xG& wzr EGXbB/ 4nr nf / 2r Enzt Rel nup3dul
eepzEt wlcv3uHg20ZXGS6S705Fsk+ammgaVel VKf kSwsLa7aH5v L4t KFKUF uaMEL
avl nDI U/ 01 Es8j Lr dSWj601HowLQcx AhgNPdaGONDt HW56Chs0Ba8GA6329vLWZ
ODnXwei NSCDr v3xbl N61 j PyyO5AoUkxmlf DOt p3uS5Ar 7kf | w7i eGGxokaHewNL
Xzqcp9r Pi UR6dFW2uRvDdVRr XFUPI gVugaHKyt nl5JpHn¥ yzQ MdYXnl zOoof JO
WM PY1i w+QIZ2M7 Pnf bTJeADXI ¢/ EoOOAJDRggi h533Sj hi CaT6FdPMk6r CZ5cgl
UQENBEt sQe8BCADI NPI JZVSL2i 6HIX19YK4CpEqgsj | UG SMB1cDT311WFSnhf uMs
GL9xYRb8dI byeJ FFOy HNk | BnH5ek Cv GRf S6qJ Ypc UQZZcWsj EMgBYQV5cwlef dOB
ek64j f vr sLz8+YhKzn+Nl 8C8nyGvpEEW ChN4hNj wkDhYbXLVAI sqagbnSM +Ht f
31 gCGYa2gLi NI gNKWCs EVAan/ Er 6KS39WANGXi 6i hOyj ReBi UBVWRE6Ch2y| M 2xKw
yHNTGsbWkPOhqALUa7N4AAEGCXS/ qn+vUz/ hcl bt +eUNy45qoZc TT3dZsWE Jgknh
RFM uPi ej 7/ W4Ugzes5NG)2ec Dk DkpJvr SNABEBAAGI ARBEGAECAAK FAkt sQe8C
GMVACgknsvsRn8MBxABeggAl Nkgbgal2L1lbgaCgnGGdCi uXB3F6/ VFnSQdUKpt s
EugWH6r Sp30r 67PupzneX++ouh+9WD507gJ 0k P3VQIpmXj T/ QnNSAN | 4k At RZUW
qCXl XOxVAeXHL50i KzONMR3Xc2r NAyf BQY8+SUYr KBal NBq5n68g800gX8QD5u2F
X+6C+QKI9G2EBDDY NWgkKN3GOxpQeDTdPHI 5/ f j wYFs1l el aQ j i yJwAi f xB/ 1+w0
VCHe2LDVpRXY5uBTef F2guhVYi sKY6n5wNDaQpBmASwL7i t 5Yp8geOHWNLA+aZ+6
L6MsuHbGQ20YDZgAk8eKhvyd0Oy/ pAhZpNu@2MVGBNT ue SA==

=74Cu

————— END PGP PUBLI C KEY BLOCK--- - -

Version Numbers

MongoDB uses the odd-numbered versions for development releases.
There are 3 numbers in a MongoDB version: A.B.C

® A s the major version. This will rarely change and signify very large changes

® B is the release number. This will include many changes including features and things that possible break backwards compatibility. Even
Bs will be stable branches, and odd Bs will be development.

® C is the revision number and will be used for bugs and security issues.

For example:

® 1.0.0:first GA release

® 1.0.x: bug fixes to 1.0.x - highly recommended to upgrade, very little risk

1.1.x : development release. this will include new features that are not fully finished, and works in progress. Some things may be different
than 1.0

® 1.2.x:second GA release. this will be the culmination of the 1.1.x release.

Drivers
MongoDB currently has client support for the following programming languages:

mongodb.org Supported

e C
® C++

http://en.wikipedia.org/wiki/Software_versioning#Odd-numbered_versions_for_development_releases

Java
Javascript
Perl

PHP
Python
Ruby

Community Supported

REST

C# and .NET
Clojure
ColdFusion
® Blog post: Part 1 | Part 2 | Part 3
® http://github.com/virtix/cfmongodb/tree/0.9
D
® Port of the MongoDB C Driver for D
Delphi
® pebongo - Early stage Delphi driver for MongoDB
Erlang
°

® Erlmongo - an almost complete MongoDB driver implementation in Erlang
Factor
® http://github.com/slavapestov/factor/tree/master/extra/mongodb/
Fantom
® http://bitbucket.org/liamstask/fantomongo/wiki/Home
F#
® http://gist.github.com/218388
Go
® gomongo
Groovy
® See Java Language Center
Haskell
® http://hackage.haskell.org/package/mongoDB
Javascript
Lua
® LuaMongo
node.js
Objective C
®* NuMongoDB
PHP
® Asynchronous PHP driver using libevent
PowerShell
® Blog post
Python
Ruby
®* MongoMapper
® rmongo - An event-machine-based Ruby driver for MongoDB
® jmongo A thin ruby wrapper around the mongo-java-driver for vastly better jruby performance.
®* em-mongo EventMachine MongoDB Driver (based off of RMongo).
Scala
® See JVM Languages
Scheme (PLT)
® http://planet.plt-scheme.org/display.ss?package=mongodb.plt&owner=jaymccarthy
® docs
Smalltalk
® Dolphin Smalltalk

Get Involved, Write a Driver!

Writing Drivers and Tools

C Language Center

C Driver
®* Download
® Build
Notable Projects

C Driver

emongo - An Erlang MongoDB driver that emphasizes speed and stability. "The most emo of drivers."

http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion.html
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion_20.html
http://blog.mxunit.org/2009/10/look-ma-no-sql-mongodb-and-coldfusion_25.html
http://github.com/virtix/cfmongodb/tree/0.9
http://github.com/itiu/mongo-d-driver
http://code.google.com/p/pebongo/
http://bitbucket.org/rumataestor/emongo
http://github.com/wpntv/erlmongo/tree/master
http://github.com/slavapestov/factor/tree/master/extra/mongodb/
http://bitbucket.org/liamstask/fantomongo/wiki/Home
http://gist.github.com/218388
http://github.com/mikejs/gomongo
http://hackage.haskell.org/package/mongoDB
http://code.google.com/p/luamongo/
http://github.com/timburks/NuMongoDB
http://code.google.com/p/phpdaemon/source/browse/trunk/applications/MongoClient.php
http://dougfinke.com/blog/index.php/2009/10/25/how-to-use-mongodb-from-powershell-and-f/
http://api.mongodb.org/python/1.6%2B/tools.html
http://railstips.org/2009/6/27/mongomapper-the-rad-mongo-wrapper
http://github.com/tmm1/rmongo
http://github.com/chuckremes/jmongo
http://github.com/bcg/em-mongo
http://planet.plt-scheme.org/display.ss?package=mongodb.plt&owner=jaymccarthy
http://planet.plt-scheme.org/package-source/jaymccarthy/mongodb.plt/1/4/planet-docs/mongodb/index.html
http://www.squeaksource.com/MongoTalk.html
http://www.arcturus.com.au/dolphin/mongodb.html

The MongoDB C Driver is the 10gen-supported driver for MongoDB. It's written in pure C. The goal is to be super strict for ultimate portability, no
dependencies, and very embeddable anywhere.

® Tutorial
® C Driver README
® Source Code

Download

The C driver is hosted at GitHub.com. Check out the latest version with git.

$ git clone git://github.conm nongodb/ nongo-c-driver.git

Build

Building with gcc:

@
Q
I}
o

\

\
[%2]
a
=%

Il
(]
©
©

\
n
=
o
-

el
o
=
=
=3
-
<}
2
>

Q
[}

T
o

)
o
=
<
®
=
<
»
=
o
<

*
(]
é
I;U
>
0
o
o

$ scons # this will produce |ibbson.a and |ibnongoc. a
$ scons --¢c99 # this will use c99 node in gcc (recomended)
$ scons test # this will conpile and run the unit tests (optional)
$ scons test --test-server=123.4.5.67 # use renote server for tests

Notable Projects

NuMongodb — An Objective-C wrapper around the MongoDB C driver. It is intended for use with Nu but may be useful in other Objective-C
programming applications.

If you're working on a project that you'd like to have included, let us know.

C Tutorial

® Writing Client Code

® Connecting

® BSON

® |nserting
® Single
® Batch

® Querying
® Simple Queries
® Complex Queries

® Sorting
® Hints
® Explain
® |ndexing
® Updating

® Further Reading
This document is an introduction to usage of the MongoDB database from a C program.
First, install Mongo -- see the Quickstart for details.
Next, you may wish to take a look at the Developer's Tour guide for a language independent look at how to use MongoDB. Also, we suggest
some basic familiarity with the mongo shell -- the shell is one's primary database administration tool and is useful for manually inspecting the

contents of a database after your C program runs.

A working C program complete with examples from this tutorial can be found here.

Writing Client Code

http://github.com/mongodb/mongo-c-driver/blob/master/README
http://github.com/mongodb/mongo-c-driver/tree/master
http://github.com
http://github.com/timburks/NuMongoDB
http://gist.github.com/490830

‘I, For brevity, the examples below are simply inline code.

Connecting

Let's make a tutorial.c file that connects to the database:

#i nclude <stdlib. h>
#i ncl ude <stdio. h>
#i ncl ude <string. h>
#i ncl ude "bson. h"
#i ncl ude "nongo. h"

int main() {
nongo_connection conn[1]; /* ptr */
nongo_connecti on_options opts[1];
nongo_conn_return status;

strcpy(opts->host , "127.0.0.1");
opts->port = 27017,

status = nongo_connect (conn, opts);

switch (status) {
case nongo_conn_success: printf("connection succeeded\n"); break;
case nongo_conn_bad_arg: printf("bad argunents\n"); return 1;
case nmongo_conn_no_socket: printf("no socket\n"); return 1;
case nmongo_conn_fail: printf("connection failed\n"); return 1;
case nongo_conn_not_master: printf("not master\n"); return 1;

}

/* CODE WLL GO HERE */

nongo_destroy(conn);
printf("\nconnection closed\n");

return O;

i $ gcc -Isrc --std=c99 /path/to/ nongo-c-driver/src/*.c -1 /path/to/nongo-c-driver/src/ tutorial.c -0 !
tutorial
i $./tutorial
i connection succeeded i
connection cl osed

BSON

The Mongo database stores data in BSON format. BSON is a binary object format that is JSON-like in terms of the data which can be stored
(some extensions exist, for example, a Date datatype).

To save data in the database we must create bson objects. We use bson_buf f er to make bson objects, and bson_i t er at or to enumerate
bson objects.

Let's now create a BSON "person” object which contains name and age. We might invoke:

bson b[1];
bson_buffer buf[1];

bson_buffer_init(buf)
bson_append_string(buf, "nane", "Joe");
bson_append_int(buf, "age", 33);
bson_from buffer(b, buf);

Use the bson_append_new_oi d() helper to add an object id to your object. The server will add an _id automatically if it is not included
explicitly.

bson b[1];
bson_buffer buf[1];

bson_append_new_oi d(buf, "_id");
bson_append_string(buf, "name", "Joe");
bson_append_i nt (buf, "age", 33);

' bson_buffer_init(buf); §
! bson_frombuffer(b, buf); ;

bson_buffer_new oid(..., "_id") should be at the beginning of the generated object.

When you are done using the object remember to use bson_dest r oy() to free up the memory allocated by the buffer.

! bson_destroy(b) :
Inserting
Single

We now save our person object in a persons collection in the database:

nmongo_i nsert(conn, "tutorial.persons", b);

The first parameter to nrongo_i nsert is the pointer to the nbngo_connect i on object. The second parameter is the namespace. tutorial is the
database and persons is the collection name. The third parameter is a pointer to the bson "person" object that we created before.

Batch

We can do batch inserts as well:

static void tutorial_insert_batch(nobngo_connection *conn) {
bson *p, **ps;
bson_buffer *p_buf;
char *nanes[4];
int ages[] = { 29, 24, 24, 32 };
int i, n=4;
names[0] = "Eliot"; names[1] = "M ke"; names[2] = "Mathias"; names[3] = "Richard";

ps = (bson **)malloc(sizeof(bson *) * n);

for (i =0; i <n; i++) {
p = (bson *)nalloc(sizeof(bson));
p_buf = (bson_buffer *)nalloc(sizeof(bson_buffer));
bson_buffer_init(p_buf);
bson_append_new oi d(p_buf, " _id");
bson_append_string(p_buf, "nane", nanes[i]);
bson_append_int(p_buf, "age", ages[i]);
bson_frombuffer(p, p_buf);
psfi] = p;
free(p_buf);

}

nongo_i nsert_batch(conn, “"tutorial.persons", ps, n);
for (i =0; i <n; i++) {

bson_destroy(ps[i]);
free(ps[i]);

Querying
Simple Queries

Let's now fetch all objects from the persons collection, and display them.

static void tutorial _enpty_query(nongo_connection *conn) {
nongo_cur sor *cursor;
bson enpty[1];
bson_enpty(enpty);

cursor = nongo_find(conn, "tutorial.persons", enpty, enpty, 0, 0, 0);

whi |l e(nongo_cursor_next(cursor)) {
bson_print(&cursor->current);

}

nongo_cur sor _destroy(cursor);
bson_destroy(enpty);

enpt y is the empty BSON object -- we use it to represent {} which indicates an empty query pattern (an empty query is a query for all objects).

We use bson_pri nt () above to print out information about each object retrieved. bson_pri nt () is a diagnostic function which prints an
abbreviated JSON string representation of the object.

' nongo_find() returns a nongo_cur sor which must be destroyed after use.

Let's now write a function which prints out the name (only) of all persons in the collection whose age is a given value:

static void tutorial_sinple_query(nongo_connection *conn) {
bson query[1];
bson_buffer query_buf[1];
nDNQOo_cur sor *cur sor;

bson_buffer_init(query_buf);
bson_append_i nt (query_buf, "age", 24);
bson_from buffer(query, query_buf);

cursor = nongo_find(conn, "tutorial.persons”, query, NULL, O, O, 0);
whi | e(mongo_cursor_next(cursor)) {
bson_iterator it[1];
if (bson_find(it, &cursor->current, "nane")) {
printf("name: %\n", bson_iterator_string(it));
}
}

bson_destroy(query);

Queries are BSON objects of a particular format.

In the mongo shell (which uses javascript), we could invoke:

use tutorial;
i db.persons.find({ age : 24});

Complex Queries

Sometimes we want to do more then a simple query. We may want the results to be sorted in a special way, or what the query to use a certain
index.

Sorting

Let's now make the results from previous query be sorted alphabetically by name. To do this, we change the query statement from:

bson_append_i nt (query_buf, "age", 24);

bson_buffer_init(query_buf);
bson_from buffer(query, query_buf);

to:

; bson_buffer_init(query_buf); ;
; bson_append_start_obj ect(query_buf, "$query"); ;
! bson_append_int(query_buf, "age", 24); ;
! bson_append_fini sh_object(query_buf); :
f bson_append_start_obj ect(query_buf, "$orderby"); E
f bson_append_i nt(query_buf, "nane", 1);

: bson_append_fi ni sh_obj ect(query_buf); :
: bson_from buffer(query, query_buf); i

While the mongo query optimizer often performs very well, explicit "hints" can be used to force mongo to use a specified index, potentially

improving performance in some situations. When you have a collection indexed and are querying on multiple fields (and some of those fields are
indexed), pass the index as a hint to the query:

bson_buffer_init(query_buf);
bson_append_start _obj ect (query_buf, "$query");
bson_append_i nt (query_buf, "age", 24);
bson_append_string(query_buf, "name", "Mathias");
bson_append_fi ni sh_obj ect (query_buf);
bson_append_start _object(query_buf, "$hint");
bson_append_i nt(query_buf, "nane", 1);
bson_append_fi ni sh_obj ect (query_buf);
bson_from buffer(query, query_buf);

Explain

A great way to get more information on the performance of your database queries is to use the $explain feature. This will return "explain plan”
type info about a query from the database.

bson_buffer_init(query_buf); !
bson_append_start _object(query_buf, "$query"); ;
bson_append_i nt (query_buf, "age", 33); i
bson_append_fi ni sh_obj ect (query_buf); :
bson_append_bool (query_buf, "$explain", 1); E
bson_from buffer(query, query_buf); f

Indexing

Let's suppose we want to have an index on age so that our queries are fast. We would use:

static void tutorial _i ndex(mongo_connection * conn) {
bson key[1];
bson_buffer key_buf[1];
bson_buffer_init(key_buf);
bson_append_i nt (key_buf, "nanme", 1);
bson_from buffer(key, key_buf);
nongo_create_i ndex(conn, "tutorial.persons", key, 0, NULL);
bson_destroy(key);
printf("sinple index created on \"name\"\n");
bson_buffer_init(key_buf);
bson_append_i nt (key_buf, "age", 1);
bson_append_i nt(key_buf, "nanme", 1);
bson_from buffer(key, key_buf);
nongo_create_i ndex(conn, "tutorial.persons", key, 0, NULL);

bson_destroy(key);
printf("conpound index created on \"age\", \"nanme\"\n");
Updating

Use the nongo_updat e() method to perform a database update . For example the following update in the mongo shell :

i > use tutorial
i > db. persons. update({ name : 'Joe', age : 33},
i { $inc: { visits: 1} })

static void tutorial_update(npbngo_connection *conn) {

bson cond[1], op[1];
bson_buffer cond_buf[1], op_buf[1];

bson_buffer_init(cond_buf);
bson_append_string(cond_buf, "nane", "Joe");
bson_append_i nt(cond_buf, "age", 33);
bson_from buffer(cond, cond_buf);

bson_append_start _obj ect(op_buf, "$inc");
bson_append_i nt (op_buf, "visits", 1);
bson_append_fi ni sh_obj ect (op_buf);
bson_from buffer(op, op_buf);

nongo_updat e(conn, "tutorial.persons", cond,

bson_destroy(cond);

bson_buffer_init(op_buf);
| bson_destroy(op);

Further Reading

This overview just touches on the basics of using Mongo from C++. There are many more capabilities. For further exploration:

® See the language-independent Developer's Tour;
® Experiment with the nongo shell;

® Consider getting involved to make the product (either C driver, tools, or the database itself) better!

C Sharp Language Center

C# Drivers

® mongodb-csharp driver
® simple-mongodb driver
®* NoRM

F#

®* F# Example

Community Articles

® A List of C# MongoDB Tools

® Experimenting with MongoDB from C#

® Using MongoDB from C#

® Introduction to MongoDB for .NET

® Using Json.NET and Castle Dynamic Proxy with MongoDB
® Implementing a Blog Using ASP.NET MVC and MongoDB
® Intro Article using a Post and Comments Example

Tools

® MongoDB.Emitter Document Wrapper
® |og4net appender

Support

op,

0);

http://github.com/samus/mongodb-csharp/tree/master
http://code.google.com/p/simple-mongodb/
http://github.com/atheken/NoRM
http://gist.github.com/218388
http://deserialized.com/the-state-of-mongodb-and-csharp/
http://odetocode.com/Blogs/scott/archive/2009/10/13/experimenting-with-mongodb-from-c.aspx
http://blog.dynamicprogrammer.com/2009/11/10/UsingMongoDBFromC.aspx
http://www.highoncoding.com/Articles/678_Introduction_to_MongoDb_Database.aspx
http://daniel.wertheim.se/2010/02/05/getting-started-with-mongodb-using-json-net-and-castle-dynamic-proxy/
http://highoncoding.com/Articles/686_Implementing_Blog_Using_ASP_NET_MVC_and_MongoDb.aspx
http://www.codeproject.com/KB/database/MongoDBCS.aspx
http://groups.google.com/group/mongodb-user/browse_thread/thread/d85b91a68145bee3
http://github.com/jsk/log4net-MongoDB

® http://groups.google.com/group/mongodb-csharp
® http://groups.google.com/group/mongodb-user
® |RC: #mongodb on freenode

See Also

® C++ Language Center

Driver Syntax Table

The wiki generally gives examples in JavaScript, so this chart can be used to convert those examples to any language.

JavaScript Python PHP

[] 0 array()

¢ ¢ new st dd ass
{x:1} {"x": 1} array('x' => 1)

connect ("www. exanpl e. net") Connection("ww. exanpl e.net") new
Mongo(" ww. exanpl e. net")

cursor. next () cursor. next () $cur sor - >get Next ()
cursor. hasNext () * $cur sor - >hasNext ()

col l ection. findOne() collection.find_one() $col | ection->fi ndOne()
db. eval () db. eval () $db- >execut e()

* does not exist in that language

Javascript Language Center

MongoDB can be

® Used by clients written in Javascript;
® Uses Javascript internally server-side for certain options such as map/reduce;
® Has a shell that is based on Javascript for administrative purposes.

[node.JS and V8]
See the node.JS page.

SpiderMonkey

The MongoDB shell extends SpiderMonkey. See the MongoDB shell documentation.

Narwhal

® http://github.com/sergi/narwhal-mongodb

MongoDB Server-Side Javascript

Ruby
1

i
fx=>1)

Mongo. new(" www. exanpl e.

cursor. next_object()

*

coll ection.find_one()

db. eval ()

Javascript may be executed in the MongoDB server processes for various functions such as query enhancement and map/reduce processing.

See Server-side Code Execution.

node.JS

Node.js is used to write event-driven, scalable network programs in server-side JavaScript. It is similar in purpose to Twisted, EventMachine, etc.

It runs on Google's V8.

Web Frameworks

http://groups.google.com/group/mongodb-csharp
http://groups.google.com/group/mongodb-user
http://github.com/sergi/narwhal-mongodb

® ExpressJS Mature web framework with MongoDB session support.

3rd Party ORM/ODM

® Mongoose - Asynchronous JavaScript Driver with optional support for Modeling.

3rd Party Drivers
® node-mongodb - Async Node interface to MongoDB (written in C)

® node-mongodb-native - Native async Node interface to MongoDB.
® mongo-v8-driver - V8 MongoDB driver (experimental, written in C++).

JVM Languages

moved to Java Language Center
Python Language Center

*. Redirection Notice
This page should redirect to http://api.mongodb.org/python.

PHP Language Center

Using MongoDB in PHP

To access MongoDB from PHP you will need:

®* The MongoDB server running - the server is the "mongod" file, not the "mongo” client (note the "d" at the end)
® The MongoDB PHP driver installed

Installing the PHP Driver

*NIX

Run:

sudo pecl install nongo

It is recommended to add this to the section with the other "extensions", but it will work from anywhere within the php.ini file.
Restart your web server (Apache, nginx, etc.) for the change to take effect.

See the installation docs for configuration information and OS-specific installation instructions.

Windows

® Download the correct driver for your environment from http://github.com/mongodb/mongo-php-driver/downloads

® VC6 is for Apache (VC9 is for IIS)

® Thread safe is for running PHP as an Apache module (typical installation), non-thread safe is for CGI
® Unzip and add the php_mongo.dll file to your PHP extensions directory (usually the "ext" folder in your PHP installation.)
® Add to your php.ini:

...

http://expressjs.com
http://www.learnboost.com/mongoose/
http://github.com/orlandov/node-mongodb
http://github.com/christkv/node-mongodb-native
http://github.com/erh/mongo-v8-driver/tree/master
http://api.mongodb.org/python
http://www.php.net/manual/en/mongo.installation.php
http://github.com/mongodb/mongo-php-driver/downloads

® Restart your web server (Apache, IIS, etc.) for the change to take effect
For more information, see the Windows section of the installation docs.
Using the PHP Driver
To get started, see the Tutorial. Also check out the APl Documentation.
See Also

® PHP Libraries, Frameworks, and Tools for working with Drupal, Cake, Symfony, and more from MongoDB.
® Admin Uls

Installing the PHP Driver

*. Redirection Notice
This page should redirect to http://www.php.net/manual/en/mongo.installation.php.

PHP Libraries, Frameworks, and Tools
The PHP community has created a huge number of libraries to make working with MongoDB easier and integrate it with existing frameworks.
CakePHP
* MongoDB datasource for CakePHP. There's also an introductory blog post on using it with Mongo.
Codeigniter
® MongoDB-Codeigniter-Driver
Doctrine

ODM (Object Document Mapper) is an experimental Doctrine MongoDB object mapper. The Doctrine\ODM\Mongo namespace is an experimental
project for a PHP 5.3 MongoDB Object Mapper. It allows you to easily write PHP 5 classes and map them to collections in MongoDB. You just
work with your objects like normal and Doctrine will transparently persist them to Mongo.

This project implements the same "style" of the Doctrine 2 ORM project interface so it will look very familiar to you and it has lots of the same
features and implementations.

Documentation - API, Reference, and Cookbook
Official blog post

Screencast

Blog post on using it with Symfony

Bug tracker

Drupal
® MongoDB Integration - Views (query builder) backend, a watchdog implementation (logging), and field storage.
Fat-Free Framework
Fat-Free is a powerful yet lightweight PHP 5.3+ Web development framework designed to help you build dynamic and robust applications - fast!
Kohana Framework
® Mango at github
An ActiveRecord-like library for PHP, for the Kohana PHP Framework.
See also PHP Language Center#MongoDb PHP ODM further down.
Lithium
Lithium supports Mongo out-of-the-box.

® Tutorial on creating a blog backend.

http://us3.php.net/manual/en/mongo.installation.php
http://www.php.net/manual/en/mongo.tutorial.php
http://us2.php.net/mongo
http://www.php.net/manual/en/mongo.installation.php
http://github.com/ichikaway/mongoDB-Datasource/downloads
http://mark-story.com/posts/view/using-mongodb-with-cakephp
http://github.com/kyledye/MongoDB-CodeIgniter-Driver
http://www.doctrine-project.org/projects/mongodb_odm
http://www.doctrine-project.org/projects/mongodb_odm/1.0/docs/en
http://www.doctrine-project.org/blog/doctrine-mongodb-object-document-mapper
http://www.screencast.com/users/jwage/folders/Default/media/d01858d5-f9f4-43e3-a3e1-669729a85fcc
http://blog.servergrove.com/2010/04/28/mongodb-with-php-and-symfony/
http://www.doctrine-project.org/jira/browse/MODM
http://drupal.org/project/mongodb
http://fatfree.sourceforge.net/
http://github.com/Wouterrr/mangodb
http://www.kohanaphp.com/
http://rad-dev.org/lithium/wiki/drafts/blog-tutorial

Log4php
® Alog4php appender for MongoDB

Memcached

* MongoNode
PHP script that replicates MongoDB objects to Memcached.

Symfony 2

® Symfony 2 Logger
A centralized logger for Symfony applications. See the blog post.

* sfMongoSessionStorage - manages session storage via MongoDB with symfony.

® sfStoragePerformancePlugin - This plugin contains some extra storage engines (MongoDB and Memcached) that are currently missing
from the Symfony (>= 1.2) core.

Vork

= Vork, the high-performance enterprise framework for PHP natively supports MongoDB as either a primary datasource or

_./ used in conjunction with an RDBMS. Designed for scalability & Green-IT, Vork serves more traffic with fewer servers and

{ . can be configured to operate without any disk-10.

|

| Vork provides a full MVC stack that outputs semantically-correct XHTML 1.1, complies with Section 508 Accessibility
guidelines & Zend-Framework coding-standards, has SEO-friendly URLs, employs CSS-reset for cross-browser display
consistency and is written in well-documented object-oriented E_STRICT PHP5 code.

An extensive set of tools are built into Vork for ecommerce (cc-processing, SSL, PayPal, AdSense, shipment tracking,
QR-codes), Google Maps, translation & internationalization, Wiki, Amazon Web Services, Social-Networking (Twitter,
Meetup, ShareThis, YouTube, Flickr) and much more.

Zend Framework

® Shanty Mongo is a prototype mongodb adapter for the Zend Framework. It's intention is to make working with mongodb documents as
natural and as simple as possible. In particular allowing embeded documents to also have custom document classes.

® ZF Cache Backend
A ZF Cache Backend for MongoDB. It support tags and auto-cleaning.

® There is a Zend_Nosgl_Mongo component proposal.
Stand-Alone Tools

ActiveMongo
ActiveMongo is a really simple ActiveRecord for MongoDB in PHP.

There's a nice introduction to get you started at http://crodas.org/activemongo.php.

MapReduce API
A MapReduce abstraction layer. See the blog post.

®* MongoDB-MapReduce-PHP at github

MongoDb PHP ODM

MongoDb PHP ODM is a simple object wrapper for the Mongo PHP driver classes which makes using Mongo in your PHP application more like
ORM, but without the suck. It is designed for use with Kohana 3 but will also integrate easily with any PHP application with almost no additional
effort.

Mongodloid
A nice library on top of the PHP driver that allows you to make more natural queries ($query->query('a == 13 AND b >= 8 & ¢ % 3 ==
4');), abstracts away annoying $-syntax, and provides getters and setters.

® Project Page
® Downloads
® Documentation

http://github.com/char0n/log4php-MongoDB
http://code.google.com/p/phpdaemon/source/browse/trunk/applications/MongoNode.php
http://code.google.com/p/mongodbloganalyzer/
http://obvioushints.blogspot.com/2009/07/my-guess-on-symfony-2.html
http://github.com/brtriver/sfMongoSessionStorage
http://www.symfony-project.org/plugins/sfStoragePerformancePlugin
http://www.vork.us/
http://github.com/coen-hyde/Shanty-Mongo
http://github.com/stunti/Stunti_Cache_Backend_Mongo
http://framework.zend.com/wiki/display/ZFPROP/Zend_Nosql_Mongo+-+Valentin+Golev
http://github.com/crodas/ActiveMongo
http://crodas.org/activemongo.php
http://prajwal-tuladhar.net.np/2009/11/15/496/mapreduce-api-for-mongodb/
http://github.com/infynyxx/MongoDB-MapReduce-PHP
http://github.com/colinmollenhour/mongodb-php-odm
http://code.google.com/p/mongodloid/
http://code.google.com/p/mongodloid/downloads/list
http://code.google.com/p/mongodloid/wiki/Using

Morph

A high level PHP library for MongoDB. Morph comprises a suite of objects and object primitives that are designed to make working with MongoDB
in PHP a breeze.

® Morph at code.google.com

simplemongophp
Very simple layer for using data objects see blog post
® simplemongophp at github

Uniform Server 6-Carbo with MongoDB and phpMoAdmin

The Uniform Server is a lightweight WAMP server solution for running a web server under Windows without having anything to install; just unpack
and run it. Uniform Server 6-Carbo includes the latest versions of Apache2, Perl5, PHP5, MySQL5 and phpMyAdmin. The Uniform Server
MongoDB plugin adds the MongoDB server, phpMoAdmin browser administration interface, the MongoDB PHP driver and a Windows interface to
start and stop both Apache and MongoDB servers. From this interface you can also start either the Mongo-client or phpMoAdmin to administer

MongoDB databases.

® Uniform Server 6-Carbo and MongoDB plugin at SourceForge
® Uniform Server web site

PHP - Storing Files and Big Data

*. Redirection Notice
This page should redirect to http://www.php.net/manual/en/class.mongogridfs.php.

Troubleshooting the PHP Driver

r. Redirection Notice
This page should redirect to http://www.php.net/manual/en/mongo.trouble.php.

Ruby Language Center

This is an overview of the available tools and suggested practices for using Ruby with MongoDB. Those wishing to skip to more detailed
discussion should check out the Ruby Driver Tutorial, Getting started with Rails or Rails 3, and MongoDB Data Modeling and Rails. There are

also a number of good external resources worth checking out.

® Ruby Driver
® |nstalling / Upgrading
® BSON

® Object Mappers

® Notable Projects

Ruby Driver
', Install the C extension for any performance-critical applications.

The MongoDB Ruby driver is the 10gen-supported driver for MongoDB. It's written in pure Ruby, with a recommended C extension for speed.
The driver is optimized for simplicity. It can be used on its own, but it also serves as the basis for various object-mapping libraries.

® Tutorial

® Ruby Driver README
® API Documentation

® Source Code

Installing / Upgrading

http://code.google.com/p/mongodb-morph/
http://groups.google.com/group/mongodb-user/browse_thread/thread/fd51ef5eeece2238?hl=en#
http://github.com/ibwhite/simplemongophp/tree/master
http://sourceforge.net/projects/miniserver/files/Uniform%20Server/6.0.0-Carbo/
http://www.uniformserver.com
http://www.php.net/manual/en/class.mongogridfs.php
http://www.php.net/manual/en/mongo.trouble.php
http://github.com/mongodb/mongo-ruby-driver/blob/master/README.rdoc
http://api.mongodb.org/ruby/current/index.html
http://github.com/mongodb/mongo-ruby-driver/tree/master

The ruby driver is hosted at Rubygems.org. Before installing the driver, make sure you're using the latest version of rubygems (currently 1.3.6):

! $ gemupdate --system

L o o e e o o o e o o e o H

$ geminstall nongo

$ git clone git://github.con nongodb/ nongo-ruby-driver.git
$ cd nongo-ruby-driver/

| $ rake geminstall

BSON

In versions of the Ruby driver prior to 0.20, the code for serializing to BSON existed in the mongo gem. Now, all BSON serialization is handled by
the required bson gem.

geminstall bson

geminstall bson_ext

If you're running on Windows, you'll need the Ruby DevKit installed in order to compile the C extensions.
As long it's in Ruby's load path, bson_ext will be loaded automatically when you require bson.
Note that beginning with version 0.20, the mongo_ext gem is no longer used.

To learn more about the Ruby driver, see the Ruby Tutorial.

Object Mappers

If you need validations, associations, and other high-level data modeling functions, consider using one of the available object mappers. Many of
these exist in the Ruby ecosystem; here we host a list of the most popular ones.

Notable Projects

Tools for working with MongoDB in Ruby are being developed daily. A partial list can eb found in the Projects and Libraries section of our external
resources page.

If you're working on a project that you'd like to have included, let us know.

Ruby Tutorial

This tutorial gives many common examples of using MongoDB with the Ruby driver. If you're looking for information on data modeling, see
MongoDB Data Modeling and Rails. Links to the various object mappers are listed on our object mappers page.

Interested in GridFS? Checkout GridFS in Ruby.
As always, the latest source for the Ruby driver can be found on github.

® |nstallation

http://rubygems.org
http://github.com/oneclick/rubyinstaller/wiki/development-kit
http://www.mongodb.org/display/DOCS/Ruby+External+Resources#RubyExternalResources-Projects
http://github.com/mongodb/mongo-ruby-driver
http://github.com/mongodb/mongo-ruby-driver/

® A Quick Tour

® Using the RubyGem
Making a Connection
Listing All Databases
Dropping a Database
Authentication (Optional)
Getting a List Of Collections
Getting a Collection
Inserting a Document
Finding the First Document In a Collection using f i nd_one()
Adding Multiple Documents
Counting Documents in a Collection
Using a Cursor to get all of the Documents
Getting a Single Document with a Query
Getting a Set of Documents With a Query
Querying with Regular Expressions
Creating An Index
Creating and querying on a geospatial index
Getting a List of Indexes on a Collection

® Database Administration
® See Also

Installation

The mongo-ruby-driver gem is served through Rubygems.org. To install, make sure you have the latest version of rubygems.

i geminstall nongo

The required bson gem will be installed automatically.

For optimum performance, install the bson_ext gem:

geminstall bson_ext

After installing, you may want to look at the examples directory included in the source distribution. These examples walk through some of the
basics of using the Ruby driver.

The full API documentation can be viewed here.
A Quick Tour

Using the RubyGem

All of the code here assumes that you have already executed the following Ruby code:

require 'rubygens' # not necessary for Ruby 1.9
require 'nongo'

Making a Connection

An Mongo::Connection instance represents a connection to MongoDB. You use a Connection instance to obtain an Mongo:DB instance, which
represents a named database. The database doesn't have to exist - if it doesn't, MongoDB will create it for you.

You can optionally specify the MongoDB server address and port when connecting. The following example shows three ways to connect to the
database "mydb" on the local machine:

i db = Mongo: : Connecti on. new. db(" nydb") H
i db = Mongo: : Connecti on. new("l ocal host"). db("nydb")
i db = Mongo: : Connection. new("l ocal host", 27017).db("nmydb") i

http://github.com/mongodb/mongo-ruby-driver/tree/master/examples
http://api.mongodb.org/ruby/index.html

At this point, the db object will be a connection to a MongoDB server for the specified database. Each DB instance uses a separate socket
connection to the server.

If you're trying to connect to a replica set, see Replica Sets in Ruby.

Listing All Databases

i connection = Mngo:: Connection.new # (optional host/port args) H
i connection. dat abase_nanes. each { |name| puts name } :
i connection. database_i nfo.each { |info|] puts info.inspect} i

Authentication (Optional)

MongoDB can be run in a secure mode where access to databases is controlled through name and password authentication. When run in this
mode, any client application must provide a name and password before doing any operations. In the Ruby driver, you simply do the following with
the connected mongo object:

If the name and password are valid for the database, aut h will be t r ue. Otherwise, it will be f al se. You should look at the MongoDB log for
further information if available.

Getting a List Of Collections

Each database has zero or more collections. You can retrieve a list of them from the db (and print out any that are there):

i db.collection_nanmes.each { |name| puts name }

nane

as the output.
Getting a Collection

You can get a collection to use using the col | ect i on method:

i coll = db.collection("testCollection")

coll = db["testCollection"] §

Once you have this collection object, you can now do things like insert data, query for data, etc.

Inserting a Document

Once you have the collection object, you can insert documents into the collection. For example, lets make a little document that in JSON would be
represented as

- i
i "nane" : "MbngoDB", H
"type" : "database",
"count” : 1,
i "info" : { i
| X : 203, f
y : 102
i } i
o i

Notice that the above has an "inner" document embedded within it. To do this, we can use a Hash or the driver's OrderedHash (which preserves
key order) to create the document (including the inner document), and then just simply insert it into the collection using the i nsert () method.

doc = {"nane" => "MongoDB", "type" => "database", "count" => 1, H
"“info" => {"x" => 203, "y" => '102'}}
i coll.insert(doc) i

Finding the First Document In a Collection using f i nd_one()

To show that the document we inserted in the previous step is there, we can do a simple f i nd_one() operation to get the first document in the
collection. This method returns a single document (rather than the Cur sor that the fi nd() operation returns).

ny_doc = coll.find_one()
puts ny_doc. i nspect

{"_id"=>#<BSON: : Obj ect| D: 0x118576¢c ...>, "nane"=>"MongoDB", "info"=>{"x"=>203, "y"=>102}, "type"=>
"dat abase", "count"=>1}

Note the _i d element has been added automatically by MongoDB to your document.

Adding Multiple Documents

To demonstrate some more interesting queries, let's add multiple simple documents to the collection. These documents will have the following
form:

{ 100.times { |i| coll.insert("i" =>i) }

Notice that we can insert documents of different "shapes" into the same collection. These records are in the same collection as the complex
record we inserted above. This aspect is what we mean when we say that MongoDB is "schema-free".

Counting Documents in a Collection

Now that we've inserted 101 documents (the 100 we did in the loop, plus the first one), we can check to see if we have them all using the
count () method.

and it should print 101.

Using a Cursor to get all of the Documents

To get all the documents from the collection, we use the fi nd() method. f i nd() returns a Cur sor object, which allows us to iterate over the
set of documents that matches our query. The Ruby driver's Cursor implemented Enumerable, which allows us to use Enuner abl e#each,
{{Enumerable#map}, etc. For instance:

{ coll.find().each { |row puts row inspect }

and that should print all 101 documents in the collection.
Getting a Single Document with a Query

We can create a query hash to pass to the f i nd() method to get a subset of the documents in our collection. For example, if we wanted to find
the document for which the value of the "i" field is 71, we would do the following ;

{ coll.find("i" => 71).each { |row puts row inspect }

Getting a Set of Documents With a Query

We can use the query to get a set of documents from our collection. For example, if we wanted to get all documents where "i" > 50, we could
write:

coll.find("i" => {"$gt" => 50}).each { |row puts row }

coll.find("i" => {"$gt" => 20, "$lte" => 30}).each { |[row puts row }

Querying with Regular Expressions

Regular expressions can be used to query MongoDB. To find all names that begin with ‘a’:

" coll.find({"name" => /"al})

search_string = parans['search']

Constructor syntax
coll.find({"nane" => Regexp.new(search_string)})

Literal syntax
coll.find({"nanme" => [#{search_string}/})

Although MongoDB isn't vulnerable to anything like SQL-injection, it may be worth checking the search string for anything malicious.
Creating An Index

MongoDB supports indexes, and they are very easy to add on a collection. To create an index, you specify an index name and an array of field
names to be indexed, or a single field name. The following creates an ascending index on the "i" field:

i # create_index assumes ascending order; see nethod docs !
: # for details :
i coll.create_index("i") :

To specify complex indexes or a descending index you need to use a slightly more complex syntax - the index specifier must be an Array of [field
name, direction] pairs. Directions should be specified as Mongo::ASCENDING or Mongo::DESCENDING:

explicit "ascending"
coll.create_index([["i", Mongo::ASCENDI NG])

Creating and querying on a geospatial index

First, create the index on a field containing long-lat values:

peopl e.create_i ndex([["| oc", Mongo:: GEQ2D]])

puts p.inspect

people.find({"loc" => {"$near"” => [50, 50]}}, {:limt => 20}).each do |p|
end

Getting a List of Indexes on a Collection

You can get a list of the indexes on a collection using col | . i ndex_i nf or mati on() .

Database Administration
A database can have one of three profiling levels: off (:off), slow queries only (:slow_only), or all (:all). To see the database level:

puts db.profiling_Ilevel # => off (the synbol :off printed as a string)
db. profiling_level = :slow.only

i p db.validate_col | ection('coll_nane')

See Also

® Ruby Driver Official Docs
® MongoDB Koans A path to MongoDB enlightenment via the Ruby driver.
®* MongoDB Manual

Replica Pairs in Ruby

‘1, Replica Sets will replace replica pairs in MongoDB 1.6. If you are just now setting up an instance, you may want to wait for that
and use master/slave replication in the meantime.

Here follow a few considerations for those using the Ruby driver with MongoDB and replica pairing.

Setup

Connection Failures
Recovery

Testing

Further Reading

Setup

First, make sure that you've correctly paired two nongod instances. If you want to do this on the same machine for testing, make sure you've
created two data directories. The init commands are as follows:

http://api.mongodb.org/ruby/index.html
http://github.com/chicagoruby/MongoDB_Koans

./ nongod --pairwith | ocal host: 27018 --dbpath /data/left --port 27017
./ nongod --pairwith | ocal host: 27017 --dbpath /data/right --port 27018

@onnection = Connection.paired([[']ocal host', 27017], ['local host', 27018]])

Connection Failures
Imagine that our master node goes offline. How will the driver respond?

At first, the driver will try to send operations to what was the master node. These operations will fail, and the driver will raise a ConnectionFailure
exception. It then becomes the client's responsibility to decide how to handle this.

If the client decides to retry, it's not guaranteed that the former slave will have been promoted to master yet, so it's still possible that the driver will
raise another ConnectionFailure. However, once the former slave has become master, typically within a few seconds, subsequent operations
will succeed.

Recovery

Driver users may wish to wrap their database calls with failure recovery code. Here's one possibility:

Ensure retry upon failure !
def rescue_connection_failure(nmax_retries=5) :
success = fal se
retries = 0

whi |l e !success :
begi n

yield f

success = true :

rescue Mongo:: ConnectionFailure => ex :
retries += 1

raise ex if retries >= mnax_retries i

sl eep(1)

end !

end H

end
end

Wapping a call to #count()
rescue_connection_failure do

@lb. col l ection('users').count()
end

Of course, the proper way to handle connection failures will always depend on the individual application. We encourage object-mapper and
application developers to publish any promising results.

Testing

The Ruby driver (>= 0.17.2) includes some unit tests for verifying proper replica pair behavior. They reside in tests/replica. You can run them
individually with the following rake tasks:

i rake test: pair_count !
! rake test:pair_insert :
i rake test:pair_query i

Make sure you have a replica pair running locally before trying to run these tests.
Further Reading

® Replica Pairs
® Pairing Internals

Replica Sets in Ruby

Here follow a few considerations for those using the Ruby driver with MongoDB and replica sets.

Setup

Connection Failures
Recovery

Testing

Further Reading

Setup
First, make sure that you've configured and initialized a replica set.

Connecting to a replica set from the Ruby driver is easy. If you only want to specify a single node, simply pass that node to Connect i on. new:

@onnection = Connection.new'foo.local', 27017)

@onnection = Connection.nmulti([['nl. nydb.net', 27017],
i ['n2.nydb.net', 27017], ['n3.nydb.net', 27017]]) :

In both cases, the driver will attempt to connect to a master node and, when found, will merge any other known members of the replica set into
the seed list.

Connection Failures

Imagine that our master node goes offline. How will the driver respond?

At first, the driver will try to send operations to what was the master node. These operations will fail, and the driver will raise a ConnectionFailure
exception. It then becomes the client's responsibility to decide how to handle this.

If the client decides to retry, it's not guaranteed that another member of the replica set will have been promoted to master right away, so it's still
possible that the driver will raise another ConnectionFailure. However, once a member has been promoted to master, typically within a few
seconds, subsequent operations will succeed.

The driver will essentially cycle through all known seed addresses until a node identifies itself as master.

Recovery

Driver users may wish to wrap their database calls with failure recovery code. Here's one possibility:

Ensure retry upon failure !
def rescue_connection_failure(nmax_retries=5) :
success = fal se
retries = 0

whi |l e !success :
begi n

yield f

success = true :

rescue Mongo:: ConnectionFailure => ex :
retries += 1

raise ex if retries >= mnax_retries i

sl eep(1)

end !

end H

end
end

Wapping a call to #count()
rescue_connection_failure do

@lb. col l ection('users').count()
end

Of course, the proper way to handle connection failures will always depend on the individual application. We encourage object-mapper and
application developers to publish any promising results.

Testing

The Ruby driver (>= 1.0.6) includes some unit tests for verifying replica set behavior. They reside in tests/replica_sets. You can run them
individually with the following rake tasks:

rake test:replica_set_count

rake test:replica_set_insert

rake test:pool ed_replica_set_insert
rake test:replica_set_query

Make sure you have a replica set running on localhost before trying to run these tests.
Further Reading

® Replica Sets
® [Replics Set Configuration]

GridFS in Ruby

GridFS, which stands for "Grid File Store," is a specification for storing large files in MongoDB. It works by dividing a file into manageable chunks
and storing each of those chunks as a separate document. GridFS requires two collections to achieve this: one collection stores each file's
metadata (e.g., name, size, etc.) and another stores the chunks themselves. If you're interested in more details, check out the GridFS
Specification.

Prior to version 0.19, the MongoDB Ruby driver implemented GridFS using the GridFS::GridStore class. This class has been deprecated in favor
of two new classes: Grid and GridFileSystem. These classes have a much simpler interface, and the rewrite has resulted in a significant speed
improvement. Reads are over twice as fast, and write speed has been increased fourfold. 0.19 is thus a worthwhile upgrade.

® The Grid class

® Saving files

® File metadata

* Safe mode

® Deleting files
® The GridFileSystem class

® Saving files

® Deleting files

® Metadata and safe mode
® Advanced Users

The Grid class

The Grid class represents the core GridFS implementation. Grid gives you a simple file store, keyed on a unique ID. This means that duplicate
filenames aren't a problem. To use the Grid class, first make sure you have a database, and then instantiate a Grid:

@b = Mongo: : Connection. new. db(' soci al _site')

@rid = Gid. new @b)

Saving files

Once you have a Grid object, you can start saving data to it. The data can be either a string or an 10-like object that responds to a #read method:

Saving string data
id = @rid.put("here's sone string / binary data")

Saving 10 data and including the optional filenane
image = File.open("ne.jpg")
id2 = @rid. put(inmge, :filename => "ne.jpg")

Grid#put returns an object id, which you can use to retrieve the file:

http://api.mongodb.org/ruby/current/Mongo/Grid.html

CGet the string we saved
file = @rid.get(id)

CGet the file we saved
image = @rid. get(id2)

File metadata

There are accessors for the various file attributes:

i mage. fil enane
=> "nme.jpg"

i mage. content _type
=> "inmagel/ | pg"

image.file_length
=> 502357

i mage. upl oad_dat e
=> Mon Mar 01 16:18:30 UTC 2010

Read all the image's data at once
i mage. read

Read the first 100k bytes of the inmage
i mage. read(100 * 1024)

¢ # Saving |1 O data !
file = File.open("ne.jpg")
| id2 = @rid. put(file, ;
: :fil ename => "ny-avatar.jpg" 1
:content _type => "application/jpg",
cid => ' a-uni que-i d-to-use-in-lieu-of-a-random one',
1 :chunk_si ze => 100 * 1024, H
i : et adat a => {'description' => "taken after a game of ultimate"}) i

Safe mode

A kind of safe mode is built into the GridFS specification. When you save a file, and MD5 hash is created on the server. If you save the file in safe
mode, an MD5 will be created on the client for comparison with the server version. If the two hashes don't match, an exception will be raised.

id2 = @rid.put(inage, "ny-avatar.jpg", :safe => true)

image = File.open("ne.jpg")
Deleting files

Deleting a file is as simple as providing the id:

The GridFileSystem class

GridFileSystem is a light emulation of a file system and therefore has a couple of unique properties. The first is that filenames are assumed to be

http://api.mongodb.org/ruby/current/Mongo/GridFileSystem.html

unique. The second, a consequence of the first, is that files are versioned. To see what this means, let's create a GridFileSystem instance:

Saving files

Mongo: : Connecti on. new. db("soci al _site")

E
1

@s = GidFil eSystem new @lb)

! image = File.open("ne.jpg") :
. @s.open("nme.jpg", "w) do |f] i
f.wite inmge
end

! image = File.open("ne-dancing.]jpg") !
. @s.open("ne.jpg", "w) do |f] i
f.wite imge
end

But a couple things need to be kept in mind. First is that the original 'me.jpg' will be available until the new 'me.jpg’ saves. From then on, calls to
the #open method will always return the most recently saved version of a file. But, and this the second point, old versions of the file won't be
deleted. So if you're going to be rewriting files often, you could end up with a lot of old versions piling up. One solution to this is to use the
:delete_old options when writing a file:

: image = File.open("ne-dancing.jpg") :
@s.open("ne.jpg", "w', :delete_old => true) do |f]|
f.wite imge
end

This will delete all but the latest version of the file.

Deleting files

When you delete a file by name, you delete all versions of that file:

Metadata and safe mode

All of the options for storing metadata and saving in safe mode are available for the GridFileSystem class:

image = File.open("ne.jpg")
@s.open(' my-avatar.jpg', w :
:content _type => "application/jpg",

:met adat a => {'description' => "taken on 3/1/2010 after a gane of ultinate"},
_id => " a-uni que-id-to-use-instead-of-the-autonatically-generated-one',
:safe => true) { |f] f.wite inage }

Advanced Users

Astute code readers will notice that the Grid and GridFileSystem classes are merely thin wrappers around an underlying GridlO class. This means
that it's easy to customize the GridFS implementation presented here; just use GridlO for all the low-level work, and build the APl you need in an
external manager class similar to Grid or GridFileSystem.

Rails - Getting Started

Using Rails 3?7 See Rails 3 - Getting Started

This tutorial describes how to set up a simple Rails application with MongoDB, using MongoMapper as an object mapper. We assume you're
using Rails versions prior to 3.0.

® Configuration
® Testing
® Coding

Using a Rails Template
All of the configuration steps listed below, and more, are encapsulated in this Rails template (raw version), based on a similar one by Ben Scofield
. You can create your project with the template as follows:

-
=
)
-
=
L.
®
(e}
24
|
=
3
\
3
0
=
=
©
<
y
Q
2]
@
Q
-
>
c
i
O
o
N
=
©
)
)
w
-
x
oY

Be sure to replace project_name with the name of your project.

If you want to set up your project manually, read on.

Configuration

1. We need to tell MongoMapper which database we'll be using. Save the following to config/initializers/database.rb:

MongoMapper . dat abase = "db_nane-#{ Rai | s. env}"

Replace db_name with whatever name you want to give the database. The Rails.env variable will ensure that a different database is used for
each environment.

2. If you're using Passenger, add this code to config/initializers/database.rb.

if defined?(Phusi onPassenger) !
! Phusi onPassenger. on_event (: starti ng_worker_process) do |forked| !
MongoMapper . connecti on. connect _to_master if forked
end
end

3. Clean out config/database.yml. This file should be blank, as we're not connecting to the database in the traditional way.

4. Remove ActiveRecord from environment.rb.

config.frameworks -= [:active_record]

5. Add MongoMapper to the environment. This can be done by opening config/environment.rb and adding the line:

http://api.mongodb.org/ruby/current/Mongo/GridIO.html
http://gist.github.com/219223
http://gist.github.com/219223.txt
http://gist.github.com/181842

rake gens:install
rake gens: unpack

Testing

It's important to keep in mind that with MongoDB, we cannot wrap test cases in transactions. One possible work-around is to invoke a teardown
method after each test case to clear out the database.

To automate this, I've found it effective to modify ActiveSupport::TestCase with the code below.

Drop all colums after each test case.
def teardown
MongoMapper . dat abase. col | ecti ons. each do |col ||
coll.renove
end
end

Make sure that each test case has a teardown
method to clear the db after each test.
def inherited(base)
base. defi ne_net hod teardown do
super
end
end

This way, all test classes will automatically invoke the teardown method. In the example above, the teardown method clears each collection. We
might also choose to drop each collection or drop the database as a whole, but this would be considerably more expensive and is only necessary
if our tests manipulate indexes.

Usually, this code is added in test/test_helper.rb. See the aforementioned rails template for specifics.

Coding

If you've followed the foregoing steps (or if you've created your Rails with the provided template), then you're ready to start coding. For help on
that, you can read about modeling your domain in Rails.

Rails 3 - Getting Started

It's not difficult to use MongoDB with Rails 3. Most of it comes down to making sure that you're not loading ActiveRecord and understanding how
to use Bundler, the new Ruby dependency manager.

® |nstall the Rails 3
® Configure your application
¢ Bundle and Initialize

¢ Bundling

® |Initializing
Running Tests
ActiveModel Compatibility
Conclusion
See also

Install the Rails 3

If you haven't done so already, install Rails 3.

! # Use sudo if your setup requires it :
i geminstall rails i

http://gist.github.com/219223
http://github.com/carlhuda/bundler/blob/master/README.markdown

Configure your application

The important thing here is to avoid loading ActiveRecord. One way to do this is with the - - ski p- act i ver ecor d switch. So you'd create your
app skeleton like so:

Alternatively, if you've already created your app (or just want to know what this actually does), have a look at confi g/ appl i cati on. rb and
change the first lines from this:

' require "action_controller/railtie" !
require "action_numiler/railtie"
! require "active_resource/railtie"
{ require "rails/test_unit/railtie"

Configure generators values. Many other options are available, be sure to check the docunentation. !
config.generators do |g| :
g.orm :active_record

g.test_framework :test_unit, :fixture => true

#

#

#

g.tenplate_engine :erb
#

end

As of this this writing, it's commented out by default, so you probably won't have to change anything here.

Bundle and Initialize
The final step involves bundling any gems you'll need and then creating an initializer for connecting to the database.
Bundling

Edit Genf i | e, located in the Rails root directory. By default, our Genf i | e will only load Rails:

gem"rails", "3.0.0"

Normally, using MongoDB will simply mean adding whichever OM framework you want to work with, as these will require the "mongo" gem by
default.

Edit this Genfile to bundle your application's dependenci es.

gem"rails", "3.0.0"

source 'http://gencutter.org'
! gem "nongo_mapper"

However, there's currently an issue with loading bson_ext, as the current gemspec isn't compatible with the way Bundler works. We'll be fixing
that soon; just pay attention to this issue.

In the meantime, you can use the following work-around:

http://jira.mongodb.org/browse/RUBY-95

Edit this Genfile to bundl e your application's dependencies.

! require 'rubygens’
! require 'nongo' :
. source 'http://gencutter.org’ :

gem"rails", "3.0.0"
gem "nongo_nmnapper "

Requiring r ubygens and nongo before running the gemcommand will ensure that bson_ext is loaded. If you'd rather not load r ubygens, just
make sure that both rongo and bson_ext are in your load path when you require nongo.

Once you've configured your Genf i | e, run the bundle installer:

Initializing

Last item is to create an initializer to connect to MongoDB. Create a Ruby file in confi g/i ni ti al i zers. You can give it any name you want;
here we'll callitconfig/initializers/nongo.rb:

MongoMapper . connecti on = Mongo: : Connecti on. new ' | ocal host', 27017)
MongoMapper . dat abase = "#nyapp-#{Rai |l s. env}"

Phusi onPassenger . on_event (: starti ng_worker_process) do |forked|
MongoMapper . connecti on. connect _to_master if forked

i f defined?(Phusi onPassenger)
i end i

Running Tests

A slight modification is required to get r ake t est working (thanks to John P. Wood). Create afile | i b/ t asks/ nongo. r ake containing the
following:

nanespace :db do
nanmespace :test do
task :prepare do
Stub out for MongoDB
end

Now the various r ake t est tasks will run properly. See John's post for more details.

ActiveModel Compatibility

ActiveModel is a series of interfaces designed to make any object-mapping library compatible with the various helper methods across the Rails
stack. To see the status of ActiveModel integration on the various object mappers, see our object mappers page.

Briefly, Mongoid supports ActiveModel via a prerelease branch. MongoMapper will be adding support in the near future. In the meantime, use the
MongoMapper Rails 3 Branch.

Conclusion

That should be all. You can now start creating models based on whichever OM you've installed.

Note that this document is a work in progress. If you have any helpful comments, please add them below.

http://johnpwood.net/2010/04/13/getting-rake-test-running-with-rails-3-and-mongodb/
http://github.com/merbjedi/mongomapper

See also

® Rails 3 App skeleton with MongoMapper
® Rails 3 App skeleton with Mongoid and Devise
® Rails 3 Release Notes

MongoDB Data Modeling and Rails

This tutorial discusses the development of a web application on Rails and MongoDB. MongoMapper will serve as our object mapper. The goal is
to provide some insight into the design choices required for building on MongoDB. To that end, we'll be constructing a simple but non-trivial social
news application. The source code for newsmonger is available on github for those wishing to dive right in.

® Modeling Stories
® Caching to Avoid N+1
® A Note on Denormalization
® Fields as arrays
® Atomic Updates
® Modeling Comments
® Linear, Embedded Comments
® Nested, Embedded Comments
® Comment collections
® Unfinished business

Assuming you've configured your application to work with MongoMapper, let's start thinking about the data model.

Modeling Stories

A news application relies on stories at its core, so we'll start with a Story model:

class Story
i ncl ude MongoMapper : : Docunent

key :title, String
key :url, String
key :slug, String
key :voters, Array
key :votes, Integer, :default => 0

key :relevance, Integer, :default => 0

Cached val ues.
key :comment _count, Integer, :default => 0
key :usernane, String

Note this: ids are of class Objectld.
key :user_id, oj ectld
ti mest anps!

Rel ati onshi ps.
bel ongs_to :user

Validations.
val i dates_presence_of :title, :url, :user_id
end

Obviously, a story needs a title, url, and user_id, and should belong to a user. These are self-explanatory.

Caching to Avoid N+1

When we display our list of stories, we'll need to show the name of the user who posted the story. If we were using a relational database, we
could perform a join on users and stores, and get all our objects in a single query. But MongoDB does not support joins and so, at times, requires
bit of denormalization. Here, this means caching the 'username’ attribute.

A Note on Denormalization

Relational purists may be feeling uneasy already, as if we were violating some universal law. But let's bear in mind that MongoDB collections are
not equivalent to relational tables; each serves a unique design objective. A normalized table provides an atomic, isolated chunk of data. A
document, however, more closely represents an object as a whole. In the case of a social news site, it can be argued that a username is intrinsic
to the story being posted.

http://github.com/banker/mongodb-rails3-sample
http://github.com/fortuity/rails3-mongoid-devise.
http://guides.rails.info/3_0_release_notes.html
http://github.com/banker/newsmonger

What about updates to the username? It's true that such updates will be expensive; happily, in this case, they'll be rare. The read savings
achieved in denormalizing will surely outweigh the costs of the occasional update. Alas, this is not hard and fast rule: ultimately, developers must
evaluate their applications for the appropriate level of normalization.

Fields as arrays

With a relational database, even trivial relationships are blown out into multiple tables. Consider the votes a story receives. We need a way of
recording which users have voted on which stories. The standard way of handling this would involve creating a table, 'votes', with each row
referencing user_id and story_id.

With a document database, it makes more sense to store those votes as an array of user ids, as we do here with the 'voters' key.

For fast lookups, we can create an index on this field. In the MongoDB shell:

db. stories. ensurel ndex('voters');

Atomic Updates

Storing the vot er s array in the St or y class also allows us to take advantage of atomic updates. What this means here is that, when a user
votes on a story, we can

1. ensure that the voter hasn't voted yet, and, if not,
2. increment the number of votes and
3. add the new voter to the array.

MongoDB's query and update features allows us to perform all three actions in a single operation. Here's what that would look like from the shell:

/'l Assunme that story_id and user_id represent real story and user ids.
db.stories.update({_id: story_id, voters: {'$ne': user_id}},
{"$inc': {votes: 1}, 'S$push': {voters: user_id}});

What this says is "get me a story with the given id whose vot er s array does not contain the given user id and, if you find such a story, perform
two atomic updates: first, increment vot es by 1 and then push the user id onto the vot er s array.”

This operation highly efficient; it's also reliable. The one caveat is that, because update operations are "fire and forget," you won't get a response
from the server. But in most cases, this should be a non-issue.

A MongoMapper implementation of the same update would look like this:

def self.upvote(story_id, user_id)
i collection.update({' _id" => story_id, 'voters' => {'$ne' => user_id}}, :
{"$inc’ => {'votes' => 1}, '$push’ => {'voters' => user_id}})

Modeling Comments

In a relational database, comments are usually given their own table, related by foreign key to some parent table. This approach is occasionally
necessary in MongoDB; however, it's always best to try to embed first, as this will achieve greater query efficiency.

Linear, Embedded Comments

Linear, non-threaded comments should be embedded. Here are the most basic MongoMapper classes to implement such a structure:

i class Story

: i ncl ude MongoMapper : : Docunment
! many :coments

i end

cl ass Comment
i ncl ude MongoMapper : : EnbeddedDocunent
key :body, String

bel ongs_to :story
end

@tories =
@locunent

b.collection('stories')
{:title => "MongoDB on Rails",

comments => [{: body => "Revel atory! Loved it!",
:username => "Matz"

|I@

]
}

@tories.save(@ocunent)

}

Essentially, comments are represented as an array of objects within a story document. This simple structure should be used for any one-to-many
relationship where the many items are linear.

Nested, Embedded Comments

But what if we're building threaded comments? An admittedly more complicated problem, two solutions will be presented here. The first is to
represent the tree structure in the nesting of the comments themselves. This might be achieved using the Ruby driver as follows:

@tories.save(@ocunent)

| @tories = @b.collection('stories’)
: @locunent = {:title => "MongoDB on Rails", i
:coments => [{:body => "Revel atory! Loved it!",
jusername => "Matz",
; :comrents => [{: body => "Agreed.", !
:usernane => "rubydev29"
s) |
:] ;
s) |

Representing this structure using MongoMapper would be tricky, requiring a number of custom mods.

But this structure has a number of benefits. The nesting is captured in the document itself (this is, in fact, how Business Insider represents
comments). And this schema is highly performant, since we can get the story, and all of its comments, in a single query, with no application-side
processing for constructing the tree.

One drawback is that alternative views of the comment tree require some significant reorganizing.
Comment collections

We can also represent comments as their own collection. Relative to the other options, this incurs a small performance penalty while granting us
the greatest flexibility. The tree structure can be represented by storing the unique path for each leaf (see Mathias's original post on the idea).
Here are the relevant sections of this model:

http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://groups.google.com/group/mongodb-user/browse_thread/thread/3e10a4b409dd6cb4/ccc9de1fafafe37e?lnk=gst&q=trees#ccc9de1fafafe37e

cl ass Comment
i ncl ude MongoMapper : : Docunment

key : body, String
key :depth, Integer, :default => 0
key : path, String, :default =>""

Note: we're intentionally storing parent_id as a string
key :parent_id, String

key :story_id, oj ect 1 d

ti mest anps!

Rel ati onshi ps.
bel ongs_to :story

Cal | backs.
after_create :set_path

private
Store the coment's path.

def set_path
unl ess sel f.parent _id. bl ank?

par ent = Comment . find(sel f.parent_id)
self.story_id = parent.story_id
sel f.depth = parent.depth + 1
sel f.path = parent.path + ":" + parent.id
end
save

end

The path ends up being a string of object ids. This makes it easier to display our comments nested, with each level in order of karma or votes. If
we specify an index on story_id, path, and votes, the database can handle half the work of getting our comments in nested, sorted order.

The rest of the work can be accomplished with a couple grouping methods, which can be found in the newsmonger source code.

It goes without saying that modeling comments in their own collection also facilitates various site-wide aggregations, including displaying the
latest, grouping by user, etc.

Unfinished business

Document-oriented data modeling is still young. The fact is, many more applications will need to be built on the document model before we can
say anything definitive about best practices. So the foregoing should be taken as suggestions, only. As you discover new patterns, we encourage
you to document them, and feel free to let us know about what works (and what doesn't).

Developers working on object mappers and the like are encouraged to implement the best document patterns in their code, and to be wary of
recreating relational database models in their apps.

Object Mappers for Ruby and MongoDB

Although it's possible to use the Ruby driver by itself, sometimes you want validations, associations, and many of the other conveniences
provided by ActiveRecord. Here, then, is a list of the most popular object mappers available for working with Ruby and MongoDB.

® Recommendations
® Libraries

* MongoMapper
Mongoid
Mongomatic
MongoDoc
MongoModel
Candy
MongoRecord

Recommendations

First we advise that you get to know how the database itself works. This is best accomplished by playing with the shell and experimenting with the
Ruby driver (or any of the other drivers, for that matter)*.

http://github.com/banker/newsmonger/blob/master/app/models/comment.rb

Once you understand how MongoDB works, you'll be in a good position to choose the object mapper that best suits your needs. So long as you
pick an OM that's used in production and is actively developed, you really can't make a bad choice.

Libraries

MongoMapper
John Nunemaker's OM. Used in production and actively-developed. ActiveModel support forthcoming.
Installation:
® gem install mongo_mapper
Source:
® mongo_mapper on github
Documentation:

® MongoMapper on google groups
® #mongomapper on freenode.

Articles:
® Getting Started with MongoMapper

® MongoMapper and Rails
®* More MongoMapper Awesomeness.

Mongoid

H If you're using Mongoid, please read the Using Mongoid page on this site.

i}

Durran Jordan's OM. Used in production and actively-developed. Supports ActiveModel and Rails 3.
Installation:
® gem install mongoid
Source:
®* mongoid on github
Documentation:

® Docs at mongoid.org

Mongomatic
A simple object mapper emphasizing MongoDB idioms.
Installation:
® gem install mongomatic
Source:
® mongomatic on github
MongoDoc
MongoDoc is a simple, fast ODM for MongoDB. The project will eventually be merged into Mongoid.
Installation:
® gem install mongodoc
Source:

®* mongodoc on github

http://github.com/jnunemaker/mongomapper/tree/master
http://groups.google.com/group/mongomapper
http://railstips.org/2009/6/27/mongomapper-the-rad-mongo-wrapper
http://railstips.org/2009/7/23/getting-started-with-mongomapper-and-rails
http://railstips.org/2009/10/9/more-mongomapper-awesomeness
http://github.com/durran/mongoid/
http://mongoid.org/
http://github.com/benmyles/mongomatic
git://github.com/leshill/mongodoc.git

MongoModel
Sam Pohlenz's OM. Actively-developed.
Notes:
An OM with emphaisis on ActiveModel compatibility.
Installation:
® gem install mongomodel
Source:

®* mongomodel on github

Candy
Stephen Eley's OM. Actively-developed.
Notes:
From the README:
Candy's goal is to provide the simplest possible object persistence for the MongoDB database. By "simple" we mean "nearly invisible." Candy
doesn't try to mirror ActiveRecord or DataMapper. Instead, we play to MongoDB's unusual strengths — extremely fast writes and a set of
field-specific update operators — and do away with the cumbersome, unnecessary methods of last-generation workflows.
Installation:
® gem install candy

Source:
¢ candy on github
MongoRecord
10gen's original OM.
Notes:
MongoRecord is an ActiveRecord-like OM, and the first of its kind developed for MongoDB. Favored by a contingent of developers for its
simplicity, MongoRecord currently receives a lot of love from Nate Wiger.
Installation:
® gem install mongo_record

Source:

® mongo-record on github

Using Mongoid

Mongoid is a mature ODM for MongoDB. Much work has gone into the project, and it sports an active user community and excellent
documentation. That said, we've seen a few of Mongoid's design decisions cause problems for users in production. This page is an attempt to
make current and future users aware of these issues.

', Most of the issues mentioned here will be resolved with the release of Mongoid 2.0.

These principles should be applied to every MongoDB object mapper, regardless of implementation language. We still recommend Mongoid, but
only if the following points are taken into account.

Object ids should be stored as object ids, not as strings.

Index creation shouldn't be defined in the model and triggered on load.
Embedded documents and related documents are both appropriate solutions.
Automated sorting by _id (#last method).

Safe mode should not be enabled for every operation by default.

® Final thoughts

Object ids should be stored as object ids, not as strings.

http://github.com/spohlenz/mongomodel
http://github.com/SFEley/candy
http://github.com/mongodb/mongo-record

Problem:

Mongoid currently stores object ids as string, by default. There are a couple of problems with this. The first is that the object id type is the reigning
convention; if you ever need to switch languages or ODMs, you'll find yourself in trouble, since all other projects will expect an object id proper
and not a string. Since it's impossible to change the _id attribute, the only way to convert a collection to use object ids proper is to rewrite the
collection. For many users, this would be incredibly inconvenient.

The second problem is that storing an object id as a string requires 16 extra bytes of storage per object id. This will be duplicated in any index
where it appears. Thus, storing object ids as strings needlessly increases storage size.

A final problem with storing object ids as strings is that upserts will always insert an object id proper. If you ever want to use upserts, you must
store object ids and object ids proper. Otherwise, your collection will contain object ids of multiple types.

Solution
In the Mongoid config, make sure you set

use_obj ect _ids: true

All object mappers should use real, non-string object ids by default.
Index creation shouldn't be defined in the model and triggered on load.

Problem

Mongoid (and MongoMapper) allows developers to define indexes on the model layer. Because of this, we've nhow seen numerous examples of
developers accidentally triggering new index builds on production boxes. This can cause unwanted downtime and worse, depending on how the
developers react.

We've also noticed that this index creation APl doesn't encourage compound indexes, which are often the best choice for certain queries. If you're
not familiar with compound indexes, read our indexing advice

Solution

The best solution for the moment is to avoid defining indexes in the model. We'd recommend creating some kind of rake task that updates
indexes so that you never inadvertently trigger an index creation. You can easily accomplish this with the Ruby driver API. Read the docs on
create_index

It's also important to know how and when to create compound indexes. Again, check our this indexing advice.
Embedded documents and related documents are both appropriate solutions.

Problem
The Mongoid API and documentation can lead newer users to believe that embedded documents are almost always the way to represent
one-to-many relations. However, there are plenty of situations where storing the related documents in a separate collection is the better choice.

Too much embedding can lead to extra large documents (> 100kb), which can be hard to work with. In addition, these large documents can be
inefficient when updating on the server, transferring across the network, and/or serializing to and from BSON.

Solution
Know that related documents can be a good choice just as frequently as embedded documents. Consult these schema design resources:

® Schema design docs
® MongoDB Schema Design slides
® Schema Design in MongoDB Video from MongoNY

Automated sorting by _id (#last method).

Problem
We've seen methods that invoke automated sorts by _id to preserve order. This is fine if the right indexes are defined, but can start to result in
slow queries as the collection grows.

Solution
If you have large collections, be sure that you have the proper indexes defined so that sorts on _id don't slow down your system.

Safe mode should not be enabled for every operation by default.
Problem
Mongoid uses :safe mode by default for every insert and update. This isn't always necessary. Safe mode should be used when an error is

expected or when you want to use replication acknowledgment.

Solution
We suggest disabling safe mode in the Mongoid config, especially if performance is critical.

http://api.mongodb.org/ruby/1.0.6/Mongo/Collection.html#create_index-instance_method
http://www.slideshare.net/kbanker/mongodb-schema-design
http://www.blip.tv/file/3704083
http://github.com/durran/mongoid/blob/master/lib/mongoid/contexts/mongo.rb#L167

persist_in_safe_node: false

Then, decide which operations actually need it. If you have a unique on a collection, or if you're doing updates that you think could fail, then safe
mode is a good idea. If you're logging, doing analytics, or performing a bulk insert, it may not be necessary.

The API should allow users to set safe mode on individual insert and update operations.

Final thoughts

This isn't an indictment of Mongoid or of any other object mapper. We think Mongoid is a great project, and we hope to see it continue to flourish.
But we've seen enough pain caused by some of its design decisions to warrant this page. Our only hope is that the recommendations here help

users have a better experience with Mongoid and MongoDB.

Ruby External Resources

There are a number of good resources appearing all over the web for learning about MongoDB and Ruby. A useful selection is listed below. If you
know of others, do let us know.

Screencasts
Presentations
Articles
Projects
Libraries

Screencasts

Introduction to MongoDB - Part |
An introduction to MongoDB via the MongoDB shell.

Introduction to MongoDB - Part Il
In this screencast, Joon You teaches how to use the Ruby driver to build a simple Sinatra app.

Introduction to MongoDB - Part |11
For the final screencast in the series, Joon You introduces MongoMapper and Rails.

RailsCasts: MongoDB & MongoMapper
Ryan Bates' RailsCast introducing MongoDB and MongoMapper.

Presentations

Introduction to MongoDB (Video)
Mike Dirolf's introduction to MongoDB at Pivotal Labs, SF.

MongoDB: A Ruby Document Store that doesn't rhyme with 'Ouch’ (Slides)
Wynn Netherland's introduction to MongoDB with some comparisons to CouchDB.

MongoDB (is) for Rubyists (Slides)
Kyle Banker's presentation on why MongoDB is for Rubyists (and all human-oriented programmers).

Introduction to Mongoid and MongoDB (Video)
Durran Jordan discusses Mongoid, MongoDB, and how HashRocket uses these tools in production.

Articles

Why | Think Mongo is to Databases What Rails was to Frameworks
What if a key-value store mated with a relational database system?
John Nunemaker's articles on MongoDB.

A series of articles on aggregation with MongoDB and Ruby:
1. Part I: Introduction of Aggregation in MongoDB

2. Part Il: MongoDB Grouping Elaborated

3. Part Ill: Introduction to Map-Reduce in MongoDB

Does the MongoDB Driver Support Feature X?
An explanation of how the MongoDB drivers usually automatically support new database features.

Projects

http://www.teachmetocode.com/screencasts/introduction-to-mongodb-part-i
http://www.teachmetocode.com/screencasts/introduction-to-mongodb-part-ii
http://www.teachmetocode.com/screencasts/introduction-to-mongodb-part-iii-mongomapper-rails
http://railscasts.com/episodes/194-mongodb-and-mongomapper
http://pivotallabs.com/talks/85
http://www.slideshare.net/pengwynn/mongodb-ruby-document-store-that-doesnt-rhyme-with-ouch
http://www.slideshare.net/kbanker/mongodb-is-for-rubyists-boston-ruby
http://www.livestream.com/hashrocket/video?clipId=pla_686e2833-4950-4389-8c69-46776949da1e
http://railstips.org/blog/archives/2009/12/18/why-i-think-mongo-is-to-databases-what-rails-was-to-frameworks/
http://railstips.org/2009/6/3/what-if-a-key-value-store-mated-with-a-relational-database-system
http://kylebanker.com/blog/2009/11/mongodb-count-group/
http://kylebanker.com/blog/2009/11/mongodb-advanced-grouping/
http://kylebanker.com/blog/2009/11/mongodb-advanced-grouping/
http://kylebanker.com/blog/2010/03/28/does-the-driver-support-feature-x/

Mongo Queue
An extensible thread safe job/message queueing system that uses mongodb as the persistent storage engine.

Resque-mongo
A port of the Github's Resque to MongoDB.

Mongo Admin
A Rails plugin for browsing and managing MongoDB data. See the live demo.

Sinatra Resource
Resource Oriented Architecture (REST) for Sinatra and MongoMapper.

Shorty
A URL-shortener written with Sinatra and the MongoDB Ruby driver.

NewsMonger
A simple social news application demonstrating MongoMapper and Rails.

Data Catalog API
From Sunlight Labs, a non-trivial application using MongoMapper and Sinatra.

Watchtower
An example application using Mustache, MongoDB, and Sinatra.

Shapado
A question and answer site similar to Stack Overflow. Live version at shapado.com.

Libraries

ActiveExpando
An extension to ActiveRecord to allow the storage of arbitrary attributes in MongoDB.

ActsAsTree (MongoMapper)
ActsAsTree implementation for MongoMapper.

Machinist adapter (MongoMapper)
Machinist adapter using MongoMapper.

Mongo-Delegate
A delegation library for experimenting with production data without altering it. A quite useful pattern.

Remarkable Matchers (MongoMapper)
Testing / Matchers library using MongoMapper.

OpenldAuthentication, supporting MongoDB as the datastore
Brandon Keepers' fork of OpenldAuthentication supporting MongoDB.

MongoTree (MongoRecord)
MongoTree adds parent / child relationships to MongoRecord.

Merb_MongoMapper
a plugin for the Merb framework for supporting MongoMapper models.

Mongolytics (MongoMapper)
A web analytics tool.

Rack-GridFS
A Rack middleware component that creates HTTP endpoints for files stored in GridFS.

Frequently Asked Questions - Ruby

This is a list of frequently asked questions about using Ruby with MongoDB. If you have a question you'd like to have answered here, please add
it in the comments.

® Can | run [insert command name here] from the Ruby driver?

® Does the Ruby driver support an EXPLAIN command?

® | see that BSON supports a symbol type. Does this mean that | can store Ruby symbols in MongoDB?

® Why can't | access random elements within a cursor?

® Why can't | save an instance of TimeWithZone?

® | keep getting CURSOR_NOT_FOUND exceptions. What's happening?

® | periodically see connection failures between the driver and MongoDB. Why can't the driver retry the operation automatically?

Can | run [insert command name here] from the Ruby driver?

http://github.com/Skiz/mongo_queue
http://github.com/ctrochalakis/resque-mongo
http://github.com/ahe/mongo_admin
http://mongo_admin.2dconcept.com
http://github.com/djsun/sinatra_resource
http://github.com/dancroak/shorty/
http://github.com/banker/newsmonger
http://github.com/sunlightlabs/datacatalog-api
http://www.sunlightlabs.com/
http://github.com/kneath/watchtower/
http://github.com/patcito/Shapado
http://shapado.com
http://github.com/hayesdavis/active-expando
http://github.com/ramdiv/mongo_mapper_acts_as_tree
http://github.com/yeastymobs/machinist_mongomapper/tree/master
http://github.com/mharris717/mongo_delegate
http://github.com/nmerouze/machinist_mongo
http://github.com/collectiveidea/open_id_authentication
http://github.com/mully/mongo_tree/tree/master
http://github.com/shingara/merb_mongomapper/tree/master
http://github.com/tpitale/mongolytics/tree/master
http://github.com/skinandbones/rack-gridfs/

Yes. You can run any of the available database commands from the driver using the DB#command method. The only trick is to use an
OrderedHash when specifying the command. For example, here's how you'd run an asynchronous fsync from the driver:

This comrand is run on the adm n dat abase.
@b = Mongo: : Connecti on. new. db(' adm n')

Build the command.
cmd = OrderedHash. new
cnd['fsync'] =1
cnd['async'] = true

Run it.
@b. command(cnd)

It's important to keep in mind that some commands, like f sync, must be run on the admi n database, while other commands can be run on any
database. If you're having trouble, check the command reference to make sure you're using the command correctly.

Does the Ruby driver support an EXPLAIN command?

Yes. expl ai n is, technically speaking, an option sent to a query that tells MongoDB to return an explain plan rather than the query's results. You
can use expl ai n by constructing a query and calling explain at the end:

@ollection = @b['users']
i result = @ollection.find({:name => "jones"}).explain i

¢ {"cursor"=>"BtreeCursor nane_1", !
"startKey"=>{"nane"=>"Jones"},
i "endKey"=>{"nane"=>"Jones"},
! "nscanned"=>1.0, :
e |
fo"millis"=>0, f
1 "ol dPl an"=>{"cursor"=>"BtreeCursor nane_1", i
"startKey"=>{"nane"=>"Jones"}, i
"endKey" =>{" nane" =>"Jones"} :
Y a
: "al | Pl ans"=>[{"cursor"=>"BtreeCursor nane_1", :
"start Key"=>{"nane"=>"Jones"}, :
"endKey" =>{"nanme" =>"Jones"}}] |

Because this collection has an index on the "name" field, the query uses that index, only having to scan a single record. "n" is the number of
records the query will return. "millis" is the time the query takes, in milliseconds. "oldPlan" indicates that the query optimizer has already seen this
kind of query and has, therefore, saved an efficient query plan. "allPlans" shows all the plans considered for this query.

| see that BSON supports a symbol type. Does this mean that | can store Ruby symbols in MongoDB?

You can store Ruby symbols in MongoDB, but only as values. BSON specifies that document keys must be strings. So, for instance, you can do
this:

@ollection = @b["'test']

boat _id = @ollection.save({:vehicle => :boat})
car_id @ol | ection.save({"vehicle" => "car"})

@ollection.find_one('_id => boat_id)
{"_id" => Objectl D' 4bb37228238d3b5c8c000001"'), "vehicle" => :boat}

@ol lection.find_one('_id => car_id)
{"_id" => oject!|D('4bb372a8238d3b5c8c000002'), "vehicle" => "car"}

Notice that the symbol values are returned as expected, but that symbol keys are treated as strings.
Why can't | access random elements within a cursor?

MongoDB cursors are designed for sequentially iterating over a result set, and all the drivers, including the Ruby driver, stick closely to this
directive. Internally, a Ruby cursor fetches results in batches by running a MongoDB get nor e operation. The results are buffered for efficient
iteration on the client-side.

What this means is that a cursor is nothing more than a device for returning a result set on a query that's been initiated on the server. Cursors are
not containers for result sets. If we allow a cursor to be randomly accessed, then we run into issues regarding the freshness of the data. For
instance, if | iterate over a cursor and then want to retrieve the cursor's first element, should a stored copy be returned, or should the cursor re-run
the query? If we returned a stored copy, it may not be fresh. And if the the query is re-run, then we're technically dealing with a new cursor.

To avoid those issues, we're saying that anyone who needs flexible access to the results of a query should store those results in an array and
then access the data as needed.

Why can't | save an instance of TimeWithZone?

MongoDB stores times in UTC as the number of milliseconds since the epoch. This means that the Ruby driver serializes Ruby Time objects only.
While it would certainly be possible to serialize a TimeWithZone, this isn't preferable since the driver would still deserialize to a Time object.

All that said, if necessary, it'd be easy to write a thin wrapper over the driver that would store an extra time zone attribute and handle the
serialization/deserialization of TimeWithZone transparently.

| keep getting CURSOR_NOT_FOUND exceptions. What's happening?

The most likely culprit here is that the cursor is timing out on the server. Whenever you issue a query, a cursor is created on the server. Cursor
naturally time out after ten minutes, which means that if you happen to be iterating over a cursor for more than ten minutes, you risk a
CURSOR_NOT_FOUND exception.

There are two solutions to this problem. You can either:

1. Limit your query. Use some combination of | i m t and ski p to reduce the total number of query results. This will, obviously, bring down the
time it takes to iterate.

2. Turn off the cursor timeout. To do that, invoke f i nd with a block, and pass : ti meout => true:

@ollection.find({}, :tinmeout => false) do |cursor
cursor.each do | docunent
Process docunents here
end
end

| periodically see connection failures between the driver and MongoDB. Why can't the driver retry the operation automatically?

A connection failure can indicate any number of failure scenarios. Has the server crashed? Are we experiencing a temporary network partition? Is
there a bug in our ssh tunnel?

Without further investigation, it's impossible to know exactly what has caused the connection failure. Furthermore, when we do see a connection
failure, it's impossible to know how many operations prior to the failure succeeded. Imagine, for instance, that we're using safe mode and we send
an $i nc operation to the server. It's entirely possible that the server has received the $i nc but failed on the call to get Last Err or . In that case,
retrying the operation would result in a double-increment.

Because of the indeterminacy involved, the MongoDB drivers will not retry operations on connection failure. How connection failures should be
handled is entirely dependent on the application. Therefore, we leave it to the application developers to make the best decision in this case.

The drivers will reconnect on the subsequent operation.

Java Language Center

Basics

® Tutorial
®* API Documentation
® Downloads

Specific Topics
® Concurrency

® Saving Objects
® Data Types

3rd Party

POJO Mappers

pojo to MongoDB
mungbean

Code Generation

Morphia - Type-Safe Wrapper with DAO/Datastore abstractions

daybreak PoJo mapping for Java & MongoDB using Java 5 annotations.

® Sculptor - mongodb-based DSL -> Java (code generator)
® GuicyData - DSL -> Java generator with Guice integration

® Blog Entries
Misc

® |og4j -> mongodb appender
® (Experimental, Type4) JDBC driver

Other JVM-based Languages

® Clojure
* Groovy

® Groovy Tutorial for MongoDB
MongoDB made more Groovy

GMongo 0.5 Released
® Scala

® Wiki
® Mailing list

GMongo, a Groovy wrapper to the mongodb Java driver

Lift-MongoDB - Wrapper, Mapper, and Record back-end implementation. Part of the Lift Web Framework .
mongo-scala-driver is a thin wrapper around mongo-java-driver to make working with MongoDB more Scala-like.

® Casbah Casbah is a Scala oriented series of wrappers and extensions to the MongoDB Java driver to provide a more
scala-friendly interface to MongoDB. Implements the Scala 2.8 collection interfaces to improve interaction, and a fluid query
syntax which closely matches the MongoDB interface. Support for ORM-style Object mapping is coming soon, as well.

® Tutorial

® Mailing List

® GitHub Project Page
® JavaScript

®* MongoDB-Rhino - A toolset to provide full integration between the Rhino JavaScript engine for the JVM and MongoDB. Uses the

MongoDB Java driver.
® JRuby

® jmongo A thin ruby wrapper around the mongo-java-driver for vastly better jruby performance.

If there is a project missing here, just add a comment or email the list and we'll add it.

Presentations

® Using MongoDB with Scala - Brendan McAdams' Presentation at the New York Scala Enthusiasts (August 2010)
® Java Development - Brendan McAdams' Presentation from MongoNYC (May 2010)

® Java Development - James Williams' Presentation from MongoSF (April 2010)

® Building a Mongo DSL in Scala at Hot Potato - Lincoln Hochberg's Presentation from MongoSF (April 2010)

http://api.mongodb.org/java/index.html
http://github.com/mongodb/mongo-java-driver/downloads
http://code.google.com/p/morphia/
http://github.com/maxaf/daybreak
http://github.com/jannehietamaki/mungbean
http://github.com/maxaf/daybreak
http://java.dzone.com/articles/using-mongodb-sculptor
http://github.com/mattinsler/com.lowereast.guiceymongo/
http://www.mattinsler.com/tag/guiceymongo/
http://code.google.com/p/log4mongo/
http://github.com/erh/mongo-jdbc
http://github.com/somnium/congomongo
http://asrijaffar.blogspot.com/2009/08/groovy-tutorial-for-mongodb.html
http://jameswilliams.be/blog/entry/165
http://github.com/poiati/gmongo
http://blog.paulopoiati.com/2010/06/20/gmongo-0-5-released/
http://www.assembla.com/wiki/show/liftweb/MongoDB
http://www.assembla.com/wiki/show/liftweb/Record
http://liftweb.net
http://github.com/alaz/mongo-scala-driver
http://wiki.github.com/alaz/mongo-scala-driver/
http://groups.google.com/group/mongodb-scala
http://novus.github.com/docs/casbah
http://novus.github.com/docs/casbah/sphinx/html/intro/getting_started.html
http://groups.google.com/group/mongodb-casbah-users
http://github.com/novus/casbah
http://code.google.com/p/mongodb-rhino/
http://github.com/chuckremes/jmongo
http://code.technically.us/post/942542158/brendan-mcadams-gives-an-introduction-to-mongodb
http://blip.tv/file/3701248
http://blip.tv/file/3595830
http://blip.tv/file/3596243

Java Driver Concurrency

The Java MongoDB driver is thread safe. If you are using in a web serving environment, for example, you should create a single Mongo instance,
and you can use it in every request. The Mongo object maintains an internal pool of connections to the database (default pool size of 10).

However, if you want to ensure complete consistency in a "session" (maybe an http request), you probably want the driver to use the same socket
for that session (which isn't necessarily the case since Mongo instances have built-in connection pooling). This is only necessary for a write heavy
environment, where you might read data that you wrote.

To do that, you would do something like:

DB db...;
db. requestStart();

code. . ..

db. request Done() ;

Java - Saving Objects Using DBObject

The Java driver provides a DBObject interface to save custom objects to the database.

For example, suppose one had a class called Tweet that they wanted to save:

public class Tweet inplenents DBObj ect {

AR

Tweet myTweet = new Tweet ();
myTweet . put ("user”, userld);
nmyTweet . put ("nessage", nsg);
myTweet . put ("date”, new Date());

coll ection.insert(nyTweet);

When a document is retrieved from the database, it is automatically converted to a DBObject. To convert it to an instance of your class, use
DBCollection.setObjectClass():

col I ection. set Cbj ect G ass(Tweet);

Tweet myTweet = (Tweet)collection.findOne();

Java Tutorial

® Introduction
® A Quick Tour

® Making A Connection
Authentication (Optional)
Getting A List Of Collections
Getting A Collection
Inserting a Document
Finding the First Document In A Collection using fi ndOne()
Adding Multiple Documents
Counting Documents in A Collection
Using a Cursor to Get All the Documents
Getting A Single Document with A Query
Getting A Set of Documents With a Query
Creating An Index
Getting a List of Indexes on a Collection
® Quick Tour of the Administrative Functions

® Getting A List of Databases

® Dropping A Database

Introduction

This page is a brief overview of working with the MongoDB Java Driver.

For more information about the Java API, please refer to the online API Documentation for Java Driver

A Quick Tour

Using the Java driver is very simple. First, be sure to include the driver jar nongo. j ar in your classpath. The following code snippets come from
the exanpl es/ Qui ckTour . j ava example code found in the driver.

Making A Connection

To make a connection to a MongoDB, you need to have at the minimum, the name of a database to connect to. The database doesn't have to
exist - if it doesn't, MongoDB will create it for you.

Additionally, you can specify the server address and port when connecting. The following example shows three ways to connect to the database
mydb on the local machine :

i port com nongodb. Mongo;

i nport com nongodb. DB;

i nport com nongodb. DBCol | ecti on;
inmport com nongodb. Basi cDBObj ect ;
import com nongodb. DBObj ect ;

com nongodb. DBCur sor ;
Mongo m = new Mongo() ;
Mongo m = new Mongo("l ocal host");
Mongo m = new Mongo("l ocal host" , 27017);

DB db = mgetDB("nydb");

3
o
=
-

At this point, the db object will be a connection to a MongoDB server for the specified database. With it, you can do further operations.

Note: The Mongo object instance actually represents a pool of connections to the database; you will only need one object of class Mongo even
with multiple threads. See the concurrency doc page for more information.

Authentication (Optional)
MongoDB can be run in a secure mode where access to databases is controlled through name and password authentication. When run in this

mode, any client application must provide a name and password before doing any operations. In the Java driver, you simply do the following with
the connected mongo object :

If the name and password are valid for the database, aut h will be t r ue. Otherwise, it will be f al se. You should look at the MongoDB log for
further information if available.

Most users run MongoDB without authentication in a trusted environment.
Getting A List Of Collections

Each database has zero or more collections. You can retrieve a list of them from the db (and print out any that are there) :

Set<String> colls = db. getCol | ecti onNames();

for (String s : colls) {
Systemout.println(s);

and assuming that there are two collections, name and address, in the database, you would see

http://api.mongodb.org/java/index.html
http://api.mongodb.org/java/1.2/com/mongodb/Mongo.html

name
addr ess

as the output.

Getting A Collection

To get a collection to use, just specify the name of the collection to the getCollection(Stri ng col | ecti onNane) method:

i DBCol | ection coll = db.getCollection("testCollection")

Once you have this collection object, you can now do things like insert data, query for data, etc

Inserting a Document

Once you have the collection object, you can insert documents into the collection. For example, lets make a little document that in JSON would be
represented as

- i
! "nanme" : "MongoDB", !
"type" : "database",
"count" : 1,
: "info" @ { E
| X : 203, f
| y : 102 f
i } i
) i

Notice that the above has an "inner" document embedded within it. To do this, we can use the BasicDBObject class to create the document
(including the inner document), and then just simply insert it into the collection using the i nsert () method.

Basi cDBCbj ect doc = new Basi cDBObj ect () ;
doc. put ("name", "MongoDB");
doc. put ("type", "database");
doc. put ("count", 1);

Basi cDBObj ect i nfo = new Basi cDBObj ect () ;

info.put("x", 203);
info.put("y", 102);

doc. put ("info", info);

coll.insert(doc);

Finding the First Document In A Collection using fi ndOne()

To show that the document we inserted in the previous step is there, we can do a simple findOne() operation to get the first document in the
collection. This method returns a single document (rather than the DBCursor that the find() operation returns), and it's useful for things where
there only is one document, or you are only interested in the first. You don't have to deal with the cursor.

DBChbj ect nmyDoc = col|.findOne();
System out . printl n(nyDoc);

{ "_id" : "49902cde5162504500b45c2c" , "nane" : "MongoDB"' , "type" : "database" , "count" : 1, "info"
oo "x" 203, "y" : 102} , "_ns" : "testCollection"}

http://api.mongodb.org/java/1.2/com/mongodb/DB.html#getCollection%28java.lang.String%29
http://api.mongodb.org/java/1.2/com/mongodb/BasicDBObject.html
http://api.mongodb.org/java/1.2/com/mongodb/DBCollection.html#findOne%28java.lang.Object%29
http://api.mongodb.org/java/1.2/com/mongodb/DBCursor.html
http://api.mongodb.org/java/1.2/com/mongodb/DBCollection.html#find%28com.mongodb.DBObject,%20com.mongodb.DBObject,%20int,%20int,%20int%29

Note the _i d and _ns elements have been added automatically by MongoDB to your document. Remember, MongoDB reserves element names
that start with _ for internal use.

Adding Multiple Documents

In order to do more interesting things with queries, let's add multiple simple documents to the collection. These documents will just be

| for (int i=0; i < 100; i+4+) {
: coll.insert(new Basi cDBObj ect ().append("i", i)); :

Notice that we can insert documents of different "shapes" into the same collection. This aspect is what we mean when we say that MongoDB is
"schema-free"

Counting Documents in A Collection

Now that we've inserted 101 documents (the 100 we did in the loop, plus the first one), we can check to see if we have them all using the
get Count () method.

Systemout. println(coll.getCount());

and it should print 101.

Using a Cursor to Get All the Documents

In order to get all the documents in the collection, we will use the f i nd() method. The fi nd() method returns a DBCur sor object which allows
us to iterate over the set of documents that matched our query. So to query all of the documents and print them out :

DBCursor cur = coll.find();

i whi | e(cur. hasNext () { 5
System out. println(cur.next());

and that should print all 101 documents in the collection.

Getting A Single Document with A Query

We can create a query to pass to the f i nd() method to get a subset of the documents in our collection. For example, if we wanted to find the
document for which the value of the "i* field is 71, we would do the following ;

Basi cDBCbj ect query = new Basi cDBObj ect ();

query.put("i", 71);

whi | e(cur. hasNext ()) {

cur = col | .find(query);
i Systemout. println(cur.next()); :

{ "_id" : "49903677516250c1008d624e" , "i" : 71, "_ns" : "testCollection"}

Getting A Set of Documents With a Query

We can use the query to get a set of documents from our collection. For example, if we wanted to get all documents where "i"* > 50, we could write

query = new Basi cDBObj ect ();
query.put("i", new Basi cDBObject("$gt", 50)); // e.g. find all where i > 50
cur = coll.find(query);
whi | e(cur. hasNext ()) {
Systemout. println(cur.next());
! } !

query = new Basi cDBObj ect ();
query.put ("i", new Basi cDBObject("$gt", 20).append("$lte", 30)); // i.e. 20 <i <= 30
cur = coll.find(query);
whi | e(cur. hasNext()) {
Systemout. println(cur.next());
! } !

Creating An Index

MongoDB supports indexes, and they are very easy to add on a collection. To create an index, you just specify the field that should be indexed,
and specify if you want the index to be ascending (1) or descending (-1). The following creates an ascending index on the "i" field :

i coll.createl ndex(new Basi cDBCbj ect ("i", 1)); // create index on "i", ascending
Getting a List of Indexes on a Collection
You can get a list of the indexes on a collection :
| List<DBObject> list = coll.getlndexlnfo(); ;
| for (DBObject o : list) { i
System out. println(o);
i) i
and you should see something like
{ "nanme" "i_1", "ns" "mydb. test Col | ection" , "key" { i 1} , "_ns" "system i ndexes"} !

Quick Tour of the Administrative Functions

Getting A List of Databases

You can get a list of the available databases:

Mongo m = new Mongo() ;

for (String s : m get Dat abaseNanes()) {
System out . println(s);

Dropping A Database

You can drop a database by name using the Mongo object:

Java Types

Object Ids

Regular Expressions
Dates/Times
Database References
Binary Data
Embedded Documents
Arrays

Object Ids

com

nmongodb. Obj ect | d is used to autogenerate unique ids.

Qobjectld id = new Objectld();
bjectld copy = new Qbjectld(id);

Regular Expressions

The Java driver uses j ava. uti | . regex. Pat t er n for regular expressions.

Pattern john = Pattern.conpile("joh?n", CASE_| NSENSI Tl VE);

Basi cDBCbj ect query = new Basi cDBObj ect (" nane", john);

// finds all people with "nane" matching /joh?n/i
DBCursor cursor = collection.find(query);

Dates/Times

The java.util.Date class is used for dates.

Dat e now = new Date();
Basi cDBObj ect tinme = new Basi cDBObject("ts", now);

col |l ection. save(tine);

Database References

com

nongodb. DBRef can be used to save database references.

http://api.mongodb.org/java/0.11/com/mongodb/ObjectId.html
http://java.sun.com/javase/6/docs/api/java/util/regex/Pattern.html
http://java.sun.com/javase/6/docs/api/java/util/Date.html
http://api.mongodb.org/java/0.11/com/mongodb/DBRef.html

DBRef addr essObj
addressObj . fetch()

DBRef addressRef = new DBRef (db, "foo. bar
DBObj ect address = addressRef.fetch();

DBChj ect person = Basi cDBObj ect Bui | der. st

.add("nane", "Fred")
.add("address", addressRef)
-get();

col | ection. save(person);

DBChj ect fred = collection.findOne();
= (DBRef)fred. get("address");

", address_id);

art()

Binary Data

An array of bytes (byt e[]) can be used for binary data.

Embedded Documents

Suppose we have a document that, in JavaScript, looks like:

Basi cDBCbj ect x = new Basi cDBObj ect (" x",

Basi cDBCbj ect y = new Basi cDBObj ect ("y",

3);
y);

Arrays

Anything that extends List in Java will be saved as an array.

So, if you are trying to represent the JavaScript:

ArrayList x = new ArrayList();
X.
x. add(2);
X.

x. add(4);

add(1);

add(new Basi cDBObj ect ("foo", "bar"));

Basi cDBCbj ect doc = new Basi cDBObj ect (" x",

C++ Language Center

A C++ driver is available for communicating with the MongoDB. As the database is written in C++, the driver actually uses some core MongoDB
code -- this is the same driver that the database uses itself for replication.

The driver has been compiled successfully on Linux, OS X, Windows, and Solaris.
® API Documentation
® MongoDB C++ Client Tutorial
® Using BSON from C++
* HOWTO
® Connecting
® Tailable Cursors

® Mongo Database and C++ Driver Source Code (at github). See the client subdirectory for client driver related files.

* Download

Additional Notes

® The Building documentation covers compiling the entire database, but some of the notes there may be helpful for compiling client
applications too.

® There is also a pure C driver for MongoDB. For true C++ apps we recommend using the C++ driver.

C++ BSON Library

Overview
Examples
API Docs
Short Class Names

Overview
The MongoDB C++ driver library includes a bson package that implements the BSON specification (see http://www.bsonspec.org/). This library
can be used standalone for object serialization and deserialization even when one is not using MongoDB at alll.

Include bson/ bson. h or db/ j sobj . h in your application (not both). bson. h is new and may not work in some situations, was is good for light
header-only usage of BSON (see the bsondemo.cpp example).

Key classes:
® BSONObj a BSON object
® BSONElement a single element in a bson object. This is a key and a value.
® BSONODjBuilder used to make BSON objects
® BSONODbijlterator to enumerate BSON objects
Let's now create a BSON "person” object which contains name and age. We might invoke:
BSONGbj Bui | der b;
b. append("nane", "Joe");

b. append("age", 33);
BSONObj p = b.obj ();

BSONCbj p = BSONObj Bui | der (). append("nane", "Joe").append("age", 33).0bj();

We can also create objects with a stream-oriented syntax:

http://api.mongodb.org/cplusplus
http://github.com/mongodb/mongo/tree/master
http://fastdl.mongodb.org/cxx-driver/mongodb-linux-x86_64-v1.6-latest.tgz
http://github.com/mongodb/mongo-c-driver
http://www.bsonspec.org/
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_element.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_builder.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_iterator.html

BSONChj Bui | der b;
b << "name" << "Joe" << "age" << 33;
BSONCbj p = b.obj();

BSONObj p = BSON(GENOI D << "nane" << "Joe" << "age" << 33);
I/ result is: { _id: ..., nane : "Joe", age : 33}

BSONOhj p =
BSONObj Bui | der (). genO D() . append(" nanme", "Joe") . append("age", 33).0bj ();

Examples
® http://github.com/mongodb/mongo/blob/master/bson/bsondemo/bsondemo.cpp
API Docs

® http://api.mongodb.org/cplusplus/

Short Class Names

...

...

/1 from bsonel ement. h

nanmespace bson {
typedef nongo: : BSONEl enent be;
typedef nongo: : BSONObj bo;
typedef nongo: : BSONObj Bui | der bob;

...

(Or one could use bson: : bo fully qualified for example).

Also available is bo: : i t er at or as a synonym for BSONObj | t er at or .

C++ Tutorial

® |Installing the Driver Library and Headers
® Unix
® Full Database Source Driver Build
® Driver Build
® Windows
® Compiling
® Writing Client Code
® Connecting
® BSON
® |nserting

http://github.com/mongodb/mongo/blob/master/bson/bsondemo/bsondemo.cpp
http://api.mongodb.org/cplusplus/

® Querying
® Indexing
® Sorting
® Updating
® Further Reading

This document is an introduction to usage of the MongoDB database from a C++ program.

First, install Mongo -- see the Quickstart for details.

Next, you may wish to take a look at the Developer's Tour guide for a language independent look at how to use MongoDB. Also, we suggest

some basic familiarity with the mongo shell -- the shell is one's primary database administration tool and is useful for manually inspecting the
contents of a database after your C++ program runs.

Installing the Driver Library and Headers

A good source for general information about setting up a MongoDB development environment on various operating systems is the building page.

The normal database distribution used to include the C++ driver, but there were many problems with library version mismatches so now you have
to build from source. You can either get the full source code for the database and just build the C++ driver or download the driver separately and
build it.

Unix
For Unix, the Mongo driver library is | i bnongocl i ent . a. For either build, run scons - - hel p to see all options.

Full Database Source Driver Build

To install the libraries, run:

scons --full install

--full tells the install target to include the library and header files; by default library and header files are installed in /usr/local.

You can use - - pr ef i x to change the install path: scons --prefix /opt/nongo --full install.You can also specify
--sharedcli ent to build a shared library instead of a statically linked library.

Driver Build

If you download the driver source code separately, you can build it by running scons (no options).
Windows

For more information on Boost setup see the Building for Windows page.

Compiling

The C++ drivers requires the pcre and boost libraries (with headers) to compile. Be sure they are in your include and lib paths. You can usually
install them from your OS's package manager if you don't already have them.

Writing Client Code
Note: for brevity, the examples below are simply inline code. In a real application one will define classes for each database object typically.

Connecting

Let's make a tutorial.cpp file that connects to the database (see client/examples/tutorial.cpp for full text of the examples below):

http://github.com/mongodb/mongo
http://dl.mongodb.org/dl/cxx-driver
http://dl.mongodb.org/dl/cxx-driver
http://www.boost.org/
http://www.pcre.org/
http://www.boost.org/

#i ncl ude <i ostreanw
#i nclude "client/dbclient.h"

usi ng nanespace nongo;

void run() {
DBCl i ent Connection c;
c.connect ("l ocal host");

}

int main() {
try {
run();
cout << "connected ok" << endl;
} catch(DBException &) {
cout << "caught " << e.what() << endl;

}

return O;

i $ g++ tutorial.cpp -lnongoclient -1boost_thread-nt -lboost_filesystem-I|boost_programoptions -o H
. tutorial :
! $./tutorial
! connected ok

‘1, Depending on your boost version you might need to link against the boost_system library as well: -Iboost_system. Also, you
may need to append "-mt" to boost_filesystem and boost_program_options. And, of course, you may need to use -l and -L to
specify the locations of your mongo and boost headers and libraries.

BSON

The Mongo database stores data in BSON format. BSON is a binary object format that is JSON-like in terms of the data which can be stored
(some extensions exist, for example, a Date datatype).

To save data in the database we must create objects of class BSONObj. The components of a BSONODbj are represented as BSONElement
objects. We use BSONODbjBuilder to make BSON objects, and BSONObjlterator to enumerate BSON objects.

Let's now create a BSON "person" object which contains name and age. We might invoke:

BSONCbj Bui | der b;

b. append(" nane", "Joe");
b. append("age", 33);
BSONCbj p = b.obj();

BSONCbj p = BSONObj Bui | der (). append("nane", "Joe").append("age", 33).o0bj();

! BSONChj Bui | der b; !
i b << "nane" << "Joe" << "age" << 33; :
i BSONObj p = b.obj(); :

The macro BSON lets us be even more compact:

http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_element.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_builder.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_b_s_o_n_obj_iterator.html

BSONCbj p = BSON(GENOI D << "nane" << "Joe" << "age" << 33);
/] result is: { _id: ..., name : "Joe", age : 33}

. BSONGO] p =
BSONChj Bui | der (). genO D() . append("nane", "Joe"). append("age", 33). obj ();
Inserting

We now save our person object in a persons collection in the database:

c.insert("tutorial.persons", p);

The first parameter to insert is the namespace. tutorial is the database and persons is the collection name.

Querying

Let's now fetch all objects from the persons collection, and display them. We'll also show here how to use count().

cout << "count:" << c.count("tutorial.persons") << endl;
aut o_ptr<DBC i ent Cur sor> cursor =
c.query("tutorial.persons", enptyQbj);
whi l e(cursor->nore())
cout << cursor->next().toString() << endl;

emptyObj is the empty BSON object -- we use it to represent {} which indicates an empty query pattern (an empty query is a query for all objects).

We use BSONODb;j::toString() above to print out information about each object retrieved. BSONODb;j::toString is a diagnostic function which prints
an abbreviated JSON string representation of the object. For full JSON output, use BSONODb;j::jsonString.

Let's now write a function which prints out the name (only) of all persons in the collection whose age is a given value:

i void printlfAge(DBd ientConnection&c, int age) {

! aut o_ptr<DBC i ent Cursor> cursor =
c.query("tutorial.persons", QUERY("age" << age));
whi | e(cursor->more()) {

: BSONCbj p = cursor->next();

cout << p.getStringField("name") << endl;

getStringField() is a helper that assumes the "name" field is of type string. To manipulate an element in a more generic fashion we can retrieve
the particular BSONElement from the enclosing object:

BSONEI ement nanme = p["nane"];
Il or:
/| BSONEl ement name = p. getFi el d("name");

See the api docs, and jsobj.h, for more information.

Our query above, written as JSON, is of the form

Queries are BSON objects of a particular format -- in fact, we could have used the BSON() macro above instead of QUERY(). See class Query in
dbclient.h for more information on Query objects, and the Sorting section below.

In the mongo shell (which uses javascript), we could invoke:

use tutorial;
db. persons.find({ age : 331});

Indexing

Let's suppose we want to have an index on age so that our queries are fast. We would use:
c.ensurelndex("tutorial.persons", fronjson("{age:1}"));

The ensurelndex method checks if the index exists; if it does not, it is created. ensurelndex is intelligent and does not repeat transmissions to the
server; thus it is safe to call it many times in your code, for example, adjacent to every insert operation.

In the above example we use a new function, fromjson. fromjson converts a JSON string to a BSONObj. This is sometimes a convenient way to
specify BSON. Alternatively we could have written:

c.ensurel ndex("tutorial.persons”, BSON("age" << 1));

Sorting

Let's now make the results from printlfAge sorted alphabetically by name. To do this, we change the query statement from:

aut o_ptr<DBC i ent Cursor> cursor = c.query("tutorial.persons”, QUERY("age" << age));

to

to auto_ptr<DBCientCursor> cursor = c.query("tutorial.persons”, QUERY("age" << age).sort("nane")

Here we have used Query::sort() to add a modifier to our query expression for sorting.

Updating

Use the update() method to perform a database update . For example the following update in the mongo shell :
> use tutorial

> db. persons. update({ nane : 'Joe', age : 33},
: { $inc : { visits : 1} }) :

i db.update("tutorial.persons" , i
BSON("nane" << "Joe" << "age" << 33),
i BSON("$inc" << BSON(“"visits" << 1))); :

Further Reading

This overview just touches on the basics of using Mongo from C++. There are many more capabilities. For further exploration:

® See the language-independent Developer's Tour;
® Experiment with the nongo shell;

http://api.mongodb.org/cplusplus/current/classmongo_1_1_query.html
http://api.mongodb.org/cplusplus/current/namespacemongo.html#4f542be0d0f9bad2d8cb32c3436026c2

Review the doxygen API docs;

See connecting pooling information in the API docs;

See GridFS file storage information in the API docs;

See the HOWTO pages under the C++ Language Center

Consider getting involved to make the product (either C++ driver, tools, or the database itself) better!

Connecting

The C++ driver includes several classes for managing collections under the parent class DBClientinterface.

In general, you will want to instantiate either a DBClientConnection object, or a DBClientPaired object. DBClientConnection is our normal
connection class for a connection to a single MongoDB database server (or shard manager). We use DBClientPaired to connect to database
replica pairs.

See http://api.mongodb.org/cplusplus/ for details on each of the above classes.

Note : replica pairs will soon be replaced by Replica Sets; a new / adjusted interface will be available then.

Perl Language Center

® [nstalling
* CPAN
® Manual (Non-CPAN) Installation
® Big-Endian Systems

® Next Steps

® MongoDB Perl Tools

® Entities::Backend:: MongoDB

® Mbj oX:: Session:: Store:: MongoDB
® MongoDB: : Adni n

® Mbngoose

® Nongr el

® MongoX

Installing

1, Start a MongoDB server instance (mongod) before installing so that the tests will pass. The nongod cannot be running as a
slave for the tests to pass.

Some tests may be skipped, depending on the version of the database you are running.

The Perl driver is available through CPAN as the package MongoDB. It should build cleanly on *NIX and Windows (via Strawberry Perl). It is also
available as an ActivePerl module.

Manual (Non-CPAN) Installation

If you would like to try the latest code or are contributing to the Perl driver, it is available at Github. There is also documentation generated after
every commit.

You can see if it's a good time to grab the bleeding edge code by seeing if the build is green.

To build the driver, run:

i $ perl Makefile.PL !
$ make
$ make test # make sure nobngod is running, first
i $ sudo nmake install

http://api.mongodb.org/cplusplus/current/annotated.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_d_b_connection_pool.html
http://api.mongodb.org/cplusplus/current/classmongo_1_1_grid_f_s.html
http://api.mongodb.org/cplusplus/
http://search.cpan.org/dist/MongoDB/
http://strawberryperl.com/
http://github.com/mongodb/mongo-perl-driver
http://api.mongodb.org/perl/index.html
http://buildbot.mongodb.org:81/waterfall

Please note that the tests will not pass without a nrongod process running.

Big-Endian Systems

The driver will work on big-endian machines, but the database will not. The tests assume that mongod will be running on localhost unless
%ENV{MONGOD} is set. So, to run the tests, start the database on a little-endian machine (at, say, "example.com") and then run the tests with:

A few tests that require a database server on "localhost" will be skipped.

Next Steps
There is a tutorial and APl documentation on CPAN.
If you're interested in contributing to the Perl driver, check out Contributing to the Perl Driver.

MongoDB Perl Tools

Entities:: Backend:: MongoDB

Entities::Backend: : MongoDBis a backend for the Entities user management and authorization system stores all entities and relations
between them in a MongoDB database, using the MongoDB module. This is a powerful, fast backend that gives you all the features of MongoDB.

Mbj oX: : Sessi on: : St ore: : MongoDB

Mpbj oX: : Sessi on: : Store:: MongoDB is a store for Mbj oX: : Sessi on that stores a session in a MongoDB database. Created by Ask Bjgrn
Hansen.

MongoDB: : Admi n

MongoDB: : Admi n is a collection of MongoDB administrative functions. Created by David Burley.

Mongoose

Mbongoose is an attempt to bring together the full power of Moose with MongoDB. Created by Rodrigo de Oliveira Gonzalez.
Mongr el

Mongr el provides a simple database abstraction layer for MongoDB. Mongrel uses the Oogly data validation framework to provide you with a
simple way to create codebased schemas that have data validation built-in, etc.

MongoX

MongoX - DSL sugar for MongoDB

Contributing to the Perl Driver

The easiest way to contribute is to file bugs and feature requests on Jira.

If you would like to help code the driver, read on...

Finding Something to Help With

Fixing Bugs

You can choose a bug on Jira and fix it. Make a comment that you're working on it, to avoid overlap.

Writing Tests

The driver could use a lot more tests. We would be grateful for any and all tests people would like to write.

Adding Features

http://search.cpan.org/dist/MongoDB/
http://search.cpan.org/~idoperel/Entities-0.2/lib/Entities/Backend/MongoDB.pm
http://search.cpan.org/~idoperel/Entities-0.2/lib/Entities/Backend/MongoDB.pm
http://search.cpan.org/dist/MojoX-Session-Store-MongoDB/
http://search.cpan.org/dist/MojoX-Session-Store-MongoDB/
http://search.cpan.org/dist/MojoX-Session/
http://search.cpan.org/dist/MongoDB-Admin
http://search.cpan.org/dist/MongoDB-Admin
http://search.cpan.org/dist/Mongoose/
http://search.cpan.org/dist/Mongoose/
http://search.cpan.org/dist/Mongrel/
http://search.cpan.org/dist/Mongrel/
http://search.cpan.org/dist/MongoX/
http://search.cpan.org/dist/MongoX/
http://jira.mongodb.org/browse/PERL
http://jira.mongodb.org/browse/PERL

If you think a feature is missing from the driver, you're probably right. Check on IRC or the mailing list, then go ahead and create a Jira case and
add the feature. The Perl driver was a bit neglected for a while (although it's now getting a lot of TLC) so it's missing a lot of things that the other
drivers have. You can look through their APIs for ideas.

Contribution Guildlines

The best way to make changes is to create an account on [Github], fork the driver, make your improvements, and submit a merge request.
To make sure your changes are approved and speed things along:

® Write tests. Lots of tests.
® Document your code.
® Write POD, when applicable.

Bonus (for C programmers, particularly):

® Make sure your change works on Perl 5.8, 5.10, Windows, Mac, Linux, etc.

Code Layout

The important files:

| perl_nongo.c # serialization/deserialization

| nongo_link.c # connecting to, sending to, and receiving fromthe database

- lib

- MongoDB

| Connection.pm# connection, queries, inserts... everything cones through here
| Database. pm
| Collection.pm
| Cursor.pm
| OD pm

| GidFS. pm

- GidFs

| File.pm

Connecti on. xs

s
| Mongo. xs
|

| Cursor.xs
|

Perl Tutorial

r. Redirection Notice
This page should redirect to http://search.cpan.org/dist/MongoDB/lib/MongoDB/Tutorial.pod.

Online API Documentation

MongoDB API and driver documentation is available online. It is updated daily.

® Java Driver API Documentation
® C++ Driver API Documentation
® Python Driver APl Documentation
® Ruby Driver APl Documentation
® PHP Driver APl Documentation

Writing Drivers and Tools

http://github.com/mongodb/mongo-perl-driver
http://search.cpan.org/dist/MongoDB/lib/MongoDB/Tutorial.pod
http://api.mongodb.org/java
http://api.mongodb.org/cplusplus
http://api.mongodb.org/python
http://api.mongodb.org/ruby
http://api.mongodb.org/php

See Also

® Mongo Query Language
® mongosniff
® --objcheck command line parameter

Overview - Writing Drivers and Tools

This section contains information for developers that are working with the low-level protocols of Mongo - people who are writing drivers and
higher-level tools.

Documents of particular interest :

BSON http://bsonspec.org Description of the BSON binary document format. Fundamental to how Mongo and it's client software works.
Mongo Wire Protocol Specification for the basic socket communications protocol used between Mongo and clients.

Mongo Driver Requirements = Description of what functionality is expected from a Mongo Driver

GridFS Specification Specification of GridFS - a convention for storing large objects in Mongo

Mongo Extended JSON Description of the extended JSON protocol for the REST-ful interface (ongoing development)

Additionally we recommend driver authors take a look at existing driver source code as an example.
bsonspec.org

Mongo Driver Requirements

This is a high-level list of features that a driver for MongoDB might provide. We attempt to group those features by priority. This list should be
taken with a grain of salt, and probably used more for inspiration than as law that must be adhered to. A great way to learn about implementing a
driver is by reading the source code of any of the existing drivers, especially the ones listed as "mongodb.org supported”.

High priority
® BSON serialization/deserialization
® full cursor support (e.g. support OP_GET_MORE operation)
® close exhausted cursors via OP_KILL_CURSORS
® support for running database commands
® handle query errors
® convert all strings to UTF-8 (part of proper support for BSON)
® hint, explain, count, $where
® database profiling: set/get profiling level, get profiling info
® advanced connection management (replica pairs, slave okay)
® automatic reconnection

Medium priority

® validate a collection in a database
® buffer pooling
® Tailable cursor support

A driver should be able to connect to a single server. By default this must be | ocal host : 27017, and must also allow the server to be specified
by hostname and port.

Mongo m = new Mongo(); /1 go to local host, default port

new Mongo(String host, int port);

&
=1
Q
[S]
3

1l

How the driver does this is up to the driver - make it idiomatic. However, a driver should make it explicit and clear what is going on.
Pair Mode Connection
A driver must be able to support "Pair Mode" configurations, where two mongod servers are specified, and configured for hot-failover.

The driver should determine which of the pair is the current master, and send all operations to that server. In the event of an error, either socket
error or a "not a master" error, the driver must restart the determination process. It must not assume the other server in the pair is now the master.

http://bsonspec.org
http://github.com/search?type=Repositories&language=&q=mongo+driver&repo=&langOverride=&x=0&y=0&start_value=1

ServerPair sp = new ServerPair (| NETAddr...);
Mongo m = new Mongo(sp)

i ServerPair sp = new ServerPair (| NETAddr...);
{ sp.setTarget (Server Pair. SHADOW MASTER) ;
i Mongo m = new Mongo(sp);

ServerCluster sc = new ServerC uster (I NETAddr...); // again, give one and di scover?
Mongo m = new Mongo(sc);

i ServerCluster sc = new ServerC uster(INETAddr...); // again, give one and discover?
i sc.setTarget(...)
i Mongo m = new Mongo(sc);

or maybe make it |ike *Default/Sinple* w a flag?

Database Object

Simple operations on a database object :

* get name of database
*/
String dbName = db. get Nane();

/**

* Get a list of all the collection names in this database
*/

Li st<String> cols = db. get Col | ecti onNanes();

/**

* get a collection object. Can optionally create it if it

* doesn't exist, or just be strict. (XJDM has strictness as an option)
*/

Col l ection coll = db.getCollection(string);

/**

* Create a collection w optional options. Can fault

* if the collection exists, or can just returnit if it already does
*/

Col I ection coll db. createCol l ection(string);

Col l ection coll = db.createCollection(string, options);

/**
* Drop a collection by its nane or by collection object.
* Driver could invalidate any outstanding Coll ection objects
* for that collection, or just hope for the best.
*/
boolean b db. dropCol | ecti on(nane) ;
boolean b = db.dropCollection(Collection);

/**

* Execute a command on the database, returning the
* BSON doc with the results

*/

Docunent d = db. execut eComrand(comrand) ;

/**
* Close the [l ogical] database
*/

void db.close();

/**

* Erase / drop an entire database
*/

bool dropDat abase(dbnane)

Database Administration

These methods have to do with database metadata: profiling levels and collection validation. Each admin object is associated with a database.
These methods could either be built into the Database class or provided in a separate Admin class whose instances are only available from a
database instance.

/* get an adm n object froma database object. */
Adnmin adm n = db. get Admi n();

/**

* Get profiling level. Returns one of the strings "off", "slowOnly", or
* "all". Note that the database returns an integer. This nmethod coul d

* return an int or an enuminstead --- in Ruby, for exanple, we return
* synbol s.

*/

String profilingLevel = adnin.getProfilingLevel ();

/**
* Set profiling |level. Takes whatever getProfilingLevel () returns.
*/

adnin.setProfilingLevel ("off");

/**

* Retrieves the database's profiling info.

*/

Docunment profilinglnfo = adm n.getProfilinglnfo();

/**
* Returns true if collection is valid; raises an exception if not.
*/

bool ean adm n. val i dat eCol | ecti on(col | ecti onNane);

/**
* full query capabilities - limt, skip, returned fields, sort, etc
*/
Cur sor find(...);
voi d insert(...) // insert one or nore objects into the collection, variants on args
voi d renove(query) // renove objects that match the query
voi d nodi fy(selector, nodifier) // nodify all objects that nmatch selector w nodifier object
voi d repl ace(sel ector, object) /Il replace first object that match selector w specified
obj ect
voi d repsert(sel ector, object) /1 replace first object that matches,
nodi fi er nakes no | ogical sense*
| ong get Count () ;
| ong get Count (query);

voi d creat el ndex(index_i nfo)
voi d dr opl ndex(nane)

voi d dr opl ndexes()

Li st <i nf o> get | ndex! nf or nati on()

docunent expl ai n(query)
options get Options();
string get Name() ;

voi d cl ose();

Cursor Object

docunent get Next Docunent ()

iterator getlterator() // again, local to |anguage
bool hasMore()
voi d cl ose()

Spec, Notes and Suggestions for Mongo Drivers

Assume that the BSON objects returned from the database may be up to 4MB. This size may change over time but for now the limit is 4MB per
object. We recommend you test your driver with 4MB objects.

See Also

® Driver Requirements
®* BSON
® The main Database Internals page

Feature Checklist for Mongo Drivers

Functionality Checklist

This section lists tasks the driver author might handle.

Essential
® BSON serialization/deserialization
® Basic operations: query, save, updat e, r enove, ensur el ndex, fi ndOne, limt, sort
® Fetch more data from a cursor when necessary (dbGetMore)
® Sending of KillCursors operation when use of a cursor has completed (ideally for efficiently these are sent in batches)
® Convert all strings to utf8
® Authentication

Recommended

automatic doc_id generation (important when using replication)

Database $cmd support and helpers

Detect{$err: ... }response from a db query and handle appropriately --see Error Handling in Mongo Drivers

Automatically connect to proper server, and failover, when connecting to a Replica Set

ensur el ndex commands should be cached to prevent excessive communication with the database. (Or, the driver user should be
informed that ensur el ndex is not a lightweight operation for the particular driver.)

® Support for objects up to 4MB in size

More Recommended

lasterror helper functions

count () helper function

$wher e clause

eval ()

File chunking

hint fields

explain helper

Automatic _id index creation (maybe the db should just do this???)

More Optional

® addUser, | ogout helpers

® Allow client user to specify Option_SlaveOk for a query

® Tailable cursor support

® In/out buffer pooling (if implementing in a garbage collected languages)

More Optional

® [connection pooling]
® Automatic reconnect on connection failure
* DBRef Support:

® Ability to generate easily

® Automatic traversal

http://github.com/10gen/mongo/tree/master/client/dbclient.h

See Also
The Driver and Integration Center for information about the latest drivers
The [top page] for this section

The main Database Internals page
The starting point for all Home

Conventions for Mongo Drivers

Interface Conventions

It is desirable to keep driver interfaces consistent when possible. Of course, idioms vary by language, and when they do adaptation is appropriate.
However, when the idiom is the same, keeping the interfaces consistent across drivers is desirable.

Terminology

In general, use these terms when naming identifiers. Adapt the names to the normal "punctuation” style of your language - - foo_bar in C might
be f ooBar in Java.

® database - what does this mean?
® collection
® index

Driver Testing Tools

Object IDs

® driverOIDTest for testing toString

> db. runCommand({ "driverO DTest" : new Objectld() })

{
"oid" : Objectld("4b8991f221752a6e61a88267"),
"ok" 1

}

"str" : "4b8991f 221752a6e61a88267",

Mongo Wire Protocol

® Introduction

® Messages Types and Formats
® Standard Message Header
® Request Opcodes

® Client Request Messages

OP_UPDATE

OP_INSERT

OP_QUERY

OP_GETMORE

OP_DELETE

OP_KILL_CURSORS
® OP_MSG

® Database Response Messages
® OP_REPLY

Introduction

The Mongo Wire Protocol is a simple socket-based, request-response style protocol. Clients communicate with the database server through a
regular TCP/IP socket.

Default Socket Port
The default port is 27017, but this is configurable and will vary.

Clients should connect to the database with a regular TCP/IP socket. Currently, there is no connection handshake.

@ To describe the message structure, a C-like st r uct is used. The types used in this document (cstri ng, i nt 32, etc.) are the
same as those defined in the BSON specification. The standard message header is typed as MsgHeader . Integer constants are
in capitals (e.g. ZEROfor the integer value of 0).

In the case where more than one of something is possible (like in a OP_INSERT or OP_KILL_CURSORS), we again use the

notation from the BSON specification (e.g. i nt 64*). This simply indicates that one or more of the specified type can be written
to the socket, one after another.

1. Byte Ordering
Note that like BSON documents, all data in the mongo wire protocol is little-endian.

Messages Types and Formats

TableOfContents

There are two types of messages, client requests and database responses, each having a slightly different structure.
Standard Message Header

In general, each message consists of a standard message header followed by request-specific data. The standard message header is structured
as follows :

struct MsgHeader {
int32 nessagelLength; // total nessage size, including this

int32 request| D; /1 identifier for this nmessage

int32 responseTo; /1 requestID fromthe original request
11 (used in reponses from db)

int32 opCode; Il request type - see table bel ow

}

messagelengt h : This is the total size of the message in bytes. This total includes the 4 bytes that holds the message length.

request | D: This is a client or database-generated identifier that uniquely identifies this message. For the case of client-generated messages
(e.g. CONTRIB:OP_QUERY and CONTRIB:OP_GET_MORE), it will be returned in the

responseTo field of the CONTRIB:OP_REPLY message. Along with the r eponseTo field in responses, clients can use this to associate query
responses with the originating query.

responseTo : In the case of a message from the database, this will be the requestID taken from the CONTRIB:OP_QUERY or
CONTRIB:OP_GET_MORE messages from the client. Along with the r equest | Dfield in queries, clients can use this to associate query
responses with the originating query.

opCode : Type of message. See the table below in the next section.
Request Opcodes
TableOfContents

The following are the currently supported opcodes :

Opcode Name opCode value Comment

OP_REPLY 1 Reply to a client request. responseTo is set
OP_MSG 1000 generic msg command followed by a string
OP_UPDATE 2001 update document

OP_INSERT 2002 insert new document

RESERVED 2003 formerly used for OP_GET_BY_OID
OP_QUERY 2004 query a collection

OP_GET_MORE 2005 Get more data from a query. See Cursors

http://bsonspec.org/#/specification
http://bsonspec.org/#/specification

OP_DELETE 2006 Delete documents

OP_KILL_CURSORS | 2007 Tell database client is done with a cursor

Client Request Messages
TableOfContents
Clients can send all messages except for CONTRIB:OP_REPLY. This is reserved for use by the database.

Note that only the CONTRIB:OP_QUERY and CONTRIB:OP_GET_MORE messages result in a response from the database. There will be no
response sent for any other message.

You can determine if a message was successful with a $$$ TODO get last error command.
OP_UPDATE

The OP_UPDATE message is used to update a document in a collection. The format of a OP_UPDATE message is

struct OP_UPDATE {

MsgHeader header; /1 standard nessage header
int32 ZERQ, /1 0 - reserved for future use
{ cstring fullCollectionNane; // "dbname.collectionnane"
iint32 fl ags; /1 bit vector. see bel ow 1
docunent sel ector; /'l the query to select the docunent
docunent update; /'l specification of the update to perform

full Col | ecti onNane : The full collection name. The full collection name is the concatenation of the database name with the collection name,

using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is “foo.bar".

flags:
bit num name description
0 Upsert If set, the database will insert the supplied object into the collection if no matching document is found.
1 MultiUpdate If set, the database will update all matching objects in the collection. Otherwise only updates first matching doc.
2-31 Reserved Must be set to 0.

sel ect or : BSON document that specifies the query for selection of the document to update.

updat e : BSON document that specifies the update to be performed. For information on specifying updates see the documentation on Updating.
There is no response to an OP_UPDATE message.

OP_INSERT

The OP_INSERT message is used to insert one or more documents into a collection. The format of the OP_INSERT message is

i struct {
: MsgHeader header ; /1 standard nessage header :
int32 ZERQG, /1 0 - reserved for future use
{ cstring fullCollectionNane; // "dbname. collectionnanme"
docunent * docunents; // one or nore docunments to insert into the collection
P E

full Col I ecti onName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

documnent s : One or more documents to insert into the collection. If there are more than one, they are written to the socket in sequence, one after
another.

There is no response to an OP_INSERT message.
OP_QUERY

The OP_QUERY message is used to query the database for documents in a collection. The format of the OP_QUERY message is :

struct OP_QUERY {

MsgHeader header; /'l standard nmessage header
int32 flags; /1 bit vector of query options. See below for details.
cstring full Coll ecti onNane; /1 "dbnane. col | ecti onnane"
int32 nunber ToSki p; /1 nunmber of documents to skip
int32 nunber ToRet ur n; /'l nunmber of documents to return
/1 in the first OP_REPLY batch
docunment query; /1 query object. See below for details.
[docunment returnFieldSelector;] // Optional. Selector indicating the fields
/1 to return. See below for details.
}
flags:

bit name description

num

0 Reserved Must be set to 0.

1 TailableCursor Tailable means cursor is not closed when the last data is retrieved. Rather, the cursor marks the final object's
position. You can resume using the cursor later, from where it was located, if more data were received. Like any
"latent cursor", the cursor may become invalid at some point (CursorNotFound) — for example if the final object it
references were deleted.

2 SlaveOk Allow query of replica slave. Normally these return an error except for namespace "local".

3 OplogReplay Internal replication use only - driver should not set

4 NoCursorTimeout | The server normally times out idle cursors after an inactivity period (10 minutes) to prevent excess memory use. Set
this option to prevent that.

5 AwaitData Use with TailableCursor. If we are at the end of the data, block for a while rather than returning no data. After a
timeout period, we do return as normal.

6 Exhaust Stream the data down full blast in multiple "more" packages, on the assumption that the client will fully read all data
queried. Faster when you are pulling a lot of data and know you want to pull it all down. Note: the client is not
allowed to not read all the data unless it closes the connection.

7-31 Reserved Must be set to 0.

full Col I ecti onName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

nurber ToSki p : Sets the number of documents to omit - starting from the first document in the resulting dataset - when returning the result of
the query.

nunber ToRet ur n : Limits the number of documents in the first CONTRIB:OP_REPLY message to the query. However, the database will still
establish a cursor and return the cur sor | Dto the client if there are more results than nunber ToRet ur n. If the client driver offers ‘limit'
functionality (like the SQL LIMIT keyword), then it is up to the client driver to ensure that no more than the specified number of document are
returned to the calling application. If nunber ToRet ur n is 0, the db will used the default return size. If the number is negative, then the database
will return that number and close the cursor. No futher results for that query can be fetched. If nunber ToRet ur n is 1 the server will treat it as -1
(closing the cursor automatically).

query : BSON document that represents the query. The query will contain one or more elements, all of which must match for a document to be
included in the result set. Possible elements include $query, $or der by, $hi nt, $expl ai n, and $snapshot .

returnFi el dsSel ect or : OPTIONAL BSON document that limits the fields in the returned documents. The returnFieldsSelector contains one

or more elements, each of which is the name of a field that should be returned, and and the integer value 1. In JSON notation, a
returnFieldsSelector to limit to the fields "a", "b" and "c" would be :

{a:1, b: 1, c: 1}

The database will respond to an OP_QUERY message with an CONTRIB:OP_REPLY message.
OP_GETMORE

The OP_GETMORE message is used to query the database for documents in a collection. The format of the OP_GETMORE message is :

struct {

MsgHeader header; /'l standard nmessage header
int32 ZERG, /1 0 - reserved for future use
int32 nunber ToRet ur n; /1 nunber of docunments to return
int64 cursorl D; /1 cursorlD fromthe OP_REPLY

cstring full Coll ectionNane; // "dbnane. col | ecti onnane"

full Col | ecti onNan®e : The full collection name. The full collection name is the concatenation of the database name with the collection name,

using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

nunber ToRet ur n : Limits the number of documents in the first CONTRIB:OP_REPLY message to the query. However, the database will still
establish a cursor and return the cur sor | D to the client if there are more results than nunber ToRet ur n. If the client driver offers ‘limit'
functionality (like the SQL LIMIT keyword), then it is up to the client driver to ensure that no more than the specified number of document are
returned to the calling application. If nunber ToRet ur n is 0, the db will used the default return size.

cur sor | D: Cursor identifier that came in the CONTRIB:OP_REPLY. This must be the value that came from the database.

The database will respond to an OP_GETMORE message with an CONTRIB:OP_REPLY message.

OP_DELETE

The OP_DELETE message is used to remove one or more messages from a collection. The format of the OP_DELETE message is :

i struct { ;
: MsgHeader header; /'l standard message header !
int32 ZERQ, /1 0 - reserved for future use
{ cstring fullCollectionNane; // "dbname.collectionnane"
i int32 flags; /1 bit vector - see below for details. i
docunent sel ector; /1 query object. See below for details.
o} i

full Col I ecti onName : The full collection name. The full collection name is the concatenation of the database name with the collection name,
using a "." for the concatenation. For example, for the database "foo" and the collection "bar", the full collection name is "foo.bar".

flags:
bit name description
num
0 SingleRemove If set, the database will remove only the first matching document in the collection. Otherwise all matching documents
will be removed.
1-31 Reserved Must be set to 0.

sel ect or : BSON document that represent the query used to select the documents to be removed. The selector will contain one or more
elements, all of which must match for a document to be removed from the collection. Please see $$$ TODO QUERY for more information.

There is no reponse to an OP_DELETE message.
OP_KILL_CURSORS

The OP_KILL_CURSORS message is used to close an active cursor in the database. This is necessary to ensure that database resources are
reclaimed at the end of the query. The format of the OP_KILL_CURSORS message is :

i struct {
i MsgHeader header ; /1 standard nmessage header H
int32 ZERO, /1 0 - reserved for future use
int32 nunber Of Cursor I Ds; // nunber of cursorlDs in nessage
i nt64* cursor| Ds; /'l sequence of cursorlDs to close
- e

nurber OF Cur sor | Ds : The number of cursors that are in the message.
cursor | Ds : "array" of cursor IDs to be closed. If there are more than one, they are written to the socket in sequence, one after another.

Note that if a cursor is read until exhausted (read until OP_QUERY or OP_GETMORE returns zero for the cursor id), there is no need to kill the

cursor.
OP_MSG

Deprecated. OP_MSG sends a diagnostic message to the database. The database sends back a fixed resonse. The format is
struct {

MsgHeader header; // standard nessage header
cstring nessage; // nessage for the database

Drivers do not need to implement OP_MSG.

Database Response Messages
TableOfContents
OP_REPLY

The OP_REPLY message is sent by the database in response to an CONTRIB:OP_QUERY or CONTRIB:OP_GET_MORE
message. The format of an OP_REPLY message is:

i struct {
: MsgHeader header ; /1 standard nmessage header :
int32 responseFl ags; // bit vector - see details bel ow
int64 cursorl D /1 cursor id if client needs to do get nore's
i int32 startingFrom /1 where in the cursor this reply is starting 1
int32 number Returned; // number of docurents in the reply
| document* docunents; /1 docunents
P :

responseFl ags :

bit name description

num

0 CursorNotFound | Set when getMore is called but the cursor id is not valid at the server. Returned with zero results.

1 QueryFailure Set when query failed. Results consist of one document containing an "$err" field describing the failure.

2 ShardConfigStale = Drivers should ignore this. Only mongos will ever see this set, in which case, it needs to update config from the
server.

3 AwaitCapable Set when the server supports the AwaitData Query option. If it doesn't, a client should sleep a little between

getMore's of a Tailable cursor. Mongod version 1.6 supports AwaitData and thus always sets AwaitCapable.

4-31 Reserved Ignore

cursor | D: The cursorlD that this OP_REPLY is a part of. In the event that the result set of the query fits into one OP_REPLY message,
cur sor | Dwill be 0. This cur sor | D must be used in any CONTRIB:OP_GET_MORE messages used to get more data, and also must be closed
by the client when no longer needed via a CONTRIB:OP_KILL_CURSORS message.

BSON

bsonspec.org

BSON and MongoDB

® Language-Specific Examples
C

C++
Java
PHP
Python
® Ruby
® MongoDB Document Types

bsonspec.org

http://www.bsonspec.org/

BSON is a bin-ary-en-coded seri-al-iz-a-tion of JSON-like doc-u-ments. BSON is designed to be lightweight, traversable, and efficient. BSON, like
JSON, supports the embedding of objects and arrays within other objects and arrays. See bsonspec.org for the spec and more information in
general.

BSON and MongoDB

MongoDB uses BSON as the data storage and network transfer format for "documents".

BSON at first seems BLOB-like, but there exists an important difference: the Mongo database understands BSON internals. This means that
MongoDB can "reach inside " BSON objects, even nested ones. Among other things, this allows MongoDB to build indexes and match objects
against query expressions on both top-level and nested BSON keys.

See also: the BSON blog post.

Language-Specific Examples

We often map from a language's "dictionary" type — which may be its native objects —to BSON. The mapping is particularly natural in dynamically
typed languages:

JavaScript: {"foo" : "bar"}

Perl: {"foo" => "bar"}

PHP: array("foo" => "bar")

Pyt hon: {"foo" : "bar"}

Ruby: {"foo" => "bar"}

Java: DBObject obj = new Basi cDBCbject("foo", "bar");

! bson b; :
¢ bson_buffer buf; i
! bson_buffer_init(&uf) ;
bson_append_string(&buf, "nanme", "Joe");
! bson_append_int(&buf, "age", 33); i
bson_from buffer(&b, &buf);
i bson_print(&);

i BSONGbj p = BSON("name" << "Joe" << "age" << 33);
i cout << p.toString() << endl;
i cout << p["age"].nunber() << endl;

i Basi cDBObj ect doc = new Basi cDBObj ect () ; :
i doc. put ("nane", "MongoDB"); :
doc. put ("type", "database");
i doc. put("count”, 1);
! Basi cDBObj ect info = new Basi cDBObj ect (); 5
| info.put("x", 203); f
{ info.put("y", 102);
i doc.put("info", info); :
i coll.insert(doc); i

PHP

The PHP driver includes bson_encode and bson_decode functions. bson_encode takes any PHP type and serializes it, returning a string of
bytes:

http://www.bsonspec.org/
http://bsonspec.org
http://blog.mongodb.org/post/114440717/bson
http://github.com/mongodb/mongo-c-driver/blob/master/src/bson.h

$bson = bson_encode(null);

$bson = bson_encode(true);

$bson = bson_encode(4);

$bson = bson_encode("hell o, world");

$bson = bson_encode(array("foo" => "bar"));
$bson = bson_encode(new MongoDate());

Mongo-specific objects (Mongol d, MongoDat e, MongoRegex, MongoCode) will be encoded in their respective BSON formats. For other objects,
it will create a BSON representation with the key/value pairs you would get by running f or ($obj ect as $key => $val ue).

bson_decode takes a string representing a BSON object and parses it into an associative array.

>>> from pynongo. bson i nport BSON

>>> pson_string = BSON. fromdict({"hello": "world"})

>>> bson_string

"\ x16\ x00\ x00\ x00\ x02hel I o\ xO0\ x06\ x00\ x00\ x00wor | d\ x00\ x00'
>>> bson_string.to_dict()

{u hello': u world}

PyMongo also supports "ordered dictionaries" through the pymongo.son module. The BSON class can handle SON instances using the same
methods you would use for regular dictionaries.

Ruby

There are now two gems that handle BSON-encoding: bson and bson_ext. These gems can be used to work with BSON independently of the
MongoDB Ruby driver.

irb

>> require 'rubygens'
=> true

>> require 'bson'

>> doc = {:hello => "world"}

>> bson = BSON. serialize(doc).to_s

=> "\ 026\ 000\ 000\ 000\ 002hel | o\ 000\ 006\ 000\ 000\ 000wor | d\ 000\ 000"
>> BSON. deseri al i ze(bson. unpack("C*"))

=> {"hell 0" => "world"}

| => true i

The BSON class also supports ordered hashes. Simply construct your documents using the OrderedHash class, also found in the MongoDB Ruby
Driver.

MongoDB Document Types

MongoDB uses BSON documents for three things:

1. Data storage (user documents). These are the regular JSON-like objects that the database stores for us. These BSON documents are
sent to the database via the INSERT operation. User documents have limitations on the "element name" space due to the usage of
special characters in the JSON-like query language.

a. A user document element name cannot begin with "$".

b. A user document element name cannot have a "." in the name.

c. The element name "_id" is reserved for use as a primary key id, but you can store anything that is unique in that field.
The database expects that drivers will prevent users from creating documents that violate these constraints.

2. Query "Selector" Documents : Query documents (or selectors) are BSON documents that are used in QUERY, DELETE and UPDATE
operations. They are used by these operations to match against documents. Selector objects have no limitations on the "element name"
space, as they must be able to supply special "marker" elements, like "$where" and the special "command" operations.

3. "Modifier" Documents : Documents that contain 'modifier actions' that modify user documents in the case of an update (see Updating).

Mongo Extended JSON

Mongo's REST interface supports storage and retrieval of JSON documents. Special representations are used for BSON types that do not have
obvious JSON mappings, and multiple representations are allowed for some such types. The REST interface supports three different modes for
document output { Strict, JS, TenGen }, which serve to control the representations used. Mongo can of course understand all of these

representations in REST input.

® Strict mode produces output conforming to the JSON spec http://www.json.org.
® JS mode uses some Javascript types to represent certain BSON types.
® TenGen mode uses some Javascript types and some 10gen specific types to represent certain BSON types.

The following BSON types are represented using special conventions:

Type Strict IS TenGen Explanation

data_binary <bindata> is
)) : : . : the base64
{ "$binary" { "$binary" : i { "$binary" : representation
: " <bi ndat a>", " <bi ndat a>", of a binary
"$type" : "<t>" } : : "$type" : "<t>" } string. <t> is
b e H the
hexadecimal
representation
of a single byte
indicating the
data type.

, "$type"

" <bi ndat a>"
netst)

data_date <date> is the
JSON
representation
of a 64 bit
S— unsigned
integer for
milliseconds
since epoch.

¥
0]
—~
JAY
o
[
=3
[¢]
\%
~
[EECELEEE)
¥
]
—
JAY
o
Q
-
[]
\%
~
Lmmmmmmmnd

data_regex <sRegex>is a
string of valid
JSON
characters.
<jRegex>is a
string that may
contain valid
JSON
characters and
unescaped "
characters, but
may not
contain
unescaped /'
characters.
<sOptions> is
a string
containing
letters of the
alphabet.
<jOptions> is a
string that may
contain only
the characters
'g', ', and 'm'.
Because the
JS and
TenGen
representation:
support a
limited range o
options, any
nonconforming
options will be
dropped when
converting to
this
representation.

{ "$regex"

-
NAY
&
«Q
@
x
g
AY
Q
=
o
=}
w
%
pomnnna
-
A,
&
«Q
@
x
¥
NAY
Q
=
)
>
[%2]
v
O

" <sRegex>",
"$opti ons"
"<sOptions>"

http://www.json.org

<id>is a 24

: : : : } character
i { "$oid" { "$oid" : "<id>" } i Qoj ect 1d("<id>") hexadecimal

data_oid

string. Note
that these
representation:
require a
data_oid value
to have an
associated
field name
"id".

data_ref <name> is a
: i string of valid

{ "$ref" Po{ "$ref" "<nanme>" Dbref ("<nane>", ! JSON

" <name>", P TsidT o t<id>") t<id>") characters.

2L i <id> is a 24

"<id>" } character

. : hexadecimal

string.

GridFS Specification

® [ntroduction
® Specification
® Storage Collections

® files
® chunks
® |ndexes

Introduction

GridFS is a storage specification for large objects in MongoDB. It works by splitting large object into small chunks, usually 256k in size. Each
chunk is stored as a separate document in a chunks collection. Metadata about the file, including the filename, content type, and any optional
information needed by the developer, is stored as a documentinafi | es collection.

So for any given file stored using GridFS, there will exist one document in f i | es collection and one or more documents in the chunks collection.

If you're just interested in using GridFS, see the docs on storing files. If you'd like to understand the GridFS implementation, read on.

Specification

Storage Collections
GridFS uses two collections to store data:

® fil es contains the object metadata
® chunks contains the binary chunks with some additional accounting information

In order to make more than one GridFS namespace possible for a single database, the files and chunks collections are named with a prefix. By
default the prefix is f s. , so any default GridFS store will consist of collections named fs. fi | es and f s. chunks. The drivers make it possible to
change this prefix, so you might, for instance, have another GridFS namespace specifically for photos where the collections would be

photos. fil es and phot os. chunks.

Here's an example of the standard GridFS interface in Java:

/*
* default root collection usage - nust be supported
*
/
G i dFS nyFS = new Gi dFS(nyDat abase) ; Il returns a default GidFS (e.g. "fs" root

col | ection)
nmyFS. storeFil e(new File("/tnp/largething. nmpg")); /1 saves the file into the "fs" GidFS store

* specified root collection usage - optional
*/
Gi dFS nyContracts = new G i dFS(nyDat abase, "contracts"); /1 returns a GidFS where

"contracts" is root
nyFS.retrieveFile("sm thco", new File("/tnp/sm thco_20090105. pdf")); // retrieves object whose
filename is "smthco"

/*

Note that the above API is for demonstration purposes only - this spec does not (at this time) recommend any API. See individual driver
documentation for API specifics.

files

Documents in the fi | es collection require the following fields:

o :
"_id" : <unspecified>, /1 unique ID for this file
{ "length" : data_nunber, /1 size of the file in bytes
i "chunkSi ze" : data_nunber, /1l size of each of the chunks. Default is 256k i
"upl oadDat e" : data_date, /1 date when object first stored
"md5" : data_string /1 result of running the "filend5" conmand on this file's
chunks
o i

o :
“filenane" : data_string, /1 human nane for the file
i “contentType" : data_string, // valid minme type for the object
i "aliases" : data_array of data_string, // optional array of alias strings :
"nmet adata" : data_object, /1 anything the user wants to store
) i

Note that the _id field can be of any type, per the discretion of the spec implementor.
chunks

The structure of documents from the chunks collection is as follows:

A i

: "_id" : <unspecified>, /1 object id of the chunk in the _chunks collection :

"files_id" : <unspecified>, /1 _id of the corresponding files collection entry

"n" chunk_nunber, /1 chunks are nunbered in order, starting with 0

"data" : data_binary, /1 the chunk's payl oad as a BSON binary type

) |
Notes

®* The _i d is whatever type you choose. As with any MongoDB document, the default will be a BSON object id.
® Thefil es_id is a foreign key containing the _i d field for the relevant f i | es collection entry

Indexes

GridFS implementations should create a unique, compound index in the chunks collection for fi | es_i d and n. Here's how you'd do that from

the shell:

db. fs. chunks. ensurel ndex({files_id:1, n:1}, {unique: true});

This way, a chunk can be retrieved efficiently using it's f i | es_i d and n values. Note that GridFS implementations should use findOne
operations to get chunks individually, and should not leave open a cursor to query for all chunks. So to get the first chunk, we could do:

db. fs.chunks.findOne({files_id: nyFilelD, n: 0});

Implementing Authentication in a Driver

The current version of Mongo supports only very basic authentication. One authenticates a username and password in the context of a particular
database. Once authenticated, the user has full read and write access to the database in question.

The admi n database is special. In addition to several commands that are administrative being possible only on admi n, authentication on admi n
gives one read and write access to all databases on the server. Effectively, adnmi n access means root access to the db.

Note on a single socket we may authenticate for any number of databases, and as different users. This authentication persists for the life of the
database connection (barring a | ogout command).

The Authentication Process

Authentication is a two step process. First the driver runs a get nonce command to get a nonce for use in the subsequent authentication. We
can view a sample get nonce invocation from dbshel | :

> db. $cnd. fi ndOne({get nonce: 1})
{ "nonce":"7268c504683936el" , "ok":1

The nonce returned is a hex String.

The next step is to run an aut hent i cat e command for the database on which to authenticate. The authenticate command has the form:

{ authenticate : 1, user : username, nonce : nonce, key : digest }

® username is a username in the database's system.users collection;

® nonce is the nonce returned from a previous getnonce command;

® digest is the hex encoding of a MD5 message digest which is the MD5 hash of the concatenation of (nonce, username, password_digest
), where password_digest is the user's password value in the pwd field of the associated user object in the database's system.users
collection. pwd is the hex encoding of MD5(username + ":mongo:" + password_text).

Authenticate will return an object containing

~
o
>~
=

-

when successful.
Details of why an authentication command failed may be found in the Mongo server's log files.

The following code from the Mongo Javascript driver provides an example implementation:

DB. pr ot ot ype. addUser = function(username , pass){
var ¢ = this.getCollection("systemusers");

var u = c.findOne({ user : usernane }) || { user : usernane };
u.pwd = hex_nd5(usernanme + ":nongo:" + pass);
print(tojson(u));

c.save(u);

}

DB. prot ot ype. auth = function(username , pass){
var n = this.runCommand({ getnonce : 11});

var a = this.runConmmand(

{
aut henticate : 1 ,
user : usernane ,
nonce : n.nonce ,
key : hex_md5(n.nonce + usernanme + hex_nd5(username + ":nobngo:" + pass))
}
)s
return a. ok;
}
Logout

Drivers may optionally implement the logout command which deauthorizes usage for the specified database for this connection. Note other
databases may still be authorized.

Alternatively, close the socket to deauthorize.

> db. $cnd. fi ndOne({l ogout : 1})

"ok" : 1.0

—~

Replica Pairs and Authentication

For drivers that support replica pairs, extra care with replication is required.

When switching from one server in a pair to another (on a failover situation), you must reauthenticate. Clients will likely want to cache
authentication from the user so that the client can reauthenticate with the new server when appropriate.

Be careful also with operations such as Logout - if you log out from only half a pair, that could be an issue.
Authenticating with a server in slave mode is allowed.
See Also

® Security and Authentication

Notes on Pooling for Mongo Drivers

Note that with the db write operations can be sent asynchronously or synchronously (the latter indicating a getlasterror request after the write).

When asynchronous, one must be careful to continue using the same connection (socket). This ensures that the next operation will not begin until
after the write completes.

Pooling and Authentication

An individual socket connection to the database has associated authentication state. Thus, if you pool connections, you probably want a separate
pool for each authentication case (db + username).

Pseudo-code

The following pseudo-code illustrates our recommended approach to implementing connection pooling in a driver's connection class. This handles
authentication, grouping operations from a single "request” onto the same socket, and a couple of other gotchas:

cl ass Connection
init(pool_size, addresses, auto_start_requests):
this. pool _size = pool _si ze

this. addresses = addresses
this.auto_start_requests = auto_start_requests
this.thread_map = {}

this.locks = Lock[pool _si ze]

this.sockets = Socket[pool _size]
this.socket_auth = String[pool _size][]
this.auth = {}

this.find_master()

find_master():
for address in this.addresses
if address.is_naster():
this. master = address

pi ck_and_acqui re_socket () :
choi ces = random pernutation of [0, ..., this.pool_size - 1]

choi ces. sort (order: ascendi ng
val ue: size of preimage of choice under this.thread_map)

for choice in choices
if this.locks[choice].non_bl ocking_acquire():
return choice

sock = choi ces[0]
thi s. 1 ocks[sock]. bl ocking_acquire()

! return sock

get _socket ()

if this.thread_nmap[current_thread] >= 0:
sock_nunber = this.thread_map[current_thread]
this. | ocks[sock_nunber]. bl ocki ng_acquire()

el se
sock_nunber = this.pick_and_| ock_socket ()
if this.auto_start_requests or current_thread in this.thread_nmap

this.thread_map[current _thread] = sock_nunber

if not this.sockets[sock_nunber]:
thi s. socket s[sock_nunber] = Socket(this. master)

return sock_nunber

send_nessage_wi t hout _r esponse(nessage)
sock_nunber = this.get_socket ()
this.check_auth()
t hi s. socket s[sock_nunber] . send(message)
this.l ocks[sock_nunber].rel ease()

send_nessage_wW t h_r esponse(nmessage)
sock_nunber = this.get_socket ()
this. check_aut h()
t hi s. socket s[sock_nunber] . send(nessage)
result = this.sockets[sock_nunber].receive()
this.locks[sock_nunber].rel ease()
return result

start_request is only needed if auto_start_requests is Fal se
start_request ()
this.thread_map[current _thread] = -1

end_request ():

delete this.thread_map[current_thread]

aut henti cat e(dat abase, usernane, password):
TODO shoul d probably make sure that these credentials are valid,
otherwi se errors are going to be delayed until first op.
this. aut h[dat abase] = (usernane, password)

| ogout (dat abase):
del ete this.auth[database]

check_aut h(sock_nunber):

for db in this.socket_auth[sock_nunber]:

if db not in this.auth.keys():

thi s. socket s[sock_nunber]. send(| ogout _nmessage)
thi s. socket _aut h[sock_nunber]. renove(db)

for db in this.auth.keys():

if db not in this.socket_auth[sock_nunber]:
t hi s. socket s[sock_nunber]. send(aut henti cat e_nessage)
t hi s. socket _aut h[sock_nunber] . append(db)

sonewhere we need to do error checking -

if you get not naster then everything

in this.sockets gets closed and set to null and we call find_master() again.

we also need to reset the socket_auth information - nothing is authorized yet
on the new master.

See Also

® The Driver and Integration Center for information about the latest drivers
® The [top page] for this section

®* The main Database Internals page

® The starting point for all Home

Driver and Integration Center

Connecting Drivers to Replica Sets

Ideally a MongoDB driver can connect to a cluster of servers which represent a replica set, and automatically find the right set member with which
to communicate. Failover should be automatic too. The general steps are:

1. The user, when opening the connection, specifies host[:port] for one or more members of the set. Not all members need be specified --
in fact the exact members of the set might change over time. This list for the connect call is the seed list.
2. The driver then connects to all servers on the seed list, perhaps in parallel to minimize connect time. Send an ismaster command to each
server.
3. When the server is in replSet mode, it will return a hosts field with all members of the set that are potentially eligible to serve data. The
client should cache this information. Ideally this refreshes too, as the set's config could change over time.
4. Choose a server with which to communicate.
a. If ismaster == true, that server is primary for the set. This server can be used for writes and immediately consistent reads.
b. If secondary == true, that server is not primary, but is available for eventually consistent reads. In this case, you can use the
primary field to see which server the master should be.
5. If an error occurs with the current connection, find the new primary and resume use there.

For example, if we run the ismaster command on a non-primary server, we might get something like:

i > db. runCommand("i smaster") H
o i
i "Ismaster” : fal se, i
"secondary" : true,
: "hosts" : [1
"nyl. acne. cont,
"ny2. acne. cont',
"sf 1. acme. cont
i I i
: "passives" : [i
i "ny3. acne. cont', H
: "sf 3. acne. cont’ :
; I i
i "arbiters" : [i
"sf2.acne. cont',
|] |
: “primary" : "ny2.acne.conf, :
"ok" : true

There are three servers with priority > 0 (ny1, ny2, and sfl), two passive servers (ny3 and sf3), and an arbiter (sf2). The primary should be ny2,
but the driver should call ismaster on that server before it assumes it is.

Error Handling in Mongo Drivers

If an error occurs on a query (or getMore operation), Mongo returns an error object instead of user data.

The error object has a first field guaranteed to have the reserved key $er r . For example:

{ { $err : "some error nessage" }

The $er r value can be of any type but is usually a string.

Drivers typically check for this return code explicitly and take action rather than returning the object to the user. The query results flags include a
set bit when $err is returned.

/* db response format

Query or GetMre: // see struct QueryResult
int resultFl ags;

int64 cursorl D,

int startingFrom

int nReturned;

list of marshalled JSObjects;

struct QueryResult : public MsgData {
enum {
Resul t Fl ag_CursorNot Found = 1, /* returned, with zero results, when getMre is called but the
cursor idis not valid at the server. */
Resul t Fl ag_ErrSet = 2 /* { $err : ... } is being returned */
}

See Also

® The Driver and Integration Center for information about the latest drivers
® The [top page] for this section

®* The main Database Internals page

® The starting point for all Home

Developer Zone

® Tutorial
® Shell
® Manual
® Databases
Collections
Indexes
Data Types and Conventions
GridFS
Inserting
Updating
Querying
Removing
® Optimization
® Developer FAQ
® Cookbook

If you have a comment or question about anything, please contact us through IRC (freenode.net#mongodb) or the mailing list, rather than leaving
a comment at the bottom of a page. It is easier for us to respond to you through those channels.

Introduction

MongoDB is a collection-oriented, schema-free document database.

By collection-oriented, we mean that data is grouped into sets that are called ‘collections'. Each collection has a unique name in the database,
and can contain an unlimited number of documents. Collections are analogous to tables in a RDBMS, except that they don't have any defined
schema.

By schema-free, we mean that the database doesn't need to know anything about the structure of the documents that you store in a collection. In
fact, you can store documents with different structure in the same collection if you so choose.

By document, we mean that we store data that is a structured collection of key-value pairs, where keys are strings, and values are any of a rich
set of data types, including arrays and documents. We call this data format "BSON" for "Binary Serialized dOcument Notation."

MongoDB Operational Overview

http://cookbook.mongodb.org
http://groups.google.com/group/mongodb-user/

MongoDB is a server process that runs on Linux, Windows and OS X. It can be run both as a 32 or 64-bit application. We recommend running in
64-bit mode, since Mongo is limited to a total data size of about 2GB for all databases in 32-bit mode.

The MongoDB process listens on port 27017 by default (note that this can be set at start time - please see Command Line Parameters for more
information).

Clients connect to the MongoDB process, optionally authenticate themselves if security is turned on, and perform a sequence of actions, such as
inserts, queries and updates.

MongoDB stores its data in files (default location is / dat a/ db/), and uses memory mapped files for data management for efficiency.
MongoDB can also be configured for automatic data replication , as well as automatic fail-over .

For more information on MongoDB administration, please see Mongo Administration Guide.

MongoDB Functionality

As a developer, MongoDB drivers offer a rich range of operations:

® Queries: Search for documents based on either query objects or SQL-like "where predicates". Queries can be sorted, have limited return
sizes, can skip parts of the return document set, and can also return partial documents.

® Inserts and Updates : Insert new documents, update existing documents.

® Index Management : Create indexes on one or more keys in a document, including substructure, deleted indexes, etc

® General commands : Any MongoDB operation can be managed via DB Commands over the regular socket.

cookbook.mongodb.org

r. Redirection Notice
This page should redirect to http://cookbook.mongodb.org.

Tutorial

Getting the Database

Getting A Database Connection
Inserting Data into A Collection
Accessing Data From a Query
Specifying What the Query Returns
findOne() - Syntactic Sugar
Limiting the Result Setvia l i m t ()
More Help

What Next

Getting the Database

First, run through the Quickstart guide for your platform to get up and running.

Getting A Database Connection

Let's now try manipulating the database with the database shell . (We could perform similar operations from any programming language using an
appropriate driver. The shell is convenient for interactive and administrative use.)

Start the MongoDB JavaScript shell with:

i $ bin/nongo

i MongoDB shel | version: <whatever> H
pourl: test :
connecting to: test
i type "help" for help

http://cookbook.mongodb.org

"connecting to: "tells you the name of the database the shell is using. To switch databases, type:

> use nydb
switched to db nydb

To see a list of handy commands, type hel p.

-ﬂ Tip for Developers with Experience in Other Databases
You may notice, in the examples below, that we never create a database or collection. MongoDB does not require that you do
s0. As soon as you insert something, MongoDB creates the underlying collection and database. If you query a collection that
does not exist, MongoDB treats it as an empty collection.

Switching to a database with the use command won't immediately create the database - the database is created lazily the first
time data is inserted. This means that if you use a database for the first time it won't show up in the list provided by "show dbs"
until data is inserted.

Inserting Data into A Collection
Let's create a test collection and insert some data into it. We will create two objects, j and t, and then save them in the collection things.

In the following examples, '>' indicates commands typed at the shell prompt.

>

{

>

{ "x*: 3 }

> db. t hi ngs. save(j);
> db. t hi ngs. save(t);

> db.things.find();

{ "_id" : Opjectld("4c2209f9f 3924d31102bd84a"), "name" : "nongo" }
{ "_id" : Opjectld("4c2209f ef 3924d31102bd84b"), "x" : 3}

>

A few things to note :

* We did not predefine the collection. The database creates it automatically on the first insert.

® The documents we store can have any "structure” - in fact in this example, the documents have no common data elements at all. In
practice, one usually stores documents of the same structure within collections. However, this flexibility means that schema migration and
augmentation are very easy in practice - rarely will you need to write scripts which perform "alter table" type operations.

® Upon being inserted into the database, objects are assigned an object ID (if they do not already have one) in the field _i d.

® When you run the above example, your ObjectID values will be different.

Let's add some more records to this collection:

i > for (var i =1; i <= 20; i++) db.things.save({x : 4, j ! i});
¢ > db.things.find(); H
P "_id" : Objectld("4c2209f 9f 3924d31102bd84a"), "nanme" : "mongo" } §
{o{ "_id" : Objectld("4c2209f ef 3924d31102bd84b"), "x" : 3}

Po{ "_id" : Objectld("4c220a42f3924d31102bd856"), "x" : 4, "j" : 1} 5
[{ "_id" : Objectld("4c220a42f3924d31102bd857"), "x" : 4, "j" : 2} i
i { "_id" : Objectld("4c220a42f 3924d31102bd858"), "x" : 4, "j" : 3} i
P "id" : Onjectld("4c220a42f3924d31102bd859"), "x" : 4, "j" : 4} !
{{ " _id" : Objectld("4c220a42f3924d31102bd85a"), "x" : 4, "j" : 5} i
P " id" : Onjectld("4c220a42f3924d31102bd85b"), "Xx" : 4, "j" : 6 } i
©o{ " id" : Onjectld("4c220a42f3924d31102bd85¢c"), "x" 1 4, "j" : 7} !
[{ "_id" : objectld("4c220a42f3924d31102bd85d"), "x" : 4, "j" : 8} §
P "_id" : onjectld("4c220a42f 3924d31102bd85e"), "x" : 4, "j" 1 9} ;
©{ "_id" : Objectld("4c220a42f 3924d31102bd85f"), "x" : 4, "j" : 10 } :
["_id" : Objectld("4c220a42f3924d31102bd860"), "x" : 4, "] 11} §
Po{ "_id" : Opjectld("4c220a42f3924d31102bd861"), "X : 4, "] 12 } g
©{ "_id" : Objectld("4c220a42f3924d31102bd862"), "x" : 4, "j" : 13} :
[{ "_id" : Onjectld("4c220a42f3924d31102bd863"), "x" : 4, "j" : 14 } §
©o{ "id" : Objectld("4c220a42f3924d31102bd864"), "x" : 4, "j" : 15} !
[" id" : bjectld("4c220a42f 3924d31102bd865"), “x" : 4, "j" : 16 } i
©o{ "id" : Onbjectld("4c220a42f3924d31102bd866"), "x" : 4, "j" : 17 } i
Po{ v id" : Onjectld("4c220a42f 3924d31102bd867"), "x" : 4, "j" : 18} :
i has nore

Note that not all documents were shown - the shell limits the number to 20 when automatically iterating a cursor. Since we already had 2
documents in the collection, we only see the first 18 of the newly-inserted documents.

If we want to return the next set of results, there's the i t shortcut. Continuing from the code above:

{ "_id" : Oojectld("4c220a42f3924d31102bd866"), "x" : 4, "j" : 17 }
{ "_id" : ojectld("4c220a42f3924d31102bd867"), "x" : 4, "j" : 18 }
has nore

{ "_id" : Onjectld("4c220a42f3924d31102bd868"), "x" : 4, "j" : 19 }

{ " id" : Objectld("4c220a42f3924d31102bd869"), "x" : 4, "j" : 20 }

Technically, find() returns a cursor object. But in the cases above, we haven't assigned that cursor to a variable. So, the shell automatically
iterates over the cursor, giving us an initial result set, and allowing us to continue iterating with the it command.

But we can also work with the cursor directly; just how that's done is discussed in the next section.

Accessing Data From a Query

Before we discuss queries in any depth, lets talk about how to work with the results of a query - a cursor object. We'll use the simple fi nd()
query method, which returns everything in a collection, and talk about how to create specific queries later on.

In order to see all the elements in the collection when using the mongo shell, we need to explicitly use the cursor returned from the f i nd()
operation.

Lets repeat the same query, but this time use the cursor that f i nd() returns, and iterate over it in a while loop :

§ > var cursor = db.things.find(); i
i > while (cursor.hasNext()) printjson(cursor.next()); :
i { "_id" : Onjectld("4c2209f9f3924d31102bd84a"), "nane" : "nongo" } i
i { "_id" : Cbjectld("4c2209f ef 3924d31102bd84b"), "x" 31} i
o "_id" : Onjectld("4c220a42f3924d31102bd856"), "x 4, "j" 1} :
i { "_id" : Opjectld("4c220a42f3924d31102bd857"), "x 4, "j" 2} i
[{ "_id" : Objectld("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3} i
o { t_id" ¢ Objectld("4c220a42f 3924d31102bd859"), "x" 4, "j" 4} :
i { "_id" : Objectld("4c220a42f3924d31102bd85a"), "x" 4, "j" : 51} i
i { "_id" : Objectld("4c220a42f3924d31102bd85b"), "x" 4, "j" : 6} i
¢ "_id" : Objectld("4c220a42f3924d31102bd85c"), "x" 4, i 7} :
§ { "_id" : bjectld("4c220a42f3924d31102bd85d"), "x" 4, "j" : 8} i
§ { "_id" : Onjectld("4c220a42f3924d31102bd85e"), "x" 4, "j" 9} §
P "_id" : Onjectld("4c220a42f3924d31102bd85F "), "x 4, "j" : 10} :
i { "_id" : Objectld("4c220a42f3924d31102bd860"), "x" 4, "j" 11 } i
i { "_id" : Objectld("4c220a42f3924d31102bd861"), "x" 4, "j" 12 } i
o "_id" : Objectld("4c220a42f3924d31102bd862"), "x" 4, "j" 13 } :
i { "_id" : Objectld("4c220a42f3924d31102bd863"), "x" 4, "j" 14 } i
i "_id" : Objectld("4c220a42f3924d31102bd864"), "x" 4, "j" 15 } :
i { "_id" : Objectld("4c220a42f3924d31102bd865"), "x" 4, "j" 16 } i
i { "_id" : Opjectld("4c220a42f3924d31102bd866"), "x" 4, "j" 17 } i
of{ "_id" : ojectld("4c220a42f3924d31102bd867"), "x" 4, "j" 18 } :
i { "_id" : Objectld("4c220a42f3924d31102bd868"), "x" 4, "j" 19 } i
§ { "_id" : Onjectld("4c220a42f3924d31102bd869"), "x 4, "j" 20 } i

The above example shows cursor-style iteration. The hasNext () function tells if there are any more documents to return, and the next ()
function returns the next document. We also used the built-in t oj son() method to render the document in a pretty JSON-style format.

When working in the JavaScript shell, we can also use the functional features of the language, and just call f or Each on the cursor. Repeating
the example above, but using f or Each() directly on the cursor rather than the while loop:

i > db.things.find().forEach(printjson); i
P v_id" : Objectld("4c2209f 9f 3924d31102bd84a"), "nanme" : "nongo" } :
P " _id" : Objectld("4c2209f ef 3924d31102bd84b"), "x" : 3}

{o{ "_id" : Objectld("4c220a42f3924d31102bd856"), "x" : 4, "j" : 1} §
Do v_id" : Onjectld("4c220a42f3924d31102bd857"), "x" : 4, "j" : 2} :
[{ "_id" : Objectld("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3} i
i { "_id" : Objectld("4c220a42f 3924d31102bd859"), "x" : 4, "j" : 4} i
Po{ "id" : Onjectld("4c220a42f3924d31102bd85a"), "x" : 4, "j" : 5} :
{{ " id" : Objectld("4c220a42f3924d31102bd85b"), "x" : 4, "j" : 6} i
P " id" : Onjectld("4c220a42f3924d31102bd85¢c"), "x" 1 4, "j" : 7} §
©o{ " id" : Onjectld("4c220a42f3924d31102bd85d"), "x" : 4, "j" : 8} !
[{ "_id" : onjectld("4c220a42f3924d31102bd85e"), "x" : 4, "j" : 9} §
{{ "_id" : Objectld("4c220a42f3924d31102bd85f"), “x" : 4, "j" : 10 } ;
fo{ "id" : Objectld("4c220a42f3924d31102bd860"), "x" : 4, "j" : 11} :
["_id" : Objectld("4c220a42f3924d31102bd861"), "x" : 4, "j" : 12} §
P { "_id" : Onjectld("4c220a42f 3924d31102bd862"), "x" : 4, "j" : 13 } g
©{ "_id" : Objectld("4c220a42f3924d31102bd863"), "x" : 4, "j" : 14} !
[{ "_id" : Opjectld("4c220a42f3924d31102bd864"), "x" : 4, "j" : 15} §
©o{ "_id" : Objectld("4c220a42f3924d31102bd865"), "x" : 4, "j" : 16 } !
[" id" : Objectld("4c220a42f 3924d31102bd866"), "x" : 4, "j" : 17 } i
©o{ "id" : Onjectld("4c220a42f3924d31102bd867"), "x" : 4, "j" : 18} §
Do " id" : Onjectld("4c220a42f 3924d31102bd868"), "x" : 4, "j" : 19} :
P "_id" : Objectld("4c220a42f3924d31102bd869"), "x" : 4, "j" : 20} |

In the case of a f or Each() we must define a function that is called for each document in the cursor.
In the mongo shell, you can also treat cursors like an array :
> var cursor = db.things.find();

> printjson(cursor[4]);
©o{ "_id" : bjectld("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3}

When using a cursor this way, note that all values up to the highest accessed (cursor[4] above) are loaded into RAM at the same time. This is
inappropriate for large result sets, as you will run out of memory. Cursors should be used as an iterator with any query which returns a large

number of elements.
In addition to array-style access to a cursor, you may also convert the cursor to a true array:
> var arr = db.things.find().toArray();

> arr[5];
Po{ v_id" : Onjectld("4c220a42f3924d31102bd859"), "x" : 4, "j" : 4} |

Please note that these array features are specific to mongo - The Interactive Shell, and not offered by all drivers.

MongoDB cursors are not snapshots - operations performed by you or other users on the collection being queried between the first and last call to
next () of your cursor may or may not be returned by the cursor. Use explicit locking to perform a snapshotted query.

Specifying What the Query Returns

Now that we know how to work with the cursor objects that are returned from queries, lets now focus on how to tailor queries to return specific
things.

In general, the way to do this is to create "query documents", which are documents that indicate the pattern of keys and values that are to be
matched.

These are easier to demonstrate than explain. In the following examples, we'll give example SQL queries, and demonstrate how to represent the

same query using MongoDB via the mongo shell. This way of specifying queries is fundamental to MongoDB, so you'll find the same general
facility in any driver or language.

SELECT * FROM things WHERE name="mongo"

{ "_id" : Objectld("4c2209f9f 3924d31102bd84a"), "name" : "mongo" }

> db. t hi ngs. fi nd({nane: "nongo"}).forEach(printjson);

SELECT * FROM things WHERE x=4

{ > db.things.find({x:4}).forEach(printjson); §
L { "_id" : Objectld("4c220a42f 3924d31102bd856"), "x" : 4, "j" : 1} g
Po{ " id : Opjectld("4c220a42f 3924d31102bd857"), "x" : 4, "j" : 2} :
{{ "_id" : Objectld("4c220a42f3924d31102bd858"), "x" : 4, "j" : 3} §
P "_id" : Onjectld("4c220a42f 3924d31102bd859"), "X : 4, "] 4} g
fo{ "id" : opjectld("4c220a42f3924d31102bd85a"), "x" : 4, "j 5} :
{{ "_id" : Oojectld("4c220a42f3924d31102bd85b"), "x" : 4, "j 6} §
D { "_id" : Opjectld("4c220a42f 3924d31102bd85¢"), "x" 1 4, "j" : 7} ;
Po{ ot id" : opjectld("4c220a42f 3924d31102bd85d"), "x" : 4, "j" : 8 } ;
i { "_id" : Objectld("4c220a42f3924d31102bd85e"), "x" : 4, "j" : 9} §
Po{ " id" : opjectld("4c220a42f 3924d31102bd85F "), "x" : 4, "j" : 10 } E
[" id" : bjectld("4c220a42f3924d31102bd860"), “x" : 4, "j" : 11 } i
P "_id" : Onjectld("4c220a42f3924d31102bd861"), "x" : 4, "j" 1 12} §
Po{ " id" : Opjectld("4c220a42f 3924d31102bd862"), "x" : 4, "j" : 13} i
P "id" : Objectld("4c220a42f3924d31102bd863"), "x" : 4, "] 14 } i
{{ "_id" : onjectld("4c220a42f 3924d31102bd864"), "x" : 4, "] 15 } §
Po{ " id" : opjectld("4c220a42f 3924d31102bd865"), "x" : 4, "j 16 } i
P{ " id" : opjectld("4c220a42f 3924d31102bd866"), "x" : 4, "j 17 } §
P "_id" : Onjectld("4c220a42f3924d31102bd867"), "x" : 4, "j" : 18 } ;
Po{ " id" : opjectld("4c220a42f 3924d31102bd868"), "x" : 4, "j" : 19 } i
["_id" : Objectld("4c220a42f3924d31102bd869"), "x" : 4, "j" : 20 } §

The query expression is an document itself. A query document of the form { a:A, b:B, ... } means "where a==A and b==B and ...". More
information on query capabilities may be found in the Queries and Cursors section of the Mongo Developers' Guide.

MongoDB also lets you return "partial documents" - documents that have only a subset of the elements of the document stored in the database.
To do this, you add a second argument to the f i nd() query, supplying a document that lists the elements to be returned.

To illustrate, lets repeat the last example fi nd({x: 4}) with an additional argument that limits the returned document to just the "j" elements:

SELECT j FROM things WHERE x=4

i > db.things.find({x:4}, {j:true}).forEach(printjson); i
i { "_id" : Opjectld("4c220a42f3924d31102bd856"), “j" : 1} i
o "_id" : Objectld("4c220a42f3924d31102bd857"), “j" : 2} :
i { "_id" : Objectld("4c220a42f3924d31102bd858"), "j" 31} i
i { "_id" : bjectld("4c220a42f3924d31102bd859"), "j" 4} i
o "_id" : Objectld("4c220a42f3924d31102bd85a"), "j" 51} :
§ { "_id" : Onjectld("4c220a42f3924d31102bd85b"), "j" 6 } §
§ { "_id" : Opjectld("4c220a42f3924d31102bd85c"), "j" 7} i
o "_id" : Objectld("4c220a42f3924d31102bd85d"), "j" 8} :
i { "_id" : Objectld("4c220a42f3924d31102bd85e"), "j" 91} i
P "_id" : Objectld("4c220a42f3924d31102bd85f"), "j" 10 } ;
i { "_id" : Objectld("4c220a42f3924d31102bd860"), "j" 11 } i
i { "_id" : Objectld("4c220a42f3924d31102bd861"), "j" 12 } i
o{ "_id" : ojectld("4c220a42f3924d31102bd862"), "j" 13} H
i { "_id" : bjectld("4c220a42f3924d31102bd863"), "j" 14 } i
i { "_id" : bjectld("4c220a42f3924d31102bd864"), "j" 15} i
o "id" : Oojectld("4c220a42f3924d31102bd865"), "j" 16 } H
i { "_id" : Opjectld("4c220a42f3924d31102bd866"), "j" 17 } §
§ { "_id" : Opjectld("4c220a42f3924d31102bd867"), "j" 18 } i
o t_id" ¢ Objectld("4c220a42f 3924d31102bd868"), "j" : 19 } H
i { "_id" : Objectld("4c220a42f3924d31102bd869"), "j" : 20 } i

Note that the "_id" field is always returned.

findOne() - Syntactic Sugar

For convenience, the mongo shell (and other drivers) lets you avoid the programming overhead of dealing with the cursor, and just lets you
retrieve one document via the f i ndOne() function. fi ndOne() takes all the same parameters of the fi nd() function, but instead of returning a
cursor, it will return either the first document returned from the database, or nul | if no document is found that matches the specified query.

As an example, lets retrieve the one document with name==' nongo' . There are many ways to do it, including just calling next () on the cursor
(after checking for nul | , of course), or treating the cursor as an array and accessing the Oth element.

However, the f i ndOne() method is both convenient and efficient:

> printjson(db.things.findOne({nane: "nmongo"}));
{ "_id" : Opjectld("4c2209f9f 3924d31102bd84a"), "name" : "nongo" }

This is more efficient because the client requests a single object from the database, so less work is done by the database and the network. This is
the equivalent of f i nd({nane: "nongo"}).limt(1).

Limiting the Result Setvialim t ()

You may limit the size of a query's result set by specifing a maximum number of results to be returned via the | i m t () method.

This is highly recommended for performance reasons, as it limits the work the database does, and limits the amount of data returned over the
network. For example:

> db.things.find().limt(3);

{{ "_id" : Objectld("4c2209f9f 3924d31102bd84a"), "name” : "nongo” } i

Po{ v_id" : Qojectld("4c2209f ef 3924d31102bd84b"), "x" : 3}

{{ "_id" : Objectld("4c220a42f3924d31102bd856"), "x" : 4, "j" : 1} ;
More Help

In addition to the general "help" command, you can call help on db and db. what ever to see a summary of methods available.

If you are curious about what a function is doing, you can type it without the {{()}}s and the shell will print the source, for example:

> printjson
function (x) {
print(tojson(x));

nongo is a full JavaScript shell, so any JavaScript function, syntax, or class can be used in the shell. In addition, MongoDB defines some of its
own classes and globals (e.g., db). You can see the full API at http://api.mongodb.org/js/.

What Next

After completing this tutorial the next step to learning MongoDB is to dive into the manual for more details.

Manual

This is the MongoDB manual. Except where otherwise noted, all examples are in JavaScript for use with the mongo shell. There is a table
available giving the equivalent syntax for each of the drivers.

® Connections
® Databases

® Commands
Clone Database
fsync Command
Index-Related Commands
Last Error Commands
Windows Service
Viewing and Terminating Current Operation
Validate Command
getLastError

® List of Database Commands

®* Mongo Metadata
® Collections

® Capped Collections

® Using a Large Number of Collections
® Data Types and Conventions

® |nternationalized Strings

® Object IDs

® Database References
® GridFS

® When to use GridFS
® Indexes

® Using Multikeys to Simulate a Large Number of Indexes
Geospatial Indexing
Indexing as a Background Operation
Multikeys
Indexing Advice and FAQ

® Inserting
® Legal Key Names
® Schema Design
® Trees in MongoDB
® Optimization
® Optimizing Object IDs
® Optimizing Storage of Small Objects
® Query Optimizer
® Querying
® Mongo Query Language
Retrieving a Subset of Fields
Advanced Queries
Dot Notation (Reaching into Objects)
Full Text Search in Mongo
min and max Query Specifiers
OR operations in query expressions
Queries and Cursors
® Tailable Cursors
® Server-side Code Execution
® Sorting and Natural Order
® Aggregation
® Removing
® Updating
® Atomic Operations
¢ findandmodify Command

http://api.mongodb.org/js/

® Updating Data in Mongo
®* MapReduce
® Data Processing Manual

Connections

MongoDB is a database server: it runs in the foreground or background and waits for connections from the user. Thus, when you start MongoDB,
you will see something like:

~/'$./ nmongod

#

sone | oggi ng out put
#

Tue Mar 9 11:15:43 waiting for connections on port 27017
Tue Mar 9 11:15:43 web adnin interface |istening on port 28017

It will stop printing output at this point but it hasn't frozen, it is merely waiting for connections on port 27017. Once you connect and start sending
commands, it will continue to log what it's doing. You can use any of the MongoDB drivers or Mongo shell to connect to the database.

You cannot connect to MongoDB by going to http://localhost:27017 in your web browser. The database cannot be accessed via HTTP on port
27017.

Standard Connection String Format

‘1, The uri scheme described on this page is not yet supported by all of the drivers. Refer to a specific driver's documentation to
see how much (if any) of the standard connection uri is supported. All drivers support an alternative method of specifying
connections if this format is not supported.

=}
«Q
o
o
=2
d
=
c
172}
[0}
5
=}
%
o
Q
7]
1)
g
o
0
o
172}
g
.
©
o
g
2
-
Z
=
=0
o
(7]
g
N
o
(]
g
2
N
5
—_
=
o
1]
g
Z
©
[e]
2
2
Z
Z
=
=
=
o
Q
8
Q
o
Q
(7]
2,

®* nmongodb: // is a required prefix to identify that this is a string in the standard connection format.

® user nane: passwor d@are optional. If given, the driver will attempt to login to a database after connecting to a database server.

® host 1 is the only required part of the URI. It identifies a server address to connect to.

® : port Xis optional and defaults to :27017 if not provided.

® / dat abase is the name of the database to login to and thus is only relevant if the user name: passwor d@syntax is used. If not
specified the "admin" database will be used by default.

As many hosts as necessary may be specified (for connecting to replica pairs/sets).

Examples

Connect to a database server running locally on the default port:

Connect to a replica set with three servers running on localhost (on ports 27017, 27018, and 27019):

http://localhost:27017

Connection Pooling

The server will use one thread per TCP connection, therefore it is highly recomended that your application use some sort of connection pooling.
Luckily, most drivers handle this for you behind the scenes. One notable exception is setups where your app spawns a new process for each
request, such as CGl and some configurations of PHP.

Databases

Each MongoDB server can support multiple databases. Each database is independent, and the data for each database is stored separately, for
security and ease of management.

A database consists of one or more collections, the documents (objects) in those collections, and an optional set of security credentials for
controlling access.

® Commands
Clone Database
fsync Command
Index-Related Commands
Last Error Commands
Windows Service
Viewing and Terminating Current Operation
Validate Command
getLastError

® List of Database Commands
® Mongo Metadata

Commands

Introduction

The Mongo database has a concept of a database command. Database commands are ways to ask the database to perform special operations,
or to request information about its current operational status.

Introduction

Privileged Commands

Getting Help Info for a Command
More Command Documentation

® List of Database Commands

A command is sent to the database as a query to a special collection namespace called $cnd. The database will return a single document with
the command results - use f i ndOne() for that if your driver has it.

The general command syntax is:

db. $cnd. fi ndOne({ <commandnane>: <value> [, options] });
db. runCommand({ <commandnane>: <value> [, options] });

> db. runCommand({profile:-1});
{

"was" : 0.0,
"ok" : 1.0

For many db commands, some drivers implement wrapper methods are implemented to make usage easier. For example, the mongo shell offers

> print(db.getProfilingLevel)

function () {
var res = this._dbCommand({profile:-1});
return res ? res.was : null;

}

> print(db._dbComand)
function (cmdObj) {
return this.$cnd. findOne(cndObj);

Many commands have helper functions - see your driver's documentation for more information.

Privileged Commands

Certain operations are for the database administrator only. These privileged operations may only be performed on the special database named
admi n.

> use adm n;
> db. runCommand(" shut down"); // shut down the database

> db. _adm nComrand(" shut down");

(For this particular command there is also a shell helper function, db.shutdownServer.)

Getting Help Info for a Command

Use commandHelp in shell to get help info for a command:

i > db. commandHel p(" dat asi ze") :
help for: datasize exanple: { datasize:"blog.posts", keyPattern:{x:1}, min:{x:10}, nmax:{x:55} }
i NOTE: This command may take awhile to run H

(Help is not yet available for some commands.)

More Command Documentation

Clone Database

fsync Command

Index-Related Commands

Last Error Commands

Windows Service

Viewing and Terminating Current Operation
Validate Command

getLastError

List of Database Commands

® Commands Quick Reference Card

Clone Database

MongoDB includes commands for copying a database from one server to another.

http://www.10gen.com/reference

/'l copy an entire database from one nanme on one server to another

/1 nanme on another server. omt <fromhostnane> to copy from one

// nane to another on the sane server.

db. copyDat abase(<f rom dbnane>, <to_dbnane>, <from hostnane>);

/1 if you nust authenticate with the source database

db. copyDat abase(<f rom dbname>, <to_dbnanme>, <from hostnane>, <usernanme>, <password>);
/1 in "command" syntax (runnable from any driver):

db. runCommand({ copydb : 1, fromdb : ..., todb : ..., fromhost : ... });
/1 command syntax for authenticating with the source:
db. runCommand({ copydb : 1, fronmhost: ..., frondb: ..., todb: ..., username: ..., nonce: n.nonce,

key: <hash of usernane, nonce, password >});

n = db. runCommand({ copydbgetnonce : 1, fromhost: ... });
/1 clone the current database (inplied by 'db') from another host
{ var fromhost = ...;
print("about to get a copy of database " + db + " from" + fronmhost);
i db. cl oneDat abase(fronhost); :
/1 in "conmmand" syntax (runnable from any driver):
db. runConmand({ clone : fronhost });

fsync Command

¢ fsync Command
® Lock, Snapshot and Unlock
® Caveats
® Snapshotting Slaves
® See Also

', Version 1.3.1 and higher

L]

The fsync command allows us to flush all pending writes to datafiles. More importantly, it also provides a lock option that makes backups easier.
fsync Command

The fsync command forces the database to flush all datafiles:

> use adnmin
> db. runComand({fsync: 1});

To fsync on a regular basis, use the --syncdelay command line option (see mongod --help output). By default a full flush is forced every 60
seconds.

Lock, Snapshot and Unlock

The fsync command supports a lock option that allows one to safely snapshot the database's datafiles. While locked, all write operations are
blocked, although read operations are still allowed. After snapshotting, use the unlock command to unlock the database and allow locks again.
Example:

> use adnmin
switched to db adnin
> db. runCommand({fsync: 1, | ock: 1})
{
"info" : "now | ocked against wites",
"ok" : 1
}
> db. current Op()
{
"inprog" : [
1,
"fsyncLock" : 1
}

>// do some work here: for exanple, snapshot datafiles...
>// runProgran("/path/to/ny-filesystem snapshotting-script.sh")

> db. $cnd. sys. unl ock. fi ndOne();

{ "ok" : 1, "info" : "unlock requested" }

> [/ unlock is nowrequested. it nmay take a nonent to take effect.
> db. current Op()

{ "inprog” : []}

Caveats

While the database can be read while locked for snapshotting, if a write is attempted, this will block readers due to the database's use of a
read/write lock. This should be addressed in the future : http://jira.mongodb.org/browse/SERVER-1423

Snapshotting Slaves

The above procedure works on replica slaves. The slave will not apply operations while locked. However, see the above caveats section.

See Also

® Backups
Index-Related Commands

Create Index

ensur el ndex() is the helper function for this. Its implementation creates an index by adding its info to the syst em i ndexes table.

> db. nyCol | ecti on. ensur el ndex(<keypattern>);
i > // sane as: 5

> db. systemindexes.insert({ nane: "nane", ns: "nanespaceTol ndex",

key: <keypattern> });

Note: Once you've inserted the index, all subsequent document inserts for the given collection will be indexed, as will all pre-existing documents
in the collection. If you have a large collection, this can take a significant amount of time and will block other operations. However, beginning with
version 1.3.2, you can specify that indexing happen in the background. See the background indexing docs for details.

You can query system.indexes to see all indexes for a table f oo:

In some drivers, ensur el ndex() remembers if it has recently been called, and foregoes the insert operation in that case. Even if this is not the
case, ensur el ndex() is a cheap operation, so it may be invoked often to ensure that an index exists.

Dropping an Index

From the shell:

http://jira.mongodb.org/browse/SERVER-1423

db. mycol | ecti on. dropl ndex(<nane_or _pattern>)
db. mycol | ecti on. dropl ndexes()

I/ exanpl e:
t.droplndex({ nane : 11});

{ del etel ndexes: <collection_nane>, index: <index_name> }
I/l "*" for <index_name> will drop all indexes except _id

Index Namespace

Each index has a namespace of its own for the btree buckets. The namespace is:
i <col | ecti onnamespace>. $<i ndexname>

This is an internal namespace that cannot be queried directly.

Last Error Commands

Since MongoDB doesn't wait for a response by default when writing to the database, a couple commands exist for ensuring that these operations
have succeeded. These commands can be invoked automatically with many of the drivers when saving and updating in "safe" mode. But what's
really happening is that a special command called get | ast err or is being invoked. Here, we explain how this works.

® getlasterror
® Drivers
® Use Cases
® Mongo Shell Behavior
® fsync option
® With Replication
® getPrevError

getlasterror

The get | ast er r or command checks for an error on the last database operation for this connection. Since it's a command, there are a few ways
to invoke it:

i > db. $cnd. findOne({getlasterror:1})

v
o
=
-
c
>
=
o
=
Q
D
LY
©
[}
2
®
=
-
o
=
-

For more about commands, see the command documentation.
Drivers

The drivers support get | ast err or in the command form and many also offer a "safe" mode for operations. If you're using Python, for example,
you automatically call getlasterror on insert as follows:

coll ection.save({"nanme": "MngoDB"}, safe=True)

If the save doesn't succeed, an exception will be raised. For more on "safe" mode, see your driver's documentation.

Use Cases

getlasterror is primarily useful for write operations (although it is set after a command or query too). Write operations by default do not have a
return code: this saves the client from waiting for client/server turnarounds during write operations. One can always call getLastError if one wants
a return code.

If you're writing data to MongoDB on multiple connections, then it can sometimes be important to call get | ast er r or on one connection to be
certain that the data has been committed to the database. For instance, if you're writing to connection #1 and want those writes to be reflected in
reads from connection #2, you can assure this by calling get | ast err or after writing to connection #1.

Note: The special mongo wire protocol killCursors operation does not support getlasterror. (This is really only of significant to driver developers .)

Mongo Shell Behavior

The database shell performs ar eset Error () before each read/eval/print loop command evaluation - and automatically prints the error, if one
occurred, after each evaluation. Thus, after an error, at the shell prompt db. get Last Er r or () will return null. However, if called before returning
to the prompt, the result is as one would expect:

> try { db.foo.findOne() } catch(e) { print("preverr:" + tojson(db.getPrevError())); print("lasterr:"
+ tojson(db.getlLastError()));}

preverr:{"err" : "unauthorized" , "nPrev" : 1, "ok" : 1}

lasterr:"unaut hori zed"

fsync option

Include the fsync option to force the database to fsync all files before returning (v1.3+):

> db. runConmand({getlasterror: 1, fsync:true})
{ "err” : null, "n" : 0, "fsyncFiles" : 2, "ok" : 1}

With Replication
See blocking for replication.
getPrevError

Note: getPrevError may be deprecated in the future.

When performing bulk write operations, r eset Error () and get PrevError () can be an efficient way to check for success of the operation.
For example if we are inserting 1,000 objects in a collection, checking the return code 1,000 times over the network is slow. Instead one might do
something like this:

i db.resetError(); H
¢ for(loop 1000 tinmes...) !
db. f0o. save(sonething...);
{ if(db.getPrevError().err)
print("didn't work!");

Windows Service

On windows mongod.exe has native support for installing and running as a windows service.

Service Related Commands

The service related commands are:

¢ nongod --install !
nmongod --service
! nmongod --renove
{ nongod --reinstall

You may also option pass the following to --install and --reinstall

--servi ceNane {arg}
--serviceUser {arg}
--servi cePassword {arg}

The --install and --remove options install and remove the mongo daemon as a windows service respectively. The --service option starts the
service. --reinstall will attempt to remove the service, and then install it. If the service is not already installed, --reinstall will still work.

Both --remove and --reinstall will stop the service if it is currently running.

To change the name of the service use --serviceName. To make mongo execute as a local or domain user, as opposed to the Local System
account, use --serviceUser and --servicePassword.

Whatever other arguments you pass to mongod.exe on the command line alongside --install are the arguments that the service is configured to
execute mongod.exe with. Take for example the following command line:

nmongod --bind_ip 127.0.0.1 --logpath d:\nongo\l ogs --1ogappend --dbpath d:\nopngo\data --directoryperdb
i --install :

Viewing and Terminating Current Operation

® View Current Operation(s) in Progress
® Terminate (Kill) an Operation in Progress

View Current Operation(s) in Progress

> db. current Op();

> // sane as: db. $cnd. sys.inprog.findOne()

{ inprog: [{ "opid" : 18 , "op" : "query" , "ns" : "nydb.votes" ,
"query" : "{ score : 1.0 }" , "inLock" : 1}

® opid - an incrementing operation number. Use with killOp().
® op - the operation type (query, update, etc.)
® ns - namespace for the operation (database + collection name)
® query - the query spec, if operation is a query
NOTE: currentOp's output format varies from version 1.0 and version 1.1 of MongoDB. The format above is for 1.1 and higher.

You can also do

db. $cnd. sys. i nprog. find()

db. $cnd. sys.inprog.find({ $all : 11})

Terminate (Kill) an Operation in Progress

> db. ki | | Op(1234/ *opi d*/)
> [/ sane as: db. $cnd. sys.killop.findOne({op:1234})

L1l <= vi2 i
> db. kill Op()
i > // sane as: db. $cnd. sys.killop.findOne() :
{"info" : "no op in progress/not |ocked"}
b1l ov>= 1.3 i

Validate Command

Use this command to check that a collection is valid (not corrupt) and to get various statistics.
This command scans the entire collection and its indexes and will be very slow on large datasets.

From the nongo shell:

i > db.foo.validate()

i "ns" : "test.foo" , "result" "

i val i date

i details: 08D03C9C of s: 963c9c

: firstExtent:0: 156800 ns:test.foo

i | ast Extent: 0: 156800 ns:test.foo

| # extents: 1

1 dat asi ze?: 144 nrecords?: 3 | ast Ext ent Si ze: 2816
i paddi ng: 1

i first extent

: I oc: 0: 156800 xnext:null xprev:nul
§ ns:test.foo

§ size: 2816 firstRecord: 0: 1568b0 | ast Record: 0: 156930
: 3 objects found, nobj:3

| 192 bytes data w headers

| 144 bytes data wout/headers

i del et edLi st: 0000000100000000000

| deleted: n: 1 size: 2448

i nl ndexes: 1

i test.foo.$x_1 keys:3

i ", "ok"™ : 1, "valid" : true , "lastExtentSize" : 2816}

val i dat e takes an optional scandata parameter which skips the scan of the base collection (but still scans indexes).
> db. $cnd. fi ndOne({val i date:"foo", scandata:true});
getLastError

‘1, Redirection Notice
This page should redirect to Last Error Commands in about 3 seconds.

Most drivers, and the db shell, support a getlasterror capability. This lets one check the error code on the last operation.
Database commands, as well as queries, have a direct return code.
getlasterror is primarily useful for write operations (although it is set after a command or query too). Write operations by default do not have a

return code: this saves the client from waiting for client/server turnarounds during write operations. One can always call getLastError if one wants
a return code.

> db. runCommand("getl asterror")
> db. get Last Error ()

Note: The special mongo wire protocol killCursors operation does not support getlasterror. (This is really only of significant to driver developers .)

getPrevError

Note: getPrevError may be deprecated in the future.

When performing bulk write operations, r eset Error () and get PrevError () can be an efficient way to check for success of the operation.
For example if we are inserting 1,000 objects in a collection, checking the return code 1,000 times over the network is slow. Instead one might do
something like this:

i db.resetError(); H
¢ for(loop 1000 tinmes...) !
db. f0o. save(sonething...);
{ if(db.getPrevError().err)
print("didn't work!");

Last Error in the Shell

The database shell performs a r eset Er r or () before each read/eval/print loop command evaluation - and automatically prints the error, if one
occurred, after each evaluation. Thus, after an error, at the shell prompt db. get Last Er r or () will return null. However, if called before returning
to the prompt, the result is as one would expect:

> try { db.foo.findOne() } catch(e) { print("preverr:" + tojson(db.getPrevError())); print("lasterr:" !
+ tojson(db.getLastError()));} :
preverr:{"err" : "unauthorized" , "nPrev" : 1, "ok" : 1}
lasterr: "unaut hori zed"

FSync with GetLastError

Include the fsync option to force the database to fsync all files before returning (v1.3+):

> db. runCommand({getl asterror: 1, fsync:true})
{ "err" : null, "n" : 0, "fsyncFiles" : 2, "ok" : 11}
List of Database Commands

List of MongoDB Commands
See the Commands page for details on how to invoke a command.
Also: with v1.5+, run nongod with - - r est enabled, and then go to http://localhost:28017/_commands

Commands Quick Reference Card

Mongo Metadata

The <dbname>.system.* namespaces in MongoDB are special and contain database system information. System collections include:

syst em nanespaces lists all namespaces.

syst em i ndexes lists all indexes.

Additional namespace / index metadata exists in the database.ns files, and is opaque.
syst em profi | e stores database profiling information.

syst em user s lists users who may access the database.

| ocal . sour ces stores replica slave configuration data and state.

Information on the structure of a stored object is stored within the object itself. See BSON .

There are several restrictions on manipulation of objects in the system collections. Inserting in syst em i ndexes adds an index, but otherwise
that table is immutable (the special drop index command updates it for you). syst em user s is modifiable. syst em profi | e is droppable.

Note: $ is a reserved character. Do not use it in namespace names or within field names. Internal collections for indexes use the $ character in
their names. These collection store b-tree bucket data and are not in BSON format (thus direct querying is not possible).

http://api.mongodb.org/internal/current/commands.html
http://localhost:28017/_commands
http://www.10gen.com/reference

Collections

MongoDB collections are essentially named groupings of documents. You can think of them as roughly equivalent to relational database tables.

Details

A MongoDB collection is a collection of BSON documents. These documents are usually have the same structure, but this is not a requirement
since MongoDB is a schema-free database. You may store a heterogeneous set of documents within a collection, as you do not need predefine
the collection's "columns" or fields.

A collection is created when the first document is inserted.

Collection names should begin with letters or an underscore and may include numbers; $ is reserved. Collections can be organized in
namespaces; these are named groups of collections defined using a dot notation. For example, you could define collections blog.posts and
blog.authors, both reside under "blog”. Note that this is simply an organizational mechanism for the user -- the collection namespace is flat from
the database's perspective.

Programmatically, we access these collections using the dot notation. For example, using the mongo shell:

if(db.bl og. posts.findOne())
print("bl og. posts exists and is not enpty.");

The maximum size of a collection name is 128 characters (including the name of the db and indexes). It is probably best to keep it under 80/90
chars.

See also:

® Capped Collections
® Using a Large Number of Collections

Capped Collections

Capped collections are fixed sized collections that have a very high performance auto-FIFO age-out feature (age out is based on insertion order).

In addition, capped collections automatically, with high performance, maintain insertion order for the objects in the collection; this is very powerful
for certain use cases such as logging.

Creating a Fixed Size (capped) Collection

Unlike a standard collection, you must explicitly create a capped collection, specifying a collection size in bytes. The collection's data space is
then preallocated. Note that the size specified includes database headers.

i db.createCol | ection("nycol | ", {capped:true, size:100000})

Usage and Restrictions

® You may insert new objects in the capped collection.

® You may update the existing objects in the collection. However, the objects must not grow in size. If they do, the update will fail. (There
are some possible workarounds which involve pre-padding objects; contact us in the support forums for more information, if help is
needed.)

® The database does not allow deleting objects from a capped collection. Use the dr op() method to remove all rows from the collection.
Note: After the drop you must explicitly recreate the collection.

® Maximum size for a capped collection is currently 1e9 bytes on a thirty-two bit machine. The maximum size of a capped collection on a
sixty-four bit machine is constrained only by system resources.

Behavior

® Once the space is fully utilized, newly added objects will replace the oldest objects in the collection.
® If you perform afi nd() on the collection with no ordering specified, the objects will always be returned in insertion order. Reverse order
is always retrievable with find().sort({$natural:-1}).

Applications

® Logging. Capped collections provide a high-performance means for storing logging documents in the database. Inserting objects in an
unindexed capped collection will be close to the speed of logging to a filesystem. Additionally, with the built-in LRU mechanism, you are

not at risk of using excessive disk space for the logging.

® Caching. If you wish to cache a small number of objects in the database, perhaps cached computations of information, the capped tables
provide a convenient mechanism for this. Note that for this application you will likely use an index on the capped table as there will be
more reads than writes.

® Auto Archiving. If you know you want data to automatically "roll out" over time as it ages, a capped collection can be an easier way to
support than writing manual archival cron scripts.

Recommendations

® For maximum performance, do not create indexes on a capped collection. If the collection will be written to much more than it is read
from, it is better to have no indexes. Note that you may create indexes on a capped collection; however, you are then moving from "log
speed" inserts to "database speed" inserts -- that is, it will still be quite fast by database standards.

® Use natural ordering to retrieve the most recently inserted elements from the collection efficiently. This is (somewhat) analogous to tail on
alog file.

Capping the Number of Objects
You may also cap the number of objects in the collection. Once the limit is reached, items roll out on a least recently inserted basis.
To cap on number of objects, specify a max: parameter on the cr eat eCol | ecti on() call.

Note: When specifying a cap on the number of objects, you must also cap on size. Be sure to leave enough room for your chosen number of
objects or items will roll out faster than expected. You can use the val i dat e() utility method to see how much space an existing collection uses,
and from that estimate your size needs.

db. createCol l ection("nycol ", {capped:true, size:100000, nax:100});
db. nmycol | . val i date();

Tip: When programming, a handy way to store the most recently generated version of an object can be a collection capped with max=1.

Preallocating space for a normal collection

The cr eat eCol | ect i on command may be used for non capped collections as well. For example:

db. createCol |l ection("nycoll", {size:10000000});
db. createCol |l ection("nycol |", {size:10000000, autolndexld:false});

Explicitly creating a non capped collection via cr eat eCol | ect i on allows parameters of the new collection to be specified. For example,
specification of a collection size causes the corresponding amount of disk space to be preallocated for use by the collection. The aut ol ndexI d
field may be set to true or false to explicitly enable or disable automatic creation of a unique key index on the _i d object field. By default, such an
index is created for non capped collections but is not created for capped collections.

H An index is not automatically created on _id for capped collections by default

i}

See Also

® The Sorting and Natural Order section of this Guide

Using a Large Number of Collections

A technique one can use with MongoDB in certain situations is to have several collections to store information instead of a single collection. By
doing this, certain repeating data no longer needs to be stored in every object, and an index on that key may be eliminated. More importantly for
performance (depending on the problem), the data is then clustered by the grouping specified.

For example, suppose we are logging objects/documents to the database, and want to have M logs: perhaps a dev log, a debug log, an ops log,
etc. We could store them all in one collection ‘'logs' containing objects like:

However, if the number of logs is not too high, it might be better to have a collection per log. We could have a 'logs.deV' collection, a ‘logs.debug’
collection, 'logs.ops', etc.:

{ts: ..., info: ...}

Of course, this only makes sense if we do not need to query for items from multiple logs at the same time.
Generally, having a large number of collections has no significant performance penalty, and results in very good performance.
Limits

By default MongoDB has a limit of approximately 24,000 namespaces per database. Each collection counts as a namespace, as does each
index. Thus if every collection had one index, we can create up to 12,000 collections. Use the --nssize parameter to set a higher limit.

Be aware that there is a certain minimum overhead per collection -- a few KB. Further, any index will require at least 8KB of data space as the
b-tree page size is 8KB.

--nssize

If more collections are required, run mongod with the --nssize parameter specified. This will make the <database>.ns file larger and support more
collections. Note that --nssize sets the size used for newly created .ns files -- if you have an existing database and wish to resize, after running
the db with --nssize, run the db.repairDatabase() command from the shell to adjust the size.

Maximum .ns file size is 2GB.

Data Types and Conventions

MongoDB (BSON) Data Types

Mongo uses special data types in addition to the basic JSON types of string, integer, boolean, double, null, array, and object. These types include
date, object id, binary data, regular expression, and code. Each driver implements these types in language-specific ways, see your driver's
documentation for details.

See BSON for a full list of database types.

Internationalization

® See Internationalized strings

Database References

® See Database References and Schema Design

Internationalized Strings

MongoDB supports UTF-8 for strings in stored objects and queries. (Specifically, BSON strings are UTF-8.)

Generally, drivers for each programming language convert from the language's string format of choice to UTF-8 when serializing and deserializing
BSON. For example, the Java driver converts Java Unicode strings to UTF-8 on serialization.

In most cases this means you can effectively store most international characters in MongoDB strings. A few notes:
® MongoDB regex queries support UTF-8 in the regex string.

® Currently, sort() on a string uses strcmp: sort order will be reasonable but not fully international correct. Future versions of MongoDB
may support full UTF-8 sort ordering.

Object IDs

Documents in MongoDB are required to have a key, _id, which uniquely identifies them.

® Document IDs: _id

® The BSON Objectld Datatype
® BSON ObjectID Specification
® Document Timestamps

® Sequence Numbers

Document IDs: _id

Every MongoDB document has an _id field as its first attribute. This value usually a BSON Objectld. Such an id must be unique for each
member of a collection; this is enforced if the collection has an index on _id, which is the case by default.

If a user tries to insert a document without providing an i d, the database will automatically generate an _object id and store it the _id field.

Users are welcome to use their own conventions for creating ids; the _id value may be of any type so long as it is a unique.

The BSON Objectld Datatype

Although _id values can be of any type, a special BSON datatype is provided for object ids. This type is a 12-byte binary value designed to have
a reasonably high probability of being unique when allocated. All of the officially-supported MongoDB drivers use this type by default for _id
values. Also, the Mongo database itself uses this type when assigning _id values on inserts where no _id value is present.

In the MongoDB shell, Objectld() may be used to create Objectlds. Cbj ect | d(string) creates an object ID from the specified hex string.

> x={ nane: "joe" }

{ nane : "joe" }

> db. peopl e. save(x)

{ name : "joe" , _id: Objectld("47cc67093475061e3d95369d") }

> X

{ nane : "joe" , _id: ojectld("47cc67093475061e3d95369d") }

> db. people.findOne({ _id: Oojectld("47cc67093475061e3d95369d") })

{ _id: Objectld("47cc67093475061e3d95369d") , name : "joe" }

> db. people.findOne({ _id: new Objectld("47cc67093475061e3d95369d") })
{ _id: Onjectld("47cc67093475061e3d95369d") , name : "joe" }

BSON ObjectID Specification

A BSON ObjectID is a 12-byte value consisting of a 4-byte timestamp (seconds since epoch), a 3-byte machine id, a 2-byte process id, and a
3-byte counter. Note that the timestamp and counter fields must be stored big endian unlike the rest of BSON. This is because they are compared
byte-by-byte and we want to ensure a mostly increasing order. Here's the schema:

0/1/2/13/4 |5 |6 |7/8/9/10/11
time |machine|pid|inc

Document Timestamps

One useful consequence of this specification is that it provides documents with a creation timestamp for free. All of the drivers implement methods
for extracting these timestamps; see the relevant api docs for details.

Sequence Numbers

Traditional databases often use monotonically increasing sequence numbers for primary keys. In MongoDB, the preferred approach is to use
Object IDs instead. Object IDs are more synergistic with sharding and distribution.

However, sometimes you may want a sequence number. The Insert if Not Present section of the Atomic Operations page shows an example of
how to do this.

Database References

® Simple Manual References

® DBRef

® DBRef in Different Languages / Drivers
* C#

C++

Java

Javascript (mongo shell)

PHP

Python
® Ruby

® See Also

As MongoDB is non-relational (no joins), references (“foreign keys") between documents are generally resolved client-side by additional queries
to the server. Two conventions are common for references in MongoDB: first simple manual references, and second, the DBRef standard, which
many drivers support explicitly.

Note: Often embedding of objects eliminates the need for references, but sometimes references are still appropriate.

Simple Manual References

Generally, manually coded references work just fine. We simply store the value that is present in _id in some other document in the database.
For example:

> p = db. postings. findOne();

"_id" : Opjectld("4b866f08234ae01d21d89604"),
“author" : "jint,
"title" : "Brew ng Methods"

}
> [/ get nore info on author

> db.users.findOne({ _id : p.author })

{ "_id" : "jind, "email" : "jim@mail.conl }

DBRef

DBRef is a more formal specification for creating references between documents. DBRefs (generally) include a collection name as well as an
object id. Most developers only use DBRefs if the collection can change from one document to the next. If your referenced collection will always
be the same, the manual references outlined above are more efficient.

A DBRef is a reference from one document (object) to another within a database. A database reference is a standard embedded (JSON/BSON)
object: we are defining a convention, not a special type. By having a standard way to represent, drivers and data frameworks can add helper
methods which manipulate the references in standard ways.

DBRef's have the advantage of allowing optional automatic client-side dereferencing with some drivers, although more features may be added
later. In many cases, you can just get away with storing the _id as a reference then dereferencing manually as detailed in the "Simple Manual
References" section above.

Syntax for a DBRef reference value is

{ { $ref : <collname>, $id : <idvalue>[, $db : <dbname>] }

where <col | nanme> is the collection name referenced (without the database name), and <i dval ue> is the value of the _id field for the object
referenced. $db is optional (currently unsupported by many of the drivers) and allows for references to documents in other databases (specified
by <dbnane>).

', The ordering for DBRefs does matter, fields must be in the order specified above.

The old BSON DBRef datatype is deprecated.
DBRef in Different Languages / Drivers

C#

Use the DBRef class. It takes the collection name and _id as parameters to the constructor. Then you can use the FollowReference method on
the Database class to get the referenced document.

C++

The C++ driver does not yet provide a facility for automatically traversing DBRefs. However one can do it manually of course.
Java

Java supports DB references using the DBRef class.

Javascript (mongo shell)

Example:

http://api.mongodb.org/java/current/com/mongodb/DBRef.html

i >x ={ name : 'Biology' } !
¢ { "nanme" : "Biology" } !
> db. cour ses. save(x)
P> X :
i { "nane" : "Biology", "_id" : Objectld("4b0552b0f 0da7dleb6f126al") } 1
> stu = { nane : 'Joe', classes : [new DBRef('courses', x._id)] }
{ 1/ or we could write:
i/l stu ={ name : 'Joe', classes : [{$ref:'courses',$id:x._id}] } :
i > db. students. save(stu) :
!> stu :
i q !
: "name" : "Joe", :
"classes" : [i
i { i
: "$ref" . "courses", H
"$id" : Objectld("4b0552b0f 0Oda7dleb6f 126a1")
|) i
i 1 Z
"_id" : Qbjectld("4b0552e4f 0da7dleb6f 126a2")
Ly H
! > stu.classes[0] :
i { "$ref" : “"courses", "$id" : Qbjectld("4b0552b0f 0da7dleb6f 126al") } :
i > stu.classes[0].fetch() :
! { "_id" : Onjectld("4b0552b0f Oda7dleb6f126al"), "nanme" : "Biology" } !
o> i

PHP

PHP supports DB references with the MongoDBRef class, as well as creation and deferencing methods at the database (MongoDB::createDBRef
and MongoDB::getDBRef) and collection (MongoCollection::createDBRef and MongoCollection::getDBREef) levels.

Python

To create a DB reference in python use the pymongo.dbref.DBRef class. You can also use the dereference method on Database instances to
make dereferencing easier.

Python also supports auto-ref and auto-deref - check out the auto_reference example.
Ruby

Ruby also supports DB references using the DBRef class and a dereference method on DB instances. For example:

@b = Connection. new. db("bl og")
@ser = @b["users"].save({:name => "Smth"})

@ef = DBRef.new("users", @ost.user_id)

@ost @ib["posts"].save({:title => "Hello Wrld", :user_id => @ser.id})
assert_equal @ser, @b.dereference(@ef)

See Also

® Schema Design

GridFS

GridFS is a specification for storing large files in MongoDB. All of the officially supported driver implement the GridFS spec.

Rationale
Implementation
Language Support
Command Line Tools
See also

Rationale

The database supports native storage of binary data within BSON objects. However, BSON objects in MongoDB are limited to 4MB in size. The

http://us3.php.net/manual/en/class.mongodbref.php
http://us3.php.net/manual/en/mongodb.createdbref.php
http://us3.php.net/manual/en/mongodb.getdbref.php
http://us3.php.net/manual/en/mongocollection.createdbref.php
http://us3.php.net/manual/en/mongocollection.getdbref.php
http://api.mongodb.org/python/0.11.3/pymongo.dbref.DBRef-class.html
http://api.mongodb.org/python/0.11.3/pymongo.database.Database-class.html#dereference
http://github.com/mongodb/mongo-python-driver/blob/cd47b2475c5fe567e98696e6bc5af3c402891d12/examples/auto_reference.py
http://api.mongodb.org/ruby/0.8/classes/XGen/Mongo/Driver/DBRef.html
http://api.mongodb.org/ruby/0.8/classes/XGen/Mongo/Driver/DB.html#M000236

GridFS spec provides a mechanism for transparently dividing a large file among multiple documents. This allows us to efficiently store large
objects, and in the case of especially large files, such as videos, permits range operations (e.g., fetching only the first N bytes of a file).

Implementation

To facilitate this, a standard is specified for the chunking of files. Each file has a metadata object in a files collection, and one or more chunk
objects in a chunks collection. Details of how this is stored can be found in the GridFS Specification; however, you do not really need to read that,
instead, just look at the GridFS API in each language's client driver or mongofiles tool.

Language Support

Most drivers include GridFS implementations; for languages not listed below, check the driver's APl documentation. (If a language does not
include support, see the GridFS specification -- implementing a handler is usually quite easy.)

Command Line Tools

Command line tools are available to write and read GridFS files from and to the local filesystem.

See also

® C++
® A PHP GridFS Blog Article

When to use GridFS

!, This page is under construction

When to use GridFS

® Lots of files. GridFS tends to handle large numbers (many thousands) of files better than many file systems.

® User uploaded files. When users upload files you tend to have a lot of files, and want them replicated and backed up. GridFS is a perfect
place to store these as then you can manage them the same way you manage your data. You can also query by user, upload date, etc...
directly in the file store, without a layer of indirection

® Files that often change. If you have certain files that change a lot - it makes sense to store them in GridFS so you can modify them in one
place and all clients will get the updates. Also can be better than storing in source tree so you don't have to deploy app to update files.

When not to use GridFS

®* Few small static files. If you just have a few small files for a website (js,css,images) its probably easier just to use the file system.

Indexes

Indexes enhance query performance, often dramatically. It's important to think about the kinds of queries your application will need so that you
can define relevant indexes. Once that's done, actually creating the indexes in MongoDB is relatively easy.

Indexes in MongoDB are conceptually similar to those in RDBMSes like MySQL. You will want an index in MongoDB in the same sort of situations
where you would have wanted an index in MySQL.

® Basics
® Default Indexes
® Embedded Keys
® Documents as Keys
® Arrays
® Compound Keys Indexes
® Unique Indexes
® Missing Keys
® Duplicate Values
Background Index Building
Dropping Indexes
Relndex
Additional Notes on Indexes
® Index Performance
® Using sort () without an Index
® Geospatial
® Webinar

http://api.mongodb.org/cplusplus/0.9.2/classmongo_1_1_grid_f_s.html
http://www.snailinaturtleneck.com/blog/?p=271

Basics

An index is a data structure that collects information about the values of the specified fields in the documents of a collection. This data structure is
used by Mongo's query optimizer to quickly sort through and order the documents in a collection. Formally speaking, these indexes are
implemented as "B-Tree" indexes.

In the shell, you can create an index by calling the ensur el ndex() function, and providing a document that specifies one or more keys to index.
Referring back to our examples database from Mongo Usage Basics, we can index on the 'j' field as follows:

db. t hi ngs. ensurel ndex({j:1});

The ensur el ndex() function only creates the index if it does not exist.

Once a collection is indexed on a key, random access on query expressions which match the specified key are fast. Without the index, MongoDB
has to go through each document checking the value of specified key in the query:

db.things.find({j : 2}); [// fast - uses index
db.things.find({x : 3}); // slow- has to check all because 'x' isn't indexed

You can run db. t hi ngs. get | ndexes(); to see the existing indexes on the collection.

Default Indexes

An index is always created on _i d. This index is special and cannot be deleted. The _id index enforces uniqueness for its keys. For Capped
Collections no index is created.

Embedded Keys

With MongoDB you can even index on a key inside of an embedded document. For example:

db. t hi ngs. ensurel ndex({"address.city": 1})

Documents as Keys

Indexed fields may be of any type, including documents:

db.factories.insert({ name: "xyz", netro: { city: "New York", state: "NY" } });
db. factories.ensurelndex({ netro: 11});

/1 this query can use the above index:

db.factories.find({ nmetro: { city: "New York", state: "NY" } });

db.factories.find().sort({ "metro.city” : 11})

{ db.factories.ensurelndex({ "netro.city" : 1, "netro.state" : 1});
i /] these queries can use the above index: H
db.factories.find({ "netro.city"” : "New York", "netro.state" : "NY" });
db. factories.find({ "netro.city"” : "New York" });
db.factories.find().sort({ "netro.city” : 1, "netro.state" : 1});

There are pros and cons to the two approaches. When using the entire (sub-)document as a key, compare order is predefined and is ascending
key order in the order the keys occur in the BSON document. With compound indexes reaching in, you can mix ascending and descending keys,
and the query optimizer will then be able to use the index for queries on solely the first key(s) in the index too.

Arrays

When a document's stored value for a index key field is an array, MongoDB indexes each element of the array. See the Multikeys page for more
information.

Compound Keys Indexes

In addition to single-key basic indexes, MongoDB also supports multi-key "compound"” indexes. Just like basic indexes, you use the

ensur el ndex() function in the shell to create the index, but instead of specifying only a single key, you can specify several :

db. thi ngs. ensurel ndex({j:1, nane:-1});

When creating an index, the number associated with a key specifies the direction of the index, so it should always be 1 (ascending) or -1
(descending). Direction doesn't matter for single key indexes or for random access retrieval but is important if you are doing sorts or range queries
on compound indexes.

If you have a compound index on multiple fields, you can use it to query on the beginning subset of fields. So if you have an index on

»
i)
o

. Newin 1.6+
Now you can also use the compound index to service any combination of equality (and some inequality) queries from the
constitute fields.

Unique Indexes

MongoDB supports unique indexes, which guarantee that no documents are inserted whose values for the indexed keys match those of an
existing document. To create an index that guarantees that no two documents have the same values for both f i r st nane and | ast nane you
would do:

db. t hi ngs. ensurel ndex({firstnane: 1, l|astnane: 1}, {unique: true});

Missing Keys

When a document is saved to a collection with unique indexes, any missing indexed keys will be inserted with null values. Thus, it won't be
possible to insert multiple documents missing the same indexed key.

db. t hi ngs. ensurel ndex({firstnane: 1}, {unique: true});
db. t hi ngs. save({l astnane: "Snmith"});

/1 Next operation will fail because of the unique index on firstnane.
db. t hi ngs. save({l astnane: "Jones"});

Duplicate Values

A unique index cannot be created on a key that has duplicate values. If you would like to create the index anyway, keeping the first document the
database indexes and deleting all subsequent documents that have duplicate values, add the dr opDups option.

db. thi ngs. ensurel ndex({firstnane : 1}, {unique : true, dropDups : true})

Background Index Building

By default, building an index blocks other database operations. v1.3.2 and higher has a background index build option .

Dropping Indexes

To delete all indexes on the specified collection:

o
=
o
e
®
o
24
o
>
a
=
o
i=3
>
<
@
<
®
%
~
Z

i db.collection.droplndex({x: 1, y: -1})

i /1 note: conmmand was "del et el ndexes", not "droplndexes", before MngoDB v1.3.2 H
; /1 renmove index with key pattern {y:1} fromcollection foo :
i db. runCommand({dropl ndexes: "' foo', index : {y:1}}) i

/'l renove all indexes:
db. runConmand({dr opl ndexes: ' foo', index : "'*'})
Relndex

The relndex command will rebuild all indexes for a collection.

i db.nyCol I ecti on. rel ndex() H
{ /1 same as:
i db.runCommand({ relndex : 'nyCollection }) i

Usually this is unnecessary. You may wish to do this if the size of your collection has changed dramatically or the disk space used by indexes
seems oddly large.

Repair database recreates all indexes in the database.
Additional Notes on Indexes
® MongoDB indexes (and string equality tests in general) are case sensitive.
® When you update an object, if the object fits in its previous allocation area, only those indexes whose keys have changed are updated.

This improves performance. Note that if the object has grown and must move, all index keys must then update, which is slower.
® Index information is kept in the system.indexes collection, run db.system.indexes.find() to see example data.

Index Performance

Indexes make retrieval by a key, including ordered sequential retrieval, very fast. Updates by key are faster too as MongoDB can find the
document to update very quickly.

However, keep in mind that each index created adds a certain amount of overhead for inserts and deletes. In addition to writing data to the base
collection, keys must then be added to the B-Tree indexes. Thus, indexes are best for collections where the number of reads is much greater than
the number of writes. For collections which are write-intensive, indexes, in some cases, may be counterproductive. Most collections are
read-intensive, so indexes are a good thing in most situations.

Using sort () without an Index

You may use sort () to return data in order without an index if the data set to be returned is small (less than four megabytes). For these cases it
isbesttouselinit() andsort () together.

Geospatial
® See Geospatial Indexing page.

Webinar

Indexing with MongoDB webinar video (http://bit.ly/bQK10p) and slides (http://bit.ly/9qeMjC). More detailed slides (http://bit.ly/dAHrQKk).

Using Multikeys to Simulate a Large Number of Indexes

One way to work with data that has a high degree of options for queryability is to use the multikey indexing feature where the keys are objects.
For example:

http://bit.ly/bQK1Op
http://bit.ly/9qeMjC
http://bit.ly/dAHrQk

Lo x=d i
o> _id: "abc", i
> cost 33,
P> attribs : [
o> { color : 'red }, :
> { shape : 'rect' },
P> { color : 'blue },
o> { avail : true }] :
o> }; :
i > db.foo.insert(x); i
i > db.foo.ensurelndex({attribs:1}); :
i > db.foo.find({ attribs : {color:"blue'} }); // uses index H
i > db.foo.find({ attribs : {avail:false} }); // uses index :

In addition to being able to have an unlimited number of attributes types, we can also add new types dynamically.

This is mainly useful for simply attribute lookups; the above pattern is not necessary helpful for sorting or certain other query types.
See Also

Discussion thread MongoDB for a chemical property search engine for a more complex real world example.

Geospatial Indexing

Creating the Index

Querying

Compound Indexes

geoNear Command

Bounds Queries

The Earth is Round but Maps are Flat
* New Spherical Model

Sharded Environments

® Implementation

o v1.3.3+

=

MongoDB supports two-dimensional geospatial indexes. It is designed with location-based queries in mind, such as "find me the closest N items
to my location." It can also efficiently filter on additional criteria, such as "find me the closest N museums to my location."

In order to use the index, you need to have a field in your object that is either a sub-object or array where the first 2 elements are x,y coordinates
(or y,x - just be consistent; it might be advisible to use order-preserving dictionaries/hashes in your client code, to ensure consistency). Some
examples:

{loc: [50, 307 }
c{x:50, y: 30} }
{loc: { foo: 50, y: 301} }
{ loc : { lat : 40.739037, long: 73.992964 } }

~
o
(3]

By default, the index assumes you are indexing latitude/longitude and is thus configured for a [-180..180] value range.

If you are indexing something else, you can specify some options:

that will scale the index to store values between -500 and 500. Currently geo indexing is limited to indexing squares with no "wrapping" at the
outer boundaries. You cannot insert values on the boundaries, for example, using the code above, the point (- 500, -500) could not to be
inserted.

http://groups.google.com/group/mongodb-user/browse_thread/thread/de64676d2499f593/de232db0c81767a5

', you can only have 1 geo2d index per collection right now
Querying

The index can be used for exact matches:

The above query finds the closest points to (50,50) and returns them sorted by distance (there is no need for an additional sort parameter). Use
limit() to specify a maximum number of points to return (a default limit of 100 applies if unspecified):

Compound Indexes

MongoDB geospatial indexes optionally support specification of secondary key values. If you are commonly going to be querying on both a
location and other attributes at the same time, add the other attributes to the index. The other attributes are annotated within the index to make
filtering faster. For example:

db. pl aces. ensurel ndex({ location : "2d" , category : 1});
db. places.find({ location : { $near : [50,50] }, category : 'coffee' });

geoNear Command

While the find() syntax above is typically preferred, MongoDB also has a geoNear command which performs a similar function. The geoNear
command has the added benefit of returning the distance of each item from the specified point in the results, as well as some diagnostics for
troubleshooting.

> db. runCommand({ geoNear : "places" , near : [50,50], num: 10 });
> db. runCommand({geoNear: "asdf", near:[50,50]})

A ;
"ns" : "test.places",
: "near" : "1100110000001111110000001111110000001111110000001121", :
"results" : [
i { i
: "dis" : 69.29646421910687, :
i "obj "t { i
| " id" : Qbjectld("4b8bd6b93b83c574d8760280"), i
s v |
i 1, i
i 1 i
| I, i
: “category" : "Coffee" H
i } i
|) |
i { :
; "dis" : 69.29646421910687, :
i "obj "t { i
§ " id" : Objectld("4b8bd6b03b83c574d876027f"), §
s v |
: 1, :
| 1 i
i] i
s } |
: } :
| 1, |
: "stats" : { :
"time" : 0,
1 "btreel ocs" : 1, H
"btreel ocs"” 1,
i "nscanned" : 2, i
i "nscanned" : 2, H
"obj ectsLoaded" : 2,
"“obj ect sLoaded" : 2,
"avgDi stance" : 69.29646421910687
i b i
5 "ok" : 1 i
B |

The above command will return the 10 closest items to (50,50). (The | oc field is automatically determined by checking for a 2d index on the
collection.)

If you want to add an additional filter, you can do so:

> db. runCommand({ geoNear : "places" , near : [50, 50], num: 10,
query : { type : "nmuseunt } });

query can be any regular mongo query.

Bounds Queries

" vl134

L)

$wi t hi n can be used instead of $near to find items within a shape. At the moment, $box (rectangles) and $cent er (circles) are supported.

To query for all points within a rectangle, you must specify the lower-left and upper-right corners:

> db. places.find({"loc" : {"$within" : {"$box" : box}}})

> box = [[40, 40], [60, 60]]

A circle is specified by a center point and radius:

> center = [50, 50]
> radius = 10
> db. places. find({"loc" : {"$within" : {"$center" : [center, radius]}}})

The Earth is Round but Maps are Flat

The current implementation assumes an idealized model of a flat earth, meaning that an arcdegree of latitude (y) and longitude (x) represent the
same distance everywhere. This is only true at the equator where they are both about equal to 69 miles or 111km. However, at the 10gen offices
at{x:-74,y:40.74 } one arcdegree of longitude is about 52 miles or 83 km (latitude is unchanged). This means that something 1 mile to the
north would seem closer than something 1 mile to the east.

New Spherical Model

In 1.7.0 we added support for correctly using spherical distances by adding "Sphere" to the name of the query. For example, use $near Spher e
or $cent er Spher e ($boxSpher e doesn't really make sense so it isn't supported). If you use the geoNear command to get distance along with
the results, you just need to add spheri cal : t r ue to the list of options.

There are a few caveats that you must be aware of when using spherical distances:
1. The code assumes that you are using decimal degrees in (X,Y) / (longitude, latitude) order. This is the same order used for the GeoJSON
spec.
2. All distances use radians. This allows you to easily multiply by the radius of the earth (about 6371 km or 3959 miles) to get the distance in
your choice of units. Conversely, divide by the radius of the earth when doing queries.

3. We don't currently handle wrapping at the poles or at the transition from -180° to +180° longitude, however we detect when a search
would wrap and raise an error.

Sharded Environments

Support for geospatial in sharded collections is coming; please watch this ticket: http://jira.mongodb.org/browse/SHARDING-83.

In the meantime sharded clusters can use geospatial indexes for unsharded collections within the cluster.

Implementation

The current implementation encodes geographic hash codes atop standard MongoDB b-trees. Results of $near queries are exact. The problem

with geohashing is that prefix lookups don't give you exact results, especially around bit flip areas. MongoDB solves this by doing a grid by grid
search after the initial prefix scan. This guarantees performance remains very high while providing correct results.

Indexing as a Background Operation

. Slaves and replica secondaries build all indexes in the foreground in certain releases (including the latest). Thus even when
using background:true on the primary, the slave/secondary will be unavailable to service queries while the index builds there.

By default the ensur el ndex() operation is blocking, and will stop other operations on the database from proceeding until completed. However,
in v1.3.2+, a background indexing option is available.

To build an index in the background, add backgr ound: t r ue to your index options. Examples:

> db. t hi ngs. ensur el ndex({x: 1}, {background:true});
> db. t hi ngs. ensur el ndex({nane: 1}, {background:true, unique:true,
dropDups: true});

With background mode enabled, other operations, including writes, will not be obstructed during index creation. The index is not used for queries
until the build is complete.

Although the operation is 'background' in the sense that other operations may run concurrently, the command will not return to the shell prompt
until completely finished. To do other operations at the same time, open a separate mongo shell instance.

Please note that background mode building uses an incremental approach to building the index which is slower than the default foreground mode:
time to build the index will be greater.

While the build progresses, it is possible to see that the operation is still in progress with the db. current Qp() command (will be shown as an

http://maps.google.com/maps?q=17+w+18th+st+nyc
http://en.wikipedia.org/wiki/Decimal_degrees
http://geojson.org/geojson-spec.html#id2
http://geojson.org/geojson-spec.html#id2
http://en.wikipedia.org/wiki/Radians
http://en.wikipedia.org/wiki/Earth_radius
http://jira.mongodb.org/browse/SHARDING-83

insert to system.indexes). You may also use db. ki | | Op() to terminate the build process.
While the build progresses, the index is visible in system.indexes, but it is not used for queries until building completes.
Notes

® Only one index build at a time is permitted per collection.
® Some administrative operations, such as repairDatabase, are disallowed while a background indexing job is in progress.
® vl1.4 and higher (for production usage)

Multikeys

MongoDB provides an interesting "multikey” feature that can automatically index arrays of an object's values. A good example is tagging.
Suppose you have an article tagged with some category names:

i $ dbshell

i > db.articles.save({ nane: "Warm Weat her", author: "Steve",

tags: ['weather', '"hot', 'record', "april'] })

i > db.articles.find()

i {"name" : "Warm Weather" , "author" : "Steve" ,

"tags" : ["weather","hot","record","april"] , "_id" : "497ced4051ca9ca6d3efca323"}

{"nanme" : "Warm Weather" , "author" : "Steve" ,

> db.articles.find({ tags: "april' })
"tags" : ["weather","hot","record","april"] , "_id" : "497ced4051ca9ca6d3efca323"}

array:

> db.articles.ensurelndex({ tags : 11})

[true

{ >db.articles.find({ tags: "april' })

i {"name" : "Warm Weather" , "author" : "Steve" ,

"tags" : ["weather","hot","record","april"] , "_id" : "497ce4051lca9ca6d3efca323"}
> db.articles.find({ tags: "april' }).explain()

i {"cursor" : "BtreeCursor tags_1" , "startKey" : {"tags" : "april"} ,

"endKey" : {"tags" : "april"} , "nscanned" : 1, "n" : 1, "mllis" : 0}

Embedded object fields in an array

Additionally the same technique can be used for fields in embedded objects:

> db. posts.find({ "comments.author” : "julie" })
{"title" : "How the west was won" ,

"comments" : [{"text" : "great!" , "author" : "sanl'},
: {"text" : "ok" , "author" : "julie"}],
["_id" : "497ce79f 1ca9cabd3ef ca325"}

Querying on all values in a given set

By using the $all query option, a set of values may be supplied each of which must be present in a matching object field. For example:

> db.articles.find({ tags: { $all: ["april', 'record] } })

{"name" : "Warm Weather" , "author" : "Steve" ,
"tags" : ["weather","hot","record","april"] , "_id" : "497ce4051lca9ca6d3efca323"}
> db.articles.find({ tags: { $all: ["april', "june'] } })

> [/ no matches

Parallel Arrays

When using a compound index, at most one of indexed values in any document can be an array. So if we have anindexon {a: 1, b: 1}, the
following documents are both fine:

{a: [1, 2], b 1}
D {a 1, b1, 2]}

The problem with indexing parallel arrays is that each value in the cartesian product of the compound keys would have to be indexed, which can
get out of hand very quickly.

See Also

® The Multikeys section of the Full Text Search in Mongo document for information about this feature.

Indexing Advice and FAQ

We get a lot of questions about indexing. Here we provide answers to a number of these. There are a couple of points to keep in mind, though.
First, indexes in MongoDB work quite similarly to indexes in MySQL, and thus many of the techniques for building efficient indexes in MySQL
apply to MongoDB.

Second, and even more importantly, know that advice on indexing can only take you so far. The best indexes for your application should always
be based on a number of important factors, including the kinds of queries you expect, the ratio of reads to writes, and even the amount of free
memory on your system. This means that the best strategy for designing indexes will always be to profile a variety of index configurations with
data sets similar to the ones you'll be running in production, and see which perform best. There's no substitute for good empirical analyses.

Note: if you're brand new to indexing, you may want to read this introductory article first.

® Indexing Strategies

® Create indexes to match your queries.
One index per query.
Make sure your indexes can fit in RAM.
Be careful about single-key indexes with low selectivity.
Use expl ai n.

® Understanding expl ai n's output.

Pay attention to the read/write ratio of your application.
® Indexing Properties

® 1. The sort column must be the last column used in the index.
2. The range query must also be the last column in an index. This is an axiom of 1 above.
3. Only use a range query or sort on one column.
4. Conserve indexes by re-ordering columns used on equality (non-range) queries.
5. MongoDB's $ne or $nin operator's aren't efficient with indexes.

* FAQ
® |'ve started building an index, and the database has stopped responding. What's going on? What do | do?
® |I'm using $ne or $nin in a query, and while it uses the index, it's still slow. What's happening?

® Using Multikeys to Simulate a Large Number of Indexes
Indexing Strategies

Here are some general principles for building smart indexes.

Create indexes to match your queries.

http://kylebanker.com/blog/2010/09/21/the-joy-of-mongodb-indexes/

If you only query on a single key, then a single-key index will do. For instance, maybe you're searching for a blog post's slug:

db. ensurel ndex({ slug: 1}, {unique: true});

However, it's common to query on multiple keys and to sort the results. For these situations, compound indexes are best. Here's an example for
querying the latest comments with a ‘mongodb' tag:

db. comments. find({ tags : 'nongodb'}).sort({ created_at : -1 });

db. conment s. ensurel ndex({tags : 1, created_at : -1});

Note that if we wanted to sort by cr eat ed_at ascending, this index would be less effective.
One index per query.

It's sometimes thought that queries on multiple keys can use multiple indexes; this is not the case with MongoDB. If you have a query that selects
on multiple keys, and you want that query to use an index efficiently, then a compound-key index is necessary.

Make sure your indexes can fit in RAM.
The shell provides a command for returning the total index size on a given collection:

i db. comment s. t ot al | ndexSi ze() ; i
| 65443 i

If your queries seem sluggish, you should verify that your indexes are small enough to fit in RAM. For instance, if you're running on 4GB RAM and
you have 3GB of indexes, then your indexes probably aren't fitting in RAM. You may need to add RAM and/or verify that all the indexes you've
created are actually being used.

Be careful about single-key indexes with low selectivity.

Suppose you have a field called 'status’ where the possible values are 'new' and 'processeed'. If you add an index on 'status' then you've created
a low-selectivity index, meaning that the index isn't going to be very helpful in locating records and might just be be taking up space.

A better strategy, depending on your queries, of course, would be to create a compound index that includes the low-selectivity field. For instance,
you could have a compound-key index on 'status’ and ‘created_at.'

Another option, again depending on your use case, might be to use separate collections, one for each status. As with all the advice here,
experimentation and benchmarks will help you choose the best approach.

Use expl ai n.

MongoDB includes an expl ai n command for determining how your queries are being processed and, in particular, whether they're using an
index. expl ai n can be used from of the drivers and also from the shell:

db. comments. find({ tags : 'nongodb'}).sort({ created_at : -1 }).explain();

This will return lots of useful information, including the number of items scanned, the time the query takes to process in milliseconds, which
indexes the query optimizer tried, and the index ultimately used.

If you've never used expl ai n, now's the time to start.

Understanding expl ai n's output.

There are three main fields to look for when examining the expl ai n command's output:

® cursor: the value for cursor can be either Basi cCur sor or Bt r eeCur sor . The second of these indicates that the given query is using
an index.

® nscanned: he number of documents scanned.

® n: the number of documents returned by the query. You want the value of n to be close to the value of nscanned. What you want to
avoid is doing a collection scan, that is, where every document in the collection is accessed. This is the case when nscanned is equal to
the number of documents in the collection.

® millis: the number of milliseconds require to complete the query. This value is useful for comparing indexing strategies, indexed vs.
non-indexed queries, etc.

Pay attention to the read/write ratio of your application.
This is important because, whenever you add an index, you add overhead to all insert, update, and delete operations on the given collection. If
your application is read-heavy, as are most web applications, the additional indexes are usually a good thing. But if your application is

write-heavy, then be careful when creating new indexes, since each additional index with impose a small write-performance penalty.

In general, don't be cavalier about adding indexes. Indexes should be added to complement your queries. Always have a good reason for
adding a new index, and make sure you've benchmarked alternative strategies.

Indexing Properties
Here are a few properties of compound indexes worth keeping in mind (Thanks to Doug Green and Karoly Negyesi for their help on this).

These examples assume a compound index of three fields: a, b, c. So our index creation would look like this:

db. f oo. ensurel ndex({a: 1, b: 1, c: 1})

Here's some advice on using an index like this:

.. This information is no longer strictly correct in 1.6.0+; compound indexes can now be used to service queries where range or
filter fields are used within the compound index, not just fields used from left to right. Please run explain to see how the
compound index is used.

1. The sort column must be the last column used in the index.
Good:
® find(a=1).sort(a)

® find(a=1).sort(b)
find(a=1, b=2).sort(c)

Bad:

® find(a=1).sort(c)
® even though c is the last column used in the index, a is that last column used, so you can only sort on a or b.

2. The range query must also be the last column in an index. This is an axiom of 1 above.
Good:
¢ find(a=1,b>2)
¢ find(a>1 and a<10)
® find(a>1 and a<10).sort(a)
Bad:
® find(a>1, b=2)
3. Only use a range query or sort on one column.
Good:
find(a=1,b=2).sort(c)
find(a=1,b>2)

find(a=1,b>2 and b<4)
find(a=1,b>2).sort(b)

Bad:

* find(a>1,b>2)
® find(a=1,b>2).sort(c)

4. Conserve indexes by re-ordering columns used on equality (non-range) queries.
Imagine you have the following two queries:

® find(a=1,b=1,d=1)
¢ find(a=1,b=1,c=1,d=1)

A single index defined on a, b, ¢, and d can be used for both queries.
If, however, you need to sort on the final value, you might need two indexes

5. MongoDB's $ne or $nin operator's aren't efficient with indexes.
® When excluding just a few documents, it's better to retrieve extra rows from MongoDB and do the exclusion on the client side.
FAQ
I've started building an index, and the database has stopped responding. What's going on? What do | do?
Building an index can be an IO-intensive operation, especially you have a large collection. This is true on any database system that supports
secondary indexes, including MySQL. If you'll need to build an index on a large collection in the future, you'll probably want to consider building

the index in the background, a feature available beginning with 1.3.2. See the docs on background indexing for more info.

As for the long-building index, you only have a few options. You can either wait for the index to finish building or kill the current operation (see
ki I'1 Op()). If you choose the latter, the partial index will be deleted.

I'm using $ne or $nin in a query, and while it uses the index, it's still slow. What's happening?

The problem with $ne and $nin is that much of an index will match queries like these. If you need to use $nin, it's often best to make sure that an
additional, more selective criterion is part of the query.

Inserting

When we insert data into MongoDB, that data will always be in document-form. Documents are data structure analogous to JSON, Python
dictionaries, and Ruby hashes, to take just a few examples. Here, we discuss more about document-orientation and describe how to insert data
into MongoDB.

® Document-Orientation

* JSON

® Mongo-Friendly Schema
® Store Example

Document-Orientation

Document-oriented databases store "documents" but by document we mean a structured document — the term perhaps coming from the phrase
"XML document". However other structured forms of data, such as JSON or even nested dictionaries in various languages, have similar
properties.

The documents stored in Mongo DB are JSON-like. JSON is a good way to store object-style data from programs in a manner that is
language-independent and standards based.

To be efficient, MongoDB uses a format called BSON which is a binary representation of this data. BSON is faster to scan for specific fields than
JSON. Also BSON adds some additional types such as a data data type and a byte-array (bindata) datatype. BSON maps readily to and from
JSON and also to various data structures in many programming languages.

Client drivers serialize data to BSON, then transmit the data over the wire to the db. Data is stored on disk in BSON format. Thus, on a retrieval,

the database does very little translation to send an object out, allowing high efficiency. The client driver unserialized a received BSON object to its
native language format.

JSON

For example the following "document" can be stored in Mongo DB:

{ author: 'joe',
created : new Date(' 03/28/2009"),
title : 'Yet another blog post',

text : 'Here is the text...",
comments : [{ author: "jim, comrent: 'I| disagree' },

! tags : ['exanple', 'joe'],
{ author: 'nancy', comment: 'Good post' }

> doc = { author : 'joe', created : new Date('03/28/2009"), ... }
i > db. posts.insert(doc); i

MongoDB understands the internals of BSON objects -- not only can it store them, it can query on internal fields and index keys based upon
them. For example the query

"

is possible and means "find any blog post where at least one comment subjobject has author == ‘jim™.

Mongo-Friendly Schema

Mongo can be used in many ways, and one's first instincts when using it are probably going to be similar to how one would write an application
with a relational database. While this work pretty well, it doesn't harness the real power of Mongo. Mongo is designed for and works best with a
rich object model.

Store Example

If you're building a simple online store that sells products with a relation database, you might have a schema like:

itemfeatures
sku
feature_nane
feature_val ue

You would probably normalize it like this because different items would have different features, and you wouldn't want a table with all possible
features. You could model this the same way in mongo, but it would be much more efficient to do

Pitem: { i
i "title" @ <title> , H
"price" : <price> ,
"sku" . <sku>
i "features" : { i
"optical zoom' : <value> ,
i } i
o i

This does a few nice things

® you can load an entire item with one query
® all the data for an item is on the same place on disk, thus only one seek is required to load

Now, at first glance there might seem to be some issues, but we've got them covered.

® you might want to insert or update a single feature. mongo lets you operate on embedded files like:

db.items.update({ sku : 123 } , { "$set" : { "features.zoon’ : "5" } })

® Does adding a feature require moving the entire object on disk? No. mongo has a padding heuristic that adapts to your data so it will
leave some empty space for the object to grow. This will prevent indexes from being changed, etc.

Legal Key Names

Key names in inserted documents are limited as follows:

® The '$' character must not be the first character in the key name.
® The "' character must not appear anywhere in the key name.

Schema Design

Introduction

Embed vs. Reference
Use Cases

Index Selection

How Many Collections?
See Also

Introduction

With Mongo, you do less "normalization" than you would perform designing a relational schema because there are no server-side "joins".
Generally, you will want one database collection for each of your top level objects.

You do not want a collection for every "class" - instead, embed objects. For example, in the diagram below, we have two collections, students and
courses. The student documents embed address documents and the "score" documents, which have references to the courses.

db.students db.courses

name: 'Jane' > |name: ‘Biology' |
address:
address: '123 Main 5t — |name: 'English’ |
city: "New Y ork’
state: 'NY"
postalCode: '10014'
scores:
for_course:
grade: 4.0

for_course:
grade: 3.0

Compare this with a relational schema, where you would almost certainly put the scores in a separate table, and have a foreign-key relationship
back to the students.

Embed vs. Reference

The key question in Mongo schema design is "does this object merit its own collection, or rather should it embed in objects in other collections?"
In relational databases, each sub-item of interest typically becomes a separate table (unless denormalizing for performance). In Mongo, this is not
recommended - embedding objects is much more efficient. Data is then colocated on disk; client-server turnarounds to the database are
eliminated. So in general the question to ask is, "why would | not want to embed this object?"

So why are references slow? Let's consider our students example. If we have a student object and perform:

/'l pseudocode for driver or framework, not user code

student.scores[0].for_course = db. courses. findOne({_id: _course_id_to_find_});

Thus, each reference traversal is a query to the database. Typically, the collection in question is indexed on _i d. The query will then be
reasonably fast. However, even if all data is in RAM, there is a certain latency given the client/server communication from appserver to database.
In general, expect 1ms of time for such a query on a ram cache hit. Thus if we were iterating 1,000 students, looking up one reference per student
would be quite slow - over 1 second to perform even if cached. However, if we only need to look up a single item, the time is on the order of 1ms,
and completely acceptable for a web page load. (Note that if already in db cache, pulling the 1,000 students might actually take much less than 1
second, as the results return from the database in large batches.)

Some general rules on when to embed, and when to reference:

"First class" objects, that are at top level, typically have their own collection.

Line item detail objects typically are embedded.

Objects which follow an object modelling "contains" relationship should generally be embedded.

Many to many relationships are generally by reference.

Collections with only a few objects may safely exist as separate collections, as the whole collection is quickly cached in application server

memory.

®* Embedded objects are harder to reference than "top level" objects in collections, as you cannot have a DBRef to an embedded object (at
least not yet).

® |tis more difficult to get a system-level view for embedded objects. For example, it would be easier to query the top 100 scores across all
students if Scores were not embedded.
If the amount of data to embed is huge (many megabytes), you may reach the limit on size of a single object.

® |f performance is an issue, embed.

Use Cases

Let's consider a few use cases now.
1. Customer / Order / Order Line-ltem
® order s should be a collection. cust onmer s a collection. line-items should be an array of line-items embedded in the or der object.
1. Blogging system.

® post s should be a collection. post aut hor might be a separate collection, or simply a field within posts if only an email address.
comment s should be embedded objects within a post for performance.

Index Selection

A second aspect of schema design is index selection. As a general rule, where you want an index in a relational database, you want an index in
Mongo.

® The _i d field is automatically indexed.
® Fields upon which keys are looked up should be indexed.
® Sort fields generally should be indexed.

The MongoDB profiling facility provides useful information for where an index should be added that is missing.

Note that adding an index slows writes to a collection, but not reads. Use lots of indexes for collections with a high read : write ratio (assuming
one does not mind the storage overage). For collections with more writes than reads, indexes are very expensive.

How Many Collections?

As Mongo collections are polymorphic, one could have a collection obj ect s and put everything in it! This approach is taken by some object
databases. For performance reasons, we do not recommend this approach. Data within a Mongo collection tends to be contiguous on disk. Thus,
table scans of the collection are possible, and efficient. Collections are very important for high throughput batch processing.

See Also

Schema Design talk from MongoNY
DBRef

Trees in MongoDB

MongoDB Data Modeling and Rails
Next: Advanced Queries

Trees in MongoDB

* Patterns
® Full Tree in Single Document

Parent Links

Child Links

Array of Ancestors

Materialized Paths (Full Path in Each Node)
® acts_as_nested_set

® See Also

The best way to store a tree usually depends on the operations you want to perform; see below for some different options. In practice, most
developers find that one of the "Full Tree in Single Document”, "Parent Links", and "Array of Ancestors" patterns works best.

Patterns

Full Tree in Single Document

P i
: comments: [i
{by: "mathias", text: "...", replies: []}
{by: "eliot", text: "...", replies: [
{by: "mike", text: "...", replies: []}
; 1} |
C] e
) |

® Single document to fetch per page
® One location on disk for whole tree
® You can see full structure easily

® Hard to search
® Hard to get back partial results
® Can get unwieldy if you need a huge tree (there is a 4MB per doc limit)

Parent Links

Storing all nodes in a single collection, with each node having the id of its parent, is a simple solution. The biggest problem with this approach is
getting an entire subtree requires several query turnarounds to the database (or use of db.eval).

>t = db.treel;

> t.find()

{"_id" : 1}

{"_id" 2, "parent" 11}
{ "_id" 3, "parent" : 11}
{"_id" 4, "parent" : 2}
{ "_id" 5, "parent" : 4}
{ "_id" 6, "parent” 4}

> [/ find children of node 4
> t.ensurel ndex({parent:1})
> t.find({parent : 4})

{ "_id" : 5, "parent"

4
{ "_id" : 6, "parent" 4

[N

http://www.blip.tv/file/3704083

Child Links

Another option is storing the ids of all of a node's children within each node's document. This approach is fairly limiting, although ok if no
operations on entire subtrees are necessary. It may also be good for storing graphs where a node has multiple parents.

>t = db.tree2

> t.find()

{ "_id" : 1, "children" : [2, 3] }
{ "_id" 2}

{ "_id" : 3, "children" : [41 }

{ "_id": 4}

> t.findOne({_id:3}).children
[4]

> // find i mediate parent of node 3
> t.ensurel ndex({children:1})

> t.find({children:3})

{ "_id" : 1, "children" : [2, 3] }

> // find inmediate children of node 3

Array of Ancestors

Here we store all the ancestors of a node in an array. This makes a query like "get all descendents of x" fast and easy.

> t.find()

{ "_id" : "a" }

{ "_id" : "b", "ancestors" ["a"], "parent" : "a" }

{ "_id" : "c¢", "ancestors" ["a", "b"], "parent" : "b" }

{ "_id" : "d", "ancestors" ["a", "b"], "parent" : "b" }

{ "_id" : "e", "ancestors" ["a"], "parent" : "a" }

{ "_id" : "f", "ancestors" ["a", "e"], "parent" : "e" }

{ "_id" : "g", "ancestors" ["a", "b", "d"], "parent" : "d" }
> t.ensurelndex({ ancestors : 1})

> // find all descendents of b:

> t.find({ ancestors : 'b' })

{ "_id" : "c¢", "ancestors" : ["a", "b"], "parent" : "b" }
{ "_id" : "d", "ancestors" : ["a", "b"], "parent" : "b" }
{ "_id" "g", "ancestors" : ["a", "b", "d"], "parent" : "d" }
> [/ get all ancestors of f:

> anc = db.nytree.findOne({_id:"'f"'}).ancestors

["a", "e"]

> db.nytree.find({ _id: { $in: anc } })

{ "_id" : "a"

{ "_id" : "e", "ancestors" : ["a"], "parent" : "a" }

ensurelndex and MongoDB's multikey feature makes the above queries efficient.

In addition to the ancestors array, we also stored the direct parent in the node to make it easy to find the node's immediate parent when that is
necessary.

Materialized Paths (Full Path in Each Node)
Materialized paths make certain query options on trees easy. We store the full path to the location of a document in the tree within each node.
Usually the "array of ancestors" approach above works just as well, and is easier as one doesn't have to deal with string building, regular

expressions, and escaping of characters. (Theoretically, materialized paths will be slightly faster.)

The best way to do this with MongoDB s to store the path as a string and then use regex queries. Simple regex expressions beginning with "A"
can be efficiently executed. As the path is a string, you will need to pick a delimiter character -- we use ', below. For example:

http://en.wikipedia.org/wiki/Materialized_path

>

{

>

I/ or if its path not already known:

i >t =db.tree
test.tree
> /] get entire tree -- we use sort() to nmake the order nice
i > t.find().sort({path:1})
{ "_id" : "a", "path" : "a," }
{ "_id" : "b", "path" : "a,b," }
oo o"_id* : "c", "path" : "a,b,c," }
{ "_id" : "d", "path" : "a,b,d, " }
{ "_id" : "g", "path" : "a,b,qg," }
o ot_idt e, "path" : "a,e," }
{ "_id" : "f", "path" : "a,e,f," }
{ "_id" : "g", "path" : "a,b,g," }
! > t.ensurelndex({path:1})
> [/ find the node 'b' and all its descendents:
[>t.find({ path : /~a, b,/ })
¢ { "_id" : "b", "path" : "a,b," }
{ "_id" : "c¢", "path" : "a,b,c," }
{ "_id" : "d", "path" : "a,b,d, " }
{ "_id" : "g", "path" : "a,b,g," }
: b=t.findone({ _id: "b" })

"id" o "b", "path" : "a,b," }

| t.find({ path : new RegExp("”" + b.path) })

: "_id" : "b", "path" : "a,b," }

"_id" : "c", "path" : "a,b,c," }

“_id" o o*d", "path" : "a,b,d, " }

"_id" : "g", "path" : "a,b,g," }

Ruby example: http://github.com/banker/newsmonger/blob/master/app/models/comment.rb

acts_as_nested_set

See http://api.rubyonrails.org/classes/ActiveRecord/Acts/NestedSet/ClassMethods.html

This pattern is best for datasets that rarely change as modifications can require changes to many documents.

See Also

® Sean Cribbs blog post (source of several ideas on this page).

Optimization

Additional Articles
Optimizing A Simple Example
® Optimization #1: Create an index
® Optimization #2: Limit results
® Optimization #3: Select only relevant fields
Using the Profiler
Optimizing Statements that Use count ()
Increment Operations
Circular Fixed Size Collections
Server Side Code Execution
Explain
Hint
See Also

Additional Articles

Optimi

Optimizing Object IDs
Optimizing Storage of Small Objects

zing A Simple Example

http://github.com/banker/newsmonger/blob/master/app/models/comment.rb
http://api.rubyonrails.org/classes/ActiveRecord/Acts/NestedSet/ClassMethods.html
http://seancribbs.com/tech/2009/09/28/modeling-a-tree-in-a-document-database/

This section describes proper techniques for optimizing database performance.

Let's consider an example. Suppose our task is to display the front page of a blog - we wish to display headlines of the 10 most recent posts. Let's
assume the posts have a timestamp field t s.

The simplest thing we could write might be:

articles = db.posts.find().sort({ts:-1}); // get blog posts in reverse time order

for (var i=0; i< 10; i++) {
print(articles[i].getSummary());

Optimization #1: Create an index

Our first optimization should be to create an index on the key that is being used for the sorting:

With an index, the database is able to sort based on index information, rather than having to check each document in the collection directly. This
is much faster.

Optimization #2: Limit results

MongoDB cursors return results in groups of documents that we'll call ‘chunks'. The chunk returned might contain more than 10 objects - in some
cases, much more. These extra objects are a waste of network transmission and resources both on the app server and the database.

As we know how many results we want, and that we do not want all the results, we can use the | i m t () method for our second optimization.

articles = db.posts.find().sort({ts:-1}).1imt(10); // 10 results maxi mum

Now, we'll only get 10 results returned to client.
Optimization #3: Select only relevant fields

The blog post object may be very large, with the post text and comments embedded. Much better performance will be achieved by selecting only
the fields we need:

articles = db.posts.find({}, {ts:1,title:1,author:1,abstract:1}).sort({ts:-1}).1imt(10);
articles.forEach(function(post) { print(post.getSumrary()); });

The above code assumes that the get Summar y() method only references the fields listed in the fi nd() method.

Note if you fetch only select fields, you have a partial object. An object in that form cannot be updated back to the database:
i a_post = db.posts.findOne({}, Post.sumraryFields); :
i a_post.x = 3

db. posts. save(a_post); // error, exception thrown

Using the Profiler

MongoDB includes a database profiler which shows performance characteristics of each operation against the database. Using the profiler you
can find queries (and write operations) which are slower than they should be; use this information, for example, to determine when an index is
needed. See the Database Profiler page for more information.

Optimizing Statements that Use count ()

To speed operations that rely on count (), create an index on the field involved in the count query expression.

db. post s. ensur el ndex({aut hor: 1});
db. posts. find({author:"george"}).count();

Increment Operations

MongoDB supports simple object field increment operations; basically, this is an operation indicating "increment this field in this document at the
server". This can be much faster than fetching the document, updating the field, and then saving it back to the server and are particularly useful
for implementing real time counters. See the Updates section of the Mongo Developers' Guide for more information.

Circular Fixed Size Collections

MongoDB provides a special circular collection type that is pre-allocated at a specific size. These collections keep the items within well-ordered
even without an index, and provide very high-speed writes and reads to the collection. Originally designed for keeping log files - log events are
stored in the database in a circular fixed size collection - there are many uses for this feature. See the Capped Collections section of the Mongo
Developers' Guide for more information.

Server Side Code Execution

Occasionally, for maximal performance, you may wish to perform an operation in process on the database server to eliminate client/server
network turnarounds. These operations are covered in the Server-Side Processing section of the Mongo Developers' Guide.

Explain

A great way to get more information on the performance of your database queries is to use the $expl ai n feature. This will display "explain plan"
type info about a query from the database.

When using the mongo - The Interactive Shell, you can find out this "explain plan” via the expl ai n()) function called on a cursor. The result will
be a document that contains the "explain plan”.

Q
=
o
e
0]
o
—~
o
>
-
]
Qo
~
Qo
c
0]
=
<
-
[¢]
x
=3
=3
>
~
-

oA
! "cursor" : "BasicCursor", !
"i ndexBounds" : [],
"nscanned" : 57594,
i "nscanned(bj ects" : 57594, :
ST |
| “millis" : 108 i
P :

This will tell you the type of cursor used (Bt r eeCur sor is another type — which will include a lower & upper bound), the number of records the
DB had to examine as part of this query, the number of records returned by the query, and the time in milliseconds the query took to execute.

Hint

While the mongo query optimizer often performs very well, explicit "hints" can be used to force mongo to use a specified index, potentially
improving performance in some situations. When you have a collection indexed and are querying on multiple fields (and some of those fields are
indexed), pass the indexe as a hint to the query. You can do this in two different ways. You may either set it per query, or set it for the entire

collection.

To set the hint for a particular query, call the hi nt () function on the cursor before accessing any data, and specify a document with the key to be
used in the query:

db. col l ection.find({user:u, foo:d}).hint({user:1});

r

Be sure to Index
For the above hints to work, you need to have run ensur el ndex() to index the collection on the user field.

To force the query optimizer to not use indexes (do a table scan), use:

> db. col l ection. find().hint({$natural:1})

See Also

® Query Optimizer
® currentOp()
® Sorting and Natural Order

Optimizing Object IDs
The _id field in MongoDB objects is very important and is always indexed. This page lists some recommendations.
Use the collections 'natural primary key' in the _id field.

_id's can be any type, so if your objects have a natural unique identifier, consider using that in _id to both save space and avoid an additional
index.

Use _id values that are roughly in ascending order.

If the _id's are in a somewhat well defined order, on inserts the entire b-tree for the _id index need not be loaded. BSON Objectlds are allocated
in a manner such that they have this property.

Store GUIDs as BinData, rather than as strings

BSON includes a binary data datatype for storing byte arrays. Using this will make the id values, and their respective keys in the _id index, twice
as small.

Note that unlike the BSON Object ID type (see above), most UUIDs do not have a rough ascending order, which creates additional caching needs
for their index.

> # nongo shell bindata info:
> hel p nisc

b = new Bi nDat a(subt ype, base64str) create a BSON Bi nData val ue

b

b. 1 ength() length of the BinData data in bytes
b. hex() the data as a hex encoded string

b. base64() the data as a base 64 encoded string
b.toString()

- subtype() the BinData subtype (O..255)

Optimizing Storage of Small Objects
MongoDB records have a certain amount of overhead per object (BSON document) in a collection. This overhead is normally insignificant, but if

your objects are tiny (just a few bytes, maybe one or two fields) it would not be. Below are some suggestions on how to optimize storage
efficiently in such situations.

Using the _id Field Explicitly

Mongo automatically adds an object ID to each document and sets it to a unique value. Additionally this field in indexed. For tiny objects this
takes up significant space.

The best way to optimize for this is to use _id explicitly. Take one of your fields which is unique for the collection and store its values in _id. By
doing so, you have explicitly provided IDs. This will effectively eliminate the creation of a separate _id field. If your previously separate field was
indexed, this eliminates an extra index too.

Using Small Field Names

Consider a record

i { last_nane : "Snith", best_score: 3.9 }

i { Iname : "Snith", score: 3.9}

Would save 9 bytes per document. This of course reduces expressiveness to the programmer and is not recommended unless you have a
collection where this is of significant concern.

Field names are not stored in indexes as indexes have a predefined structure. Thus, shortening field names will not help the size of indexes. In

http://www.bsonspec.org/

general it is not necessary to use short field names.
Combining Objects

Fundamentally, there is a certain amount of overhead per document in MongoDB. One technique is combining objects. In some cases you may
be able to embed objects in other objects, perhaps as arrays of objects. If your objects are tiny this may work well, but will only make sense for
certain use cases.

Query Optimizer

The MongoDB query optimizer generates query plans for each query submitted by a client. These plans are executed to return results. Thus,
MongoDB supports ad hoc queries much like say, MySQL.

The database uses an interesting approach to query optimization though. Traditional approaches (which tend to be cost-based and statistical) are
not used, as these approaches have a couple of problems.

First, the optimizer might consistently pick a bad query plan. For example, there might be correlations in the data of which the optimizer is
unaware. In a situation like this, the developer might use a query hint.

Also with the traditional approach, query plans can change in production with negative results. No one thinks rolling out new code without testing
is a good idea. Yet often in a production system a query plan can change as the statistics in the database change on the underlying data. The
query plan in effect may be a plan that never was invoked in QA. If it is slower than it should be, the application could experience an outage.

The Mongo query optimizer is different. It is not cost based -- it does not model the cost of various queries. Instead, the optimizer simply tries
different query plans and learn which ones work well. Of course, when the system tries a really bad plan, it may take an extremely long time to
run. To solve this, when testing new plans, MongoDB executes multiple query plans in parallel. As soon as one finishes, it terminates the other
executions, and the system has learned which plan is good. This works particularly well given the system is non-relational, which makes the
space of possible query plans much smaller (as there are no joins).

Sometimes a plan which was working well can work poorly -- for example if the data in the database has changed, or if the parameter values to
the query are different. In this case, if the query seems to be taking longer than usual, the database will once again run the query in parallel to try
different plans.

This approach adds a little overhead, but has the advantage of being much better at worst-case performance.
See Also

® MongoDB hint() and explain() operators

Querying

One of MongoDB's best capabilities is its support for dynamic (ad hoc) queries. Systems that support dynamic queries don't require any special
indexing to find data; users can find data using any criteria. For relational databases, dynamic queries are the norm. If you're moving to MongoDB
from a relational databases, you'll find that many SQL queries translate easily to MongoDB's document-based query language.

® Query Expression Objects
® Query Options
Field Selection
Sorting
Skip and Limit

® slaveOk
Cursors
More info
Quick Reference Card
See Also

Query Expression Objects

MongoDB supports a number of query objects for fetching data. Queries are expressed as BSON documents which indicate a query pattern. For
example, suppose we're using the MongoDB shell and want to return every document in the user s collection. Our query would look like this:

. db. users. find({})

db. users. find({'last_name': 'Snith'})

Here our selector will match every document where the | ast _nane attribute is 'Smith.’'

MongoDB support a wide array of possible document selectors. For more examples, see the MongoDB Tutorial or the section on Advanced
Queries. If you're working with MongoDB from a language driver, see the driver docs:

Query Options
Field Selection
In addition to the query expression, MongoDB queries can take some additional arguments. For example, it's possible to request only certain

fields be returned. If we just wanted the social security numbers of users with the last name of 'Smith,' then from the shell we could issue this
query:

Il retrieve ssn field for docunents where |ast_nanme == '"Smth':
db.users.find({last_nane: 'Smith'}, {'ssn': 1});

Il retrieve all fields *except* the thunbnail field, for all docunents:
db. users.find({}, {thunbnail:0});

Note the _i d field is always returned even when not explicitly requested.

Sorting

MongoDB queries can return sorted results. To return all documents and sort by last name in ascending order, we'd query like so:

db. users.find({}).sort({last_nane: 1});

Skip and Limit

MongoDB also supports skip and limit for easy paging. Here we skip the first 20 last names, and limit our result set to 10:

db. users. find().skip(20).1imt(10);
i db.users.find({}, {}, 10, 20); // sane as above, but |ess clear

slaveOk

When querying a replica pair or replica set, drivers route their requests to the master mongod by default; to perform a query against an
(arbitrarily-selected) slave, the query can be run with the slaveOk option. Here's how to do so in the shell:

db. get Mongo() . set Sl aveCk(); // enable querying a slave
i db.users.find(...) H

Note: some language drivers permit specifying the slaveOk option on each find(), others make this a connection-wide setting. See your
language's driver for details.

Cursors

Database queries, performed with the find() method, technically work by returning a cursor. Cursors are then used to iteratively retrieve all the
documents returned by the query. For example, we can iterate over a cursor in the mongo shell like this:

> var cur = db.exanple.find();
> cur.forEach(function(x) { print(tojson(x))});

{"n" 1, "_id" : "497ce96f 395f 2f 052a494f d4"}
{"n* 2, "_id" : "497ce971395f 2f 052a494f d5"}
{"n* 3, "_id" : "497ce973395f 2f 052a494f d6"}
>

More info

This was just an introduction to querying in Mongo. For the full details please look in at the pages in the "Querying" sub-section to the right of your
screen.

Quick Reference Card

Download the Query and Update Modifier Quick Reference Card

See Also

® Queries and Cursors
® Advanced Queries
® Query Optimizer

Mongo Query Language

Queries in MongoDB are expressed as JSON (BSON). Usually we think of query object as the equivalent of a SQL "WHERE" clause:

> db.users.find({ x : 3, y : "abc" }).sort({x:1}); // select * fromusers where x=3 and y='abc’
i order by x asc; :

However, the MongoDB server actually looks at all the query parameters (ordering, limit, etc.) as a single object. In the above example from the
mongo shell, the shell is adding some syntactic sugar for us. Many of the drivers do this too. For example the above query could also be written:

> db.users.find({ $query : { x : 3, y : "abc" }, $orderby : { x : 1} });

The possible specifies in the query object are:

® $query - the evaluation or "where" expression

® S$orderby - sort order desired

® $hint - hint to query optimizer

® S$explain - if true, return explain plan results instead of query results
® S$snapshot - if true, "snapshot mode"

Retrieving a Subset of Fields

By default on a find operation, the entire object is returned. However we may also request that only certain fields be returned. This is somewhat
analogous to the list of column specifiers in a SQL SELECT statement (projection). Regardless of what field specifiers are included, the _i d field
is always returned.

/'l select z fromthings where x="john"
db.things.find({ x : "john" }, { z : 11});

Field Negation

We can say "all fields except x" — for example to remove specific fields that you know will be large:

/1 get all posts about 'tennis' but w thout the cooments field
db. posts.find({ tags : '"tennis' }, { coments : 0});

Dot Notation

You can retrieve partial sub-objects via Dot Notation.

{o>t.find({})
Po{ " _id" : Objectld("4c23f0486dad1lc3a68457d20"), "x" : { "y" : 1, "z" : [1, 2, 311} }
o> tofind({}, {"x.y' :1})

i { "_id" : Objectld("4c23f0486dad1c3a68457d20"), "x" : { "y" : 1} }

http://www.10gen.com/reference

Retrieving a Subrange of Array Elements

You can use the $slice operator to retrieve a subrange of elements in an array.

', New in MongoDB 1.5.1

db. posts.find({}, {coments:{$slice: 5}}) // first 5 comments
.posts.find({}, {coments:{$slice: -5}}) // last 5 comments

db. posts.find({}, {coments:{$slice: [20, 10]}}) // skip 20, limt 10

db. posts.find({}, {coments:{$slice: [-20, 10]}}) // 20 fromend, limt 10

Q
o

See Also

® example slicel

Advanced Queries

® Introduction
® Retrieving a Subset of Fields
® S$slice operator
® Conditional Operators
& < <= > >=
$ne
$in
$nin
$mod
$all
$size
$exi sts
$type
* Sor
® Regular Expressions
Value in an Array
* $elemMatch
Value in an Embedded Object
Meta operator: $not
Javascript Expressions and $wher e
Cursor Methods
® sort()
® limit()
* skip()
® snapshot ()
® count()
* group()
® Special operators
® See Also

Introduction

MongoDB offers a rich query environment with lots of features. This page lists some of those features.
Queries in MongoDB are represented as JSON-style objects, very much like the documents we actually store in the database. For example:

/1 i.e., select * fromthings where x=3 and y="fo00"
db.things.find({ x : 3, y: "foo" });

Note that any of the operators on this page can be combined in the same query document. For example, to find all document where j is not equal
to 3 and k is greater than 10, you'd query like so:

db.things.find({j: {$ne: 3}, k: {$gt: 10} });

Retrieving a Subset of Fields

By default on a find operation, the entire document/object is returned. However we may also request that only certain fields are returned. Note

http://github.com/mongodb/mongo/tree/master/jstests/slice1.js

that the _id field is always returned automatically.

Il select z fromthings where x=3
db.things.find({ x: 3}, { z: 1});

/1 get all posts about nongodb w t hout comments
db. posts.find({ tags : 'nongodb' }, { comments : 0});

$slice operator

/" New in MongoDB 1.5.1

You can use the $slice operator to retrieve a subset of elements in an array.

db. posts.find({}, {comments:{$slice: 5}}) // first 5 conments

db. posts.find({}, {comments:{$slice: -5}}) // last 5 coments

db. posts.find({}, {conmments:{$slice: [20, 10]}}) // skip 20, limt 10

db. posts.find({}, {coments:{$slice: [-20, 10]}}) // 20 fromend, limt 10

More examples at example slicel
Conditional Operators
<, <=, >, >=

Use these special forms for greater than and less than comparisons in queries, since they have to be represented in the query document:

db.collection.find({ "field" { $gt: value } }); /1 greater than : field > value
db.collection. find({ "field" : { $lt: value } }); // less than : field < value
i db.collection.find({ "field" : { $gte: value } }); // greater than or equal to : field >= value i
db.collection. find({ "field" : { $lte: value } }); // less than or equal to : field <= value
For example
. db.things.find({j : {$It: 3}});
i db.things.find({j : {$gte: 4}});
You can also combine these operators to specify ranges:
i db.collection.find({ "field : { $gt: valuel, $It: value2 } }); /1 valuel < field < val ue §
$ne
Use $ne for "not equals".
{ db.things.find({ x : { $ne : 3} });

$in

The $i n operator is analogous to the SQL I N modifier, allowing you to specify an array of possible matches.

db.collection.find({ "field" : { $in: array } });

http://github.com/mongodb/mongo/tree/master/jstests/slice1.js

Let's consider a couple of examples. From our things collection, we could choose to get a subset of documents based upon the value of the 'j'
key:

db.things.find({j:{$in: [2,4,6]}});

Suppose the collection updat es is a list of social network style news items; we want to see the 10 most recent updates from our friends. We
might invoke:

db. updates. ensurelndex({ ts : 1}); // ts == tinestanp

var nyFriends = nmyUseroject.friends; // let's assune this gives us an array of DBRef's of my friends
var | atestUpdatesForMe = db.updates.find({ user : { $in: nyFriends } }).sort({ ts : -1}

). limt(10);

$nin

The $ni n operator is similar to $i n except that it selects objects for which the specified field does not have any value in the specified array. For
example

db.things.find({j:{$nin: [2,4,6]}});

would match {j : 1, b: 2} butnot {j : 2, c: 9}.
$mod

The $nod operator allows you to do fast modulo queries to replace a common case for where clauses. For example, the following $where query:

{ db.things.find("this.a %10 == 1")

© db.things.find({ a: { $mod: [10, 1] } }) i

$all

The $al | operator is similar to $i n, but instead of matching any value in the specified array all values in the array must be matched. For
example, the object

a1 2 3]) i

" db.things.find({ a { $all: [2, 3]} }); i
but not
" db.things.find({ a: { $all: [2 3 4]} }); 5

An array can have more elements than those specified by the $al | criteria. $al | specifies a minimum set of elements that must be matched.

$size

The $si ze operator matches any array with the specified number of elements. The following example would match the object {a: ["f 00"] },
since that array has just one element:

| db.things.find({ a: { $size: 1} });

You cannot use $si ze to find a range of sizes (for example: arrays with more than 1 element). If you need to query for a range, create an extra

si ze field that you increment when you add elements.

$exi sts

Check for existence (or lack thereof) of a field.

db.things.find({ a: { $exists : true } }); // return object if a is present
db.things.find({ a: { $exists : false } }); // returnif ais missing

@ Currently $exists is not able to use an index. Indexes on other fields are still used.

$t ype
The $t ype operator matches values based on their BSON type.

db.things.find({ a: { $type: 2} }); // matches if a is a string
db.things.find({ a: { $type: 16 } }); // matches if ais an int

Possible types are:

Type Name Type Number
Double 1
String 2
Object 3
Array 4
Binary data 5
Object id 7
Boolean 8
Date 9
Null 10
Regular expression 11
JavaScript code 13
Symbol 14

JavaScript code with scope 15

32-bit integer 16
Timestamp 17
64-bit integer 18
Min key 255
Max key 127

For more information on types and BSON in general, see http://www.bsonspec.org.

$or

The $or operator lets you use a boolean or expression to do queries. You give $or a list of expressions, any of which can satisfy the query.

!, New in MongoDB 1.5.3

http://bsonspec.org
http://www.bsonspec.org

db.foo.find({ name : "bob" , $or : [{ a: 1}, {b:2}11})

The $or operator retrieves matches for each or clause individually and eliminates duplicates when returning results. A number of $or
optimizations are planned for 1.8. See this thread for details.

Regular Expressions

You may use regexes in database query expressions:
{ db.customers.find({ name : /acme.*corp/i });

For simple prefix queries (also called rooted regexps) like / ~pr ef i x/ , the database will use an index when available and appropriate (much like
most SQL databases that use indexes for a LI KE ' prefi x% expression). This only works if you don't have i (case-insensitivity) in the flags.

v, While/"a/,/"a.*/,and/"a. *$/ are equivalent and will all use an index in the same way, the later two require scanning the
whole string so they will be slower. The first format can stop scanning after the prefix is matched.

MongoDB uses PCRE for regular expressions. Valid flags are:

® | - Case insensitive. Letters in the pattern match both upper and lower
case letters.

®* m- Multiline. By default, Mongo treats the subject string as consisting of a single line of characters (even if it actually contains newlines).
The "start of line" metacharacter (*) matches only at the start of the string, while the "end of line" metacharacter ($) matches only at the
end of the string, or before a terminating newline.
When mit is set, the "start of line" and "end of line" constructs match immediately following or immediately before internal newlines in the
subject string, respectively, as well as at the very start and end. If there are no newlines in a subject string, or no occurrences of ~ or $ in
a pattern, setting mhas no effect.

® x - Extended. If set, whitespace data characters in the pattern are totally ignored except when escaped or inside a character class.
Whitespace does not include the VT character (code 11). In addition, characters between an unescaped # outside a character class and
the next newline, inclusive, are also ignored.
This option makes it possible to include comments inside complicated patterns. Note, however, that this applies only to data characters.
Whitespace characters may never appear within special character sequences in a pattern, for example within the sequence (?(which
introduces a conditional subpattern.

Value in an Array

To look for the value "red" in an array field col or s:

db.things.find({ colors : "red" });
That is, when "colors" is inspected, if it is an array, each value in the array is checked. This technique may be mixed with the embedded object
technique below.

$elemMatch

Version 1.3.1 and higher.

Use $elemMatch to check if an element in an array matches the specified match expression.

>t.find({ x: { $elemvatch : { a: 1, b: { $gt : 1} } } })
{ " id" : Objectld("4b5783300334000000000aa9"),
X" o[{"a : 1, "b": 3}, 7, {"b": 99}, { "a : 111}]

Note that a single array element must match all the criteria specified; thus, the following query is semantically different in that each criteria can
match a different element in the x array:

http://groups.google.com/group/mongodb-user/browse_thread/thread/e5f73b489e52cc13#
http://www.pcre.org/pcre.txt

>t.find({ "x.a" @ 1, "x.b" : { $gt : 1} })

See the dot notation page for more.

Value in an Embedded Object

For example, to look aut hor . nane=="j oe" in a postings collection with embedded author objects:

o

(D_
-~
-

db. postings.find({ "author.nane"

See the dot notation page for more.

Meta operator: $not
Version 1.3.3 and higher.

The $not meta operator can be used to negate the check performed by a standard operator. For example:

db. custoners.find({ name : { $not : /acne.*corp/i } });
© db.things.find({ a: { $not : { $mod : [10, 1] } } });

‘1, $notis not supported for regular expressions specified using the {$r egex: ...} syntax. When using $not, all regular
expressions should be passed using the native BSON type (e.g. {" $not": re. conpi |l e("acne. *corp") } in PyMongo)

Javascript Expressions and $wher e

In addition to the structured query syntax shown so far, you may specify query expressions as Javascript. To do so, pass a string containing a
Javascript expression to f i nd() , or assign such a string to the query object member $wher e. The database will evaluate this expression for
each object scanned. When the result is true, the object is returned in the query results.

For example, the following statements all do the same thing:

db. nmyCol lection.find({ a: { $gt: 3} });

db. nyCol l ection.find({ $where: "this.a > 3" });

db. nyCol l ection.find("this.a > 3");

f = function() { return this.a > 3; } db.nyCollection.find(f);

Javascript executes more slowly than the native operators listed on this page, but is very flexible. See the server-side processing page for more
information.

Cursor Methods

sort ()

sort () is analogous to the ORDER BY statement in SQL - it requests that items be returned in a particular order. We pass sort () akey
pattern which indicates the desired order for the result.

i db.nmyCol lection.find().sort({ ts: -1}); // sort by ts, descending order

sort () may be combined with the | i mi t () function. In fact, if you do not have a relevant index for the specified key pattern, [i m t () is
recommended as there is a limit on the size of sorted results when an index is not used. Withouta | i mi t (), or index, a full in-memory sort must
be done but by usingali m t () it reduces the memory and increases the speed of the operation by using an optimized sorting algorithm.

limt()

I'imt() isanalogous to the LIMIT statement in MySQL: it specifies a maximum number of results to return. For best performance, use | i mi t ()
whenever possible. Otherwise, the database may return more objects than are required for processing.

db. students.find().linmt(10).forEach(function(student) { print(student.name + "<p>"); });

‘1, Inthe shell (and most drivers), a limit of 0 is equivalent to setting no limit at all.

ski p()
The ski p() expression allows one to specify at which object the database should begin returning results. This is often useful for implementing

"paging". Here's an example of how it might be used in a JavaScript application:

i function printStudents(pageNunber, nPerPage) { H
! print("Page: " + pageNunber); !
db. students. find().ski p((pageNunber-1)*nPerPage).|imt(nPerPage).forEach(function(student) {
! print(student.name + "<p>"); });

snapshot ()

Indicates use of snapshot mode for the query. Snapshot mode assures no duplicates are returned, or objects missed, which were present at both
the start and end of the query's execution (even if the object were updated). If an object is new during the query, or deleted during the query, it
may or may not be returned, even with snapshot mode.

Note that short query responses (less than 1MB) are always effectively snapshotted.

Currently, snapshot mode may not be used with sorting or explicit hints.

count ()

The count () method returns the number of objects matching the query specified. It is specially optimized to perform the count in the MongoDB
server, rather than on the client side for speed and efficiency:

Note that you can achieve the same result with the following, but the following is slow and inefficient as it requires all documents to be put into
memory on the client, and then counted. Don't do this:

nstudents = db.students.find({' address.state' : 'CA' }).toArray().length; // VERY BAD: slow and uses
excess nenory

On a query using skip() and limit(), count ignores these parameters by default. Use count(true) to have it consider the skip and limit values in the
calculation.

{ n = db. students.find().skip(20).1init(10).count(true); §

group()

The gr oup() method is analogous to GROUP BY in SQL. gr oup() is more flexible, actually, allowing the specification of arbitrary reduction
operations. See the Aggregation section of the Mongo Developers' Guide for more information.

Special operators

Only return the index key:

db. foo. find()._addSpeci al ("$returnKey" , true)

Limit the number of items to scan:

db. foo.find()._addSpecial ("$query" : {x : {$It : 5}})
/] sane as
db.foo.find({x : {$It : 5}})

...

...

db. foo.find()._addSpecial ("$orderby", {x : -1})
!/ sanme as
db. foo.find().sort({x:-1})

...

db. foo.find()._addSpecial ("$explain", true)
/] sane as
db. foo. find().explain()

db. foo.find()._addSpecial ("$snapshot", true)
/]l sane as
db. foo. find().snapshot ()

...

db. foo.find()._addSpecial ("$mn" , {x: -20})._addSpecial ("$max" , { x : 200 })

db. foo.find()._addSpecial ("$hint", {_id : 1})

See Also

* Optimizing Queries (including explain() and hint())

Dot Notation (Reaching into Objects)

® Dot Notation vs. Subobjects
® Array Element by Position
® Matching with $elemMatch

MongoDB is designed for store JSON-style objects. The database understands the structure of these objects and can reach into them to evaluate

query expressions.

Let's suppose we have some objects of the form:

i > db. persons. findOne() :
{ nanme: "Joe", address: { city: "San Francisco", state: "CA" } ,
i likes: ["scuba', 'math', 'literature'] } :

> db. persons. find({ nane Joe" })

But what about when we need to reach into embedded objects and arrays? This involves a bit different way of thinking about queries than one
would do in a traditional relational DBMS. To reach into embedded objects, we use a "dot notation":

> db. persons. find({ "address.state" "CA" 1) !

Reaching into arrays is implicit: if the field being queried is an array, the database automatically assumes the caller intends to look for a value
within the array:

> db. persons.find({ likes "math" })

> db. bl ogpost s. fi ndOne()
{ title: "Wy First Post", author: "Jane",
comments : [{ by: "Abe", text: "First" },
{ by : "Ada", text : "Good post" }]

> db. bl ogposts.find({ "comments.by" : "Ada" })

db. persons. ensurel ndex({ "address.state"
db. bl ogpost s. ensurel ndex({ "comments. by"

Dot Notation vs. Subobjects

Suppose there is an author id, as well as name. To store the author field, we can use an object:

> db. bl og. save({ title : "My First Post", author: {name : "Jane", id : 1}})

> db. bl og. fi ndOne({" aut hor. nane" Jane"})

db. bl og. fi ndOne({"author" : {"nane" : "Jane", "id" : 1}})
Note that
db. bl og. fi ndOne({"author” : {"nane" : "Jane"}})

will not match, as subobjects have to match exactly (it would match an object with one field: {" nane" : "Jane"}). Note that the embedded
document must also have the same key order, so:

will not match, either. This can make subobject matching unwieldy in languages whose default document representation is unordered.

Array Element by Position

Array elements also may be accessed by specific array position:

Il i.e. comrents[0].by == "Abe"
> db. bl ogposts. find({ "coments.0.by" : "Abe" })

(The above examples use the mongo shell's Javascript syntax. The same operations can be done in any language for which Mongo has a driver
available.)

Matching with $elemMatch

Using the $elemMatch query operator (mongod >= 1.3.1), you can match an entire document within an array. This is best illustrated with an
example. Suppose you have the following two documents in your collection:

/1 Docunent 1
{ "foo" : [
{
"shape" : "square",
"color" : "purple",
"thick" : false
1,
{
"shape" : "circle",
"color" : "red",
"thick" : true

/1 Docunent 2
{ "foo" : [
{
"shape" : "square",
"color" : "red",
"thick" : true

"shape" : "circle",
"color"™ : "purple",
"thick" : false

db. foo.find({"foo.shape": "square", "foo.color": "purple"})

The problem with this query is that it will match the second in addition to matching the first document. In other words, the standard query syntax
won't restrict itself to a single document within the f oo array. As mentioned above, subobjects have to match exactly, so

db. foo.find({foo: {"shape": "square", "color": "purple"} })

won't help either, since there's a third attribute specifying thickness.

To match an entire document within the foo array, you need to use $elemMatch. To properly query for a purple square, you'd use $elemMatch like
S0:

db. foo.find({foo: {"$el emvatch": {shape: "square", color: "purple"}}})

The query will return the first document, which contains the purple square you're looking for.

Full Text Search in Mongo

Introduction

Multikeys (Indexing Values in an Array)
Text Search

Comparison to Full Text Search Engines
Real World Examples

Introduction
Mongo provides some functionality that is useful for text search and tagging.
Multikeys (Indexing Values in an Array)

The Mongo multikey feature can automatically index arrays of values. Tagging is a good example of where this feature is useful. Suppose you
have an article object/document which is tagged with some category names:

i obj ={ i
! name: "Apollo", 1
text: "Sonme text about Apollo noon |andings",
tags: ["noon", "apollo", "spaceflight"]
) i

db.articles.ensurelndex({ tags: 11});

non

will index all the tags on the document, and create index entries for "moon", "apollo" and "spaceflight" for that document.

You may then query on these items in the usual way:

> print(db.articles.findOne({ tags: "apollo" }).name);
Apol | o

The database creates an index entry for each item in the array. Note an array with many elements (hundreds or thousands) can make inserts very
expensive. (Although for the example above, alternate implementations are equally expensive.)

Text Search

It is fairly easy to implement basic full text search using multikeys. What we recommend is having a field that has all of the keywords in it,
something like:

{ title: "this is fun" ,
_keywords : ["this" , "is" , "fun"]

Your code must split the title above into the keywords before saving. Note that this code (which is not part of Mongo DB) could do stemming, etc.
too. (Perhaps someone in the community would like to write a standard module that does this...)

Comparison to Full Text Search Engines
MongoDB has interesting functionality that makes certain search functions easy. That said, it is not a dedicated full text search engine.

For example, dedicated engines provide the following capabilities:

® built-in text stemming
® ranking of queries matching various numbers of terms (can be done with MongoDB, but requires user supplied code to do so)
® bulk index building

Bulk index building makes building indexes fast, but has the downside of not being realtime. MongoDB is particularly well suited for problems
where the search should be done in realtime. Traditional tools are often not good for this use case.

Real World Examples
The Business Insider web site uses MongoDB for its blog search function in production.

Mark Watson's opinions on Java, Ruby, Lisp, Al, and the Semantic Web - A recipe example in Ruby.

min and max Query Specifiers

The mi n() and max() functions may be used in conjunction with an index to constrain query matches to those having index keys between the
min and max keys specified. The m n() and max() functions may be used individually or in conjunction. The index to be used may be specified
with a hi nt () or one may be inferred from pattern of the keys passed to m n() and/or max() .

...

db. f.find().mn({nanme: "barry"}}. max({nanme: "l arry"}). hint({nane: 1});
db. f.find().mn({nanme: "barry"}}. max({nanme: "l arry"});
db. f.find(). mn({last_nane:"smth",first_name:"john"}};

...

db. f.find({$mn: {nane:"barry"}, $max: {name:"larry"}, $query:{}});

The min() value is included in the range and the max() value is excluded.

Normally, it is much preferred to use $gte and $lt rather than to use min and max, as min and max require a corresponding index. Min and max
are primarily useful for compound keys: it is difficult to express the last_name/first_name example above without this feature (it can be done using
$where).

min and max exist primarily to support the mongos (sharding) process.
OR operations in query expressions

Query objects in Mongo by default AND expressions together. Before 1.5.3 MongoDB did not include an "$or" operator for such queries, however
there are ways to express such queries.

$in

The $in operator indicates a "where value in ..." expression. For expressions of the form x == a OR x == b, this can be represented as

$where

We can provide arbitrary Javascript expressiosn to the server via the $where operator. This provides a means to perform OR operations. For
example in the mongo shell one might invoke:

...

db. nycol l ection.find({ $where : function() { return this.a == 3 || this.b == 4; } });

...

db. nycol l ection.find(function() { return this.a == 3 || this.b == 4; });

$or

The $or operator lets you use a boolean or expression to do queries. You give $or a list of expressions, any of which can satisfy the query.

http://www.businessinsider.com/
http://markwatson.com/blog/2009/11/mongodb-has-good-support-for-indexing.html

s New in MongoDB 1.5.3

Edb.foo.find({name:”bob",$or:[{a:l},{b:2}]})

The $or operator retrieves matches for each or clause individually and eliminates duplicates when returning results.

See Also

Advanced Queries

Queries and Cursors

Queries to MongoDB return a cursor, which can be iterated to retrieve results. The exact way to query will vary with language driver. Details below
focus on queries from the MongoDB shell (i.e. the nbngo process).

The shell f i nd() method returns a cursor object which we can then iterate to retrieve specific documents from the result. We use hasNext ()
and next () methods for this purpose.

i for(var ¢ = db.parts.find(); c.hasNext();) { i
print(c.next());

{ db.users.find().forEach(function(u) { print("user: " + u.name); }); §

Array Mode in the Shell
Note that in some languages, like JavaScript, the driver supports an "array mode". Please check your driver documentation for specifics.
In the db shell, to use the cursor in array mode, use array index [] operations and the | engt h property.

Array mode will load all data into RAM up to the highest index requested. Thus it should not be used for any query which can return very large
amounts of data: you will run out of memory on the client.

You may also call t oArray() on a cursor.t oArray() will load all objects queries into RAM.
Getting a Single Item

The shell f i ndOne() method fetches a single item. Null is returned if no item is found.

findOne() is equivalent in functionality to:

function findOne(coll, query) {
var cursor = coll.find(query).limt(1);
return cursor. hasNext() ? cursor.next() : null;

Tip: If you only need one row back and multiple match, fi ndOne() is efficient, as it performs the | i nmi t () operation, which limits the objects
returned from the database to one.

Querying Embedded Objects

To find an exact match of an entire embedded object, simply query for that object:

db.order.find({ shipping: { carrier: "usps" } });

The above query will work if { carrier: "usps" } is an exact match for the entire contained shipping object. If you wish to match any sub-object with
shi ppi ng. carrier == "usps", use this syntax:

{ db.order.find({ "shipping.carrier" : "usps" });

See the dot notation docs for more information.

Greater Than / Less Than

db. nmyCol lection.find({ a: { $gt : 3} });
¢ db.nyCol lection.find({ a: { $gte :3} }); :
db. nyCol lection.find({ a: { $It :3} });
{ db.nyCollection.find({ a: { $lte:3} }); // a<=3 §

Latent Cursors and Snapshotting

A latent cursor has (in addition to an initial access) a latent access that occurs after an intervening write operation on the database collection (i.e.,
an insert, update, or delete). Under most circumstances, the database supports these operations.

Conceptually, a cursor has a current position. If you delete the item at the current position, the cursor automatically skips its current position
forward to the next item.

Mongo DB cursors do not provide a snapshot: if other write operations occur during the life of your cursor, it is unspecified if your application will
see the results of those operations or not. See the snapshot docs for more information.

Auditing allocated cursors

Information on allocated cursors may be obtained using the {cur sor | nf 0: 1} command.

db. runCommand({ cur sor | nf o: 1})

See Also

® Advanced Queries
® Multikeys in the HowTo

Tailable Cursors

", Tailable cursors are only allowed on capped collections and can only return objects in natural order.

r

If the field you wish to "tail" is indexed, simply requerying for { field : { $gt : value } } is already quite efficient. Tailable will be
slightly faster in situations such as that. However, if the field is not indexed, tailable provides a huge improvement in
performance. Situations without indexes are the real use case for a tailable cursor.

MongoDB has a feature known as tailable cursors which are similar to the Unix "tail -f* command.

Tailable means the cursor is not closed once all data is retrieved. Rather, the cursor marks the last known object's position and you can resume
using the cursor later, from where that object was located, provided more data is available.

The cursor may become invalid if, for example, the last object returned is at the end of the collection and is deleted. Thus, you should be
prepared to requery if the cursor is "dead". You can determine if a cursor is dead by checking its id. An id of zero indicates a dead cursor (use
isDead in the c++ driver).

In addition, the cursor may be dead upon creation if the initial query returns no matches. In this case a requery is required to create a persistent
tailable cursor.

MongoDB replication uses this feature to follow the end of the master server's replication op log collection -- the tailable feature eliminates the

need to create an index for the oplog at the master, which would slow log writes.

C++ example:

#i nclude "client/dbclient.h"
usi ng namespace nongo;

/* "tail" the namespace, outputting elenents as they are added.
For this to work something field -- _id in this case -- should be increasing
when itenms are added.

*/

void tail (DBCientBase& conn, const char *ns) {
/1 minKey is smaller than any other possible val ue

BSONEl enent lastld = minKey.firstEl ement();

/Il { $natural : 1 } nmeans in forward capped collection insertion order
Query query = Query().sort("$natural");
while(1) {

auto_ptr<DBCientCursor> c =
conn. query(ns, query, 0, 0, O, QueryOption_CursorTail able);
while(1) {
if('c->nore()) {
if(c->sDead()) {
/1 we need to requery
br eak;
}
sl eepsecs(1); // all data (so far) exhausted, wait for nore
continue; // we will try nore() again
}
BSONObj o0 = c->next();
lastld = o["_id"];
cout << o.toString() << endl;

}

/] prepare to requery fromwhere we left off
query = QUERY("_id" << GT << lastld).sort("$natural");

See Also

® http://github.com/mongodb/mongo-snippets/blob/master/cpp-examples/tailable_cursor.cpp

Server-side Code Execution

® $wher e Clauses and Functions in Queries
® Restrictions
®* Map/Reduce
Using db. eval ()
® Examples
® Limitations of eval
® Write locks
® Sharding
® Storing functions server-side
Notes on Concurrency
® Running .js files via a mongo shell instance on the server

Mongo supports the execution of code inside the database process.
$wher e Clauses and Functions in Queries

In addition to the regular document-style query specification for f i nd() operations, you can also express the query either as a string containing a
SQL-style WHERE predicate clause, or a full JavaScript function.

When using this mode of query, the database will call your function, or evaluate your predicate clause, for each object in the collection.

In the case of the string, you must represent the object as "this" (see example below). In the case of a full JavaScript function, you use the normal
JavaScript function syntax.

http://github.com/mongodb/mongo-snippets/blob/master/cpp-examples/tailable_cursor.cpp

The following four statements in mongo - The Interactive Shell are equivalent:

db. myCol lection.find({ a: { $gt: 3} });

db. nyCol l ection.find({ $where: "this.a > 3" });

db. nyCol l ection.find("this.a > 3");

db. nyCol I ection.find({ $where: function() { return this.a > 3;}});

The first statement is the preferred form. It will be at least slightly faster to execute because the query optimizer can easily interpret that query and
choose an index to use.

You may mix data-style find conditions and a function. This can be advantageous for performance because the data-style expression will be

evaluated first, and if not matched, no further evaluation is required. Additionally, the database can then consider using an index for that
condition's field. To mix forms, pass your evaluation function as the $wher e field of the query object. For example:

db. myCol I ection.find({ active: true, $where: function() { return obj.credits - obj.debits <0; } });

You may mix data-style find conditions and a function. This can be advantageous for performance because the data-style expression will be
evaluated first, and if not matched, no further evaluation is required. Additionally, the database can then consider using an index for that
condition's field. For example:

db. nyCol l ection.find({ active: true, $where: "this.credits - this.debits < 0" });

Restrictions

Do not write to the collection being inspected from the $wher e expression.

Map/Reduce

MongoDB supports Javascript-based map/reduce operations on the server. See the map/reduce documentation for more information.

Using db. eval ()

Use map/reduce instead of db.eval() for long running jobs. db.eval blocks other operations!

L
=

db. eval () is used to evaluate a function (written in JavaScript) at the database server.
This is useful if you need to touch a lot of data lightly. In that scenario, network transfer of the data could be a bottleneck.

db. eval () returns the return value of the function that was invoked at the server. If invocation fails an exception is thrown.

For a trivial example, we can get the server to add 3 to 3:

Let's consider an example where we wish to erase a given field, f 0o, in every single document in a collection. A naive client-side approach would
be something like

i function ny_erase() {
! db. t hings. find().forEach(function(obj) {
del ete obj . foo;
db. t hi ngs. save(obj);
§ 1IN

)

nmy_erase();

Calling my_er ase() on the client will require the entire contents of the collection to be transmitted from server to client and back again.

Instead, we can pass the function to eval (), and it will be called in the runtime environment of the server. On the server, the db variable is set to
the current database:

> nyfunc = function(x){ return x; };

> db. eval (nyfunc, {k:"asdf"});
{ k : "asdf" }

> db. eval (nyfunc, "asdf");
"asdf"

> db.eval (function(x){ return x; }, 2);
2.0

i { dbEval Exception: { errno : -3.0, errnsg : "invoke failed" , ok : 0.0 } }

function mycount (collection) {
return db.eval (function(){return db[collection].find({},{_id:Oojld()}).length();});

i function inc(name , howMich){ H
! return db. eval (!
function(){
var t = db.things.findone({ nane : name });
i t =t |] { name : name , num: 0, total : O, avg : 0 }; i
t. numk+;
t.total += howMich;
: t.avg = t.total / t.num :
db. things. save(t);
i return t; :

)
}

db. things.remove({});
print(tojson(inc("eliot" , 2)));
print(tojson(inc("eliot" , 3)))

Limitations of eval

Write locks

It's important to be aware that eval takes a write lock. This means that you can't use eval to run other commands that themselves take a write
lock. To take an example, suppose you're running a replica set and want to add a new member. You may be tempted to do something like this
from a driver:

As we just mentioned, eval will take a write lock on the current node. Therefore, this won't work because you can't add a new replica set member
if any of the existing nodes is write-locked.

The proper approach is to run the commands to add a node manually. r s. add simply queries the | ocal . syst em r epl Set collection, updates
the config object, and run the r epl Set Reconf i g command. You can do this from the driver, which, in addition to not taking out the eval write

lock, manages to more directly perform the operation.
Sharding

Note also that eval doesn't work with sharding. If you expect your system to be sharded eventually, it's probably best to avoid eval altogether.

Storing functions server-side

. inversion 1.1.1 and above

L]

There is a special system collection called syst em j s that can store JavaScript function to be re-used. To store a function, you would do:

db. systemjs.save({ _id: "foo" , value : function(x , y){ returnx +vy; } });

_id is the name of the function, and is unique per database.
Once you do that, you can use f 0o from any JavaScript context (db.eval, $where, map/reduce)

See http://github.com/mongodb/mongo/tree/master/jstests/storefunc.js for a full example
Notes on Concurrency

eval() blocks the entire mongod process while running. Thus, its operations are atomic but prevent other operations from processing.

When more concurrency is needed consider using map/reduce instead of eval().
Running .js files via a mongo shell instance on the server

This is a good technique for performing batch administrative work. Run nongo on the server, connecting via the | ocal host interface. The
connection is then very fast and low latency. This is friendlier than db.eval() as db.eval() blocks other operations.

Sorting and Natural Order

"Natural order" is defined as the database's native ordering of objects in a collection.
When executing a f i nd() with no parameters, the database returns objects in forward natural order.

For standard tables, natural order is not particularly useful because, although the order is often close to insertion order, it is not guaranteed to be.
However, for Capped Collections, natural order is guaranteed to be the insertion order. This can be very useful.

In general, the natural order feature is a very efficient way to store and retrieve data in insertion order (much faster than say, indexing on a
timestamp field). But remember, the collection must be capped for this to work.

In addition to forward natural order, items may be retrieved in reverse natural order. For example, to return the 50 most recently inserted items
(ordered most recent to less recent) from a capped collection, you would invoke:

\2
o
1l
o
c
o
QD
©
©
]
Q.
@
[}
—
o
>
—
=}
o
—~
—
(%]
o
=
—_
—~
~
©“
>
[
—
o
=
=3
o
=
-
—
3.
—_
—~
o
o
-

\2
(]
1l
o
S
(]
=3
]
(¢}
—_
o
>
—
=}
Q
—~
~
1]
o
=
-
—~
-~
>
3
=
QD
«Q
]
'
=
-
—

See Also
® The Capped Collections section of this Guide

® Advanced Queries
® The starting point for all Home

Aggregation

Mongo includes utility functions which provide server-side count, di stinct, and group by operations. More advanced aggregate functions
can be crafted using MapReduce.

¢ Count

http://github.com/mongodb/mongo/tree/master/jstests/storefunc.js

® Distinct
® Group
® Examples
® Using Group from Various Languages
® Map/Reduce
® See Also

Count

count () returns the number of objects in a collection or matching a query. If a document selector is provided, only the number of matching
documents will be returned.

si ze() is like count () but takes into consideration any limit() or skip() specified for the query.

db. col | ection. count (sel ector); !

print("# of objects: + db. nycol I ection.count());
print(db.nycollection.count({active:true});

db. mycol | ection. ensurel ndex({active:1}); !
Distinct

The distinct command returns returns a list of distinct values for the given key across a collection.

Command is of the form:

| { distinct : <collection_name>, key : <key>[, query : <query>] }

> db. addresses.insert({"zi p-code": 10010})
> db. addresses.insert({"zi p-code": 10010})
> db. addresses. insert ({"zip-code": 99701})

> [/ shell hel per:
i > db. addresses. di stinct("zip-code"); ;
{ [10010, 99701] f

> // running as a command nanual | y:
> db. runCommand({ distinct: 'addresses', key: 'zip-code' })
{ "values" : [10010, 99701], "ok" : 1}

> db. comment s. save({"user": {"points": 25}})
> db. comment s. save({"user": {"points": 31}})
> db. comment s. save({"user": {"points": 25}})

> db. comment s. di stinct("user.points");
[25, 31]

Note: the distinct command results are returned as a single BSON object. If the results could be large (> 4 megabytes), use map/reduce instead.

Group

Note: currently one must use map/reduce instead of group() in sharded MongoDB configurations.

gr oup returns an array of grouped items. The command is similar to SQL's group by. The SQL statement

select a, b,sunm(c) csumfromcoll where active=1 group by a,b

db. col | . group(
{key: { a:true, b:true },
cond: { active:1 },
reduce: function(obj,prev) { prev.csum+= obj.c; },
initial: { csum 0}

1)

Note: the result is returned as a single BSON object and for this reason must be fairly small — less than 10,000 keys, else you will get an
exception. For larger grouping operations without limits, please use map/reduce .

gr oup takes a single object parameter containing the following fields:

® key: Fields to group by.

® reduce: The r educe function aggregates (reduces) the objects iterated. Typical operations of a reduce function include summing and
counting. r educe takes two arguments: the current document being iterated over and the aggregation counter object. In the example
above, these arguments are named obj and prev.

® jnitial:initial value of the aggregation counter object.

* keyf: An optional function returning a "key object" to be used as the grouping key. Use this instead of key to specify a key that is not an
existing member of the object (or, to access embedded members). Set in lieu of key.

® cond: An optional condition that must be true for a row to be considered. This is essentially a f i nd() query expression object. If null, the
reduce function will run against all rows in the collection.

® finalize: An optional function to be run on each item in the result set just before the item is returned. Can either modify the item (e.g.,
add an average field given a count and a total) or return a replacement object (returning a new object with just _id and average fields).
See jstests/group3.js for examples.

To order the grouped data, simply sort it client-side upon return. The following example is an implementation of count () using gr oup() .

i function gcount(collection, condition) { !
: var res = :
db[col l ection]. group(
; { key: {}, ;
: initial: {count: 0}, :
reduce: function(obj,prev){ prev.count++;},
cond: condition});
: /1l group() returns an array of grouped itens. here, there will be a single :
i/l item as key is {}. :
! return res[0] ? res[0].count : O; i

Examples

The examples assume data like this:

i { domain: "www. nongodb. org" !
¢, invoked_at: {d:"2009-11-03", t:"17:14:05"} i
, response_tinme: 0.05
i, http_action: "GET /display/ DOCS/ Aggregation”

Show me stats for each http_action in November 2009:

db. test. group(
{ cond: {"invoked_at.d": {$gte: "2009-11", $lt: "2009-12"}}
, key: {http_action: true}
, initial: {count: 0, total _time:0}
, reduce: function(doc, out){ out.count++; out.total _tine+=doc.response_tinme }
, finalize: function(out){ out.avg_time = out.total _tinme / out.count }

)
[
{
"http_action" : "GET /display/ DOCS/ Aggr egati on",
"count" : 1,
"total _tine" : 0.05,
“avg_tine" : 0.05
}
1

db. test. group(
{ cond: {"invoked_at.d": {$gte: "2009-11", $lt: "2009-12"}}
, key: {dommin: true, invoked_at.d: true}
, initial: {count: O, total _tine: 0}
, reduce: function(doc, out){ out.count++; out.total _tine+=doc.response_tine }
, finalize: function(out){ out.avg_time = out.total _tine / out.count }

})

"http_action" : "GET /display/ DOCS/ Aggregation",
"count" : 1,

"total _tine" : 0.05,

"avg_tinme" : 0.05

Using Group from Various Languages

Some language drivers provide a group helper function. For those that don't, one can manually issue the db command for group. Here's an
example using the Mongo shell syntax:

> db. f 0o. fi nd()
{"_id" : Objectld("4a92af 2db3d09ch83d985f6f") , "x" : 1}
{"_id" : Objectld("4a92af2f b3d09ch83d985f 70") , "x" : 3}
{"_id" : Objectld("4a92af dab3d09ch83d9ssf71") , "x" : 3}

> db. $cnd. fi ndOne({group : {
ns : "foo",
cond : {},
key : {x : 1},
initial : {count : 0},
... %$reduce : function(obj, prev){prev.count++;}}})
{"retval"™ : [{"x" : 1, "count"™ : 1},{"x" : 3, "count"™ : 2}] , "count" : 3, "keys" : 2, "ok" : 1}

i db. $cnd. findOne({group : { :
! ns : "foo", :
... $keyf : function(doc) { return {"x" : doc.x}; },
initial : {count : 0O},
$reduce : function(obj,prev) { prev.count++; }}})

Map/Reduce

MongoDB provides a MapReduce facility for more advanced aggregation needs. CouchDB users: please note that basic queries in MongoDB do
not use map/reduce.

See Also

® jstests/eval2.js for an example of group() usage
® Advanced Queries

Removing

Removing Objects from a Collection

To remove objects from a collection, use the r enpove() function in the mongo shell. (Other drivers offer a similar
function, but may call the function "delete". Please check your driver's documentation).

renove() islike fi nd() inthat it takes a JSON-style query document as an argument to select which documents are removed. If you call
renove() without a document argument, or with an empty document {} , it will remove all documents in the collection. Some examples :

db. things.renmove({}); Il renoves all
db. things.remove({n:1}); // renoves all where n ==

db. t hi ngs. renmove({_id: nyobject._id});
You may be tempted to simply pass the document you wish to delete as the selector, and this will work, but it's inefficient.

1. References
If a document is deleted, any existing references to the document will still exist in the database. These references will return null
when evaluated.

Concurrency and Remove

v1.3+ supports concurrent operations while a remove runs. If a simultaneous update (on the same collection) grows an object which matched the
remove criteria, the updated object may not be removed (as the operations are happening at approximately the same time, this may not even be
surprising). In situations where this is undesireable, pass {$atomic : true} in your filter expression:

i db.videos.remove({ rating : { $It : 3.0}, $atonic : true})
The remove operation is then completely atomic — however, it will also block other operations while executing.

Updating

MongoDB supports atomic, in-place updates as well as more traditional updates for replacing an entire document.

® update()
® save() inthe mongo shell
® Modifier Operations

* S$inc
$set
$unset
$push
$pushAll
$addToSet
$pop
$pull
$pullAll
$rename
® The $ positional operator
® Upserts with Modifiers

® Pushing a Unigue Value
® Checking the Outcome of an Update Request
* Notes

® Object Padding

® Blocking
® See Also

update()

updat e() replaces the document matching criteria entirely with objNew. If you only want to modify some fields, you should use the atomic
modifiers below.

Here's the MongoDB shell syntax for updat e() :

db. coll ection.update(criteria, objNew, upsert, multi)

Arguments:

criteria-query which selects the record to update;

obj New - updated object or $ operators (e.g., $inc) which manipulate the object

upsert -if this should be an "upsert"; that is, if the record does not exist, insert it
mul ti -if all documents matching cri t eri a should be updated

If you are coming from SQL, be aware that by default, update() only modifies the first matched object. If you want to modify all
matched objects you need to use the multi flag

save() in the mongo shell

The save() command in the mongo shell provides a shorthand syntax to perform a single object update with upsert:

/1l x is some JSON styl e object
db. mycol | ection. save(x); // updates if exists; inserts if new

save() does an upsert if x has an _id field and an insert if it does not. Thus, normally, you will not need to explicitly request upserts, just use
save().

Upsert means "update if present; insert if missing".

nmyCol | . update({ nane: "Joe" }, { nane: "Joe", age: 20 }, true);

Modifier Operations

Modifier operations are highly-efficient and useful when updating existing values; for instance, they're great for incrementing a number.

So, while a conventional implementation does work:

var j=nyColl.findOne({ nanme: "Joe" });
Fojon+ |

nmyCol | . save(j);

a modifier update has the advantages of avoiding the latency involved in querying and returning the object. The modifier update also features
operation atomicity and very little network data transfer.

To perform an atomic update, simply specify any of the special update operators (which always start with a '$' character) with a relevant update
document:

db. peopl e. update({ name:"Joe" }, { $inc: { n: 1} });

The preceding example says, "Find the first document where 'name' is 'Joe' and then increment 'n' by one."

i)

While not shown in the examples, most modifier operators will accept multiple field/value pairs when one wishes to modify
multiple fields. For example, the following operation would set x to 1 and y to 2:

E{$set:{x:1,y:2}}

E{$set:{x:1},$inc:{y:1}}
$inc
{ $inc : { field: value} }

$set
{ $set : { field : value } }

sets fi el d to val ue. All datatypes are supported with $set .

$unset
{ $unset : { field : 1} }

$push
{ $push : { field : value } }

appends val uetofi el d,if fi el dis an existing array, otherwise sets f i el d to the array [val ue] if fi el d is not present. If f i el d is present
but is not an array, an error condition is raised.

$pushAll
{ $pushAll : { field : value_array } }

appends each value inval ue_array tofi el d,if fi el dis an existing array, otherwise sets f i el d to the array val ue_array iffi el d is not
present. If f i el d is present but is not an array, an error condition is raised.

$addToSet
i { $addToSet : { field : value } }

Adds value to the array only if its not in the array already, if f i el d is an existing array, otherwise sets f i el d to the array val ue if fi el d is not
present. If f i el d is present but is not an array, an error condition is raised.

To add many valuest.update

| { saddToSet : { a: { Seach: [3,5, 6]} } } i

[spop : { field: 1 }}

C {spop: { field: -1 }}

$pull
{ $pull : { field: _value} }

removes all occurrences of val ue from fi el d,iffi el disanarray. If fi el d is present but is not an array, an error condition is raised.

$pullAll

{ $pullAIl : { field : value_array } }

removes all occurrences of each value in val ue_array fromfiel d,iffiel disanarray. If fi el dis present but is not an array, an error
condition is raised.

$rename

Version 1.7.2+ only.

{ $renane { old_field_name new field_nane } } !

Renames the field with name 'old_field_name' to 'new_field_name'. Does not expand arrays to find a match for 'old_field_name'.

The $ positional operator

Version 1.3.4+ only.

The $ operator (by itself) means "position of the matched array item in the query". Use this to find an array member and then manipulate it. For
example:

P> t.find() i
i { "_id" : Oojectld("4b97e62bf 1d8c7152c9cch74"), "title" : "ABC', !
i "comments" : [{ "by" : "joe", "votes" : 3}, { "by" : "jane", "votes" : 7}] } i
> t.update({'coments.by':'joe'}, {$inc:{' comments.$. votes':1}}, false, true)
> t.find()
o "id" : Qojectld("4b97e62bf 1d8c7152c9cch74"), "title" : "ABC', :
' "comments" : [{ "by" : "joe", "votes" : 4}, { "by" : "jane", "votes" : 7}]} H

o>t find(); H
P " id" : Objectld("4b9edalfc583falc76198319"), "x" : [1, 2, 3, 2] } '
> t.update({x: 2}, {$inc: {"x.$": 1}}, false, true);
{o>t.find(); ;
P { "_id" : Objectld("4b9edalfc583falc76198319"), "x" : [1, 3, 3, 2] } ;

The positional operator cannot be combined with an upsert since it requires a matching array element. If your update results in an insert then
the "$" will literally be used as the field name.

Using "$unset" with an expression like this "array.$" will result in the array item becoming nul | , not being removed. You can
issue an update with "{$pull:{x:null}}" to remove all nulls.

L o> t.insert({x: [1,2 3,4, 3 23, 4]}) ;
{o> t.find() ;
{ { "_id" : Objectld("4bde2ad3755d00000000710e"), "x" : [1, 2, 3, 4, 3, 2, 3, 4] } i
" > t.update({x: 3}, {Sunset:{"x.$":1}}) 5
© o> t.find() |
i { "_id" : Objectld("4bde2ad3755d00000000710e"), "x" : [1, 2, null, 4, 3, 2, 3, 4]} f

Upserts with Modifiers

You may use upsert with a modifier operation. In such a case, the modifiers will be applied to the update cri t eri a member and the resulting
object will be inserted. The following upsert example may insert the object {nane: "Joe", x: 1, y: 1}.

db. peopl e. update({ name:"Joe" }, { $inc: { x:1, y:1} }, true);

There are some restrictions. A modifier may not reference the _i d field, and two modifiers within an update may not reference the same field, for
example the following is not allowed:

db. peopl e. update({ name:"Joe" }, { $inc: { x: 1}, $set: { x: 5} });

Pushing a Unique Value

To add a value to an array only if not already present:

Starting in 1.3.3, you can do

! update({_id:"joe'},{"$addToSet": { tags : "basebal " } });

update({_id:"joe', tags: {"$ne": "basebal|l"}},
{"$push": { tags : "baseball" } });

Checking the Outcome of an Update Request

As described above, a non-upsert update may or may not modify an existing object. An upsert will either modify an existing object or insert a new
object. The client may determine if its most recent message on a connection updated an existing object by subsequently issuing a

getl asterror command (db. runComrand("getlasterror”)). If the result of the get | ast err or command contains an

updat edExi st i ng field, the last message on the connection was an update request. If the updat edExi st i ng field's value is true, that update
request caused an existing object to be updated; if updat edExi st i ng is false, no existing object was updated. An upsert ed field will contain
the new _i d value if an insert is performed (new as of 1.5.4).

Notes

Object Padding

When you update an object in MongoDB, the update occurs in-place if the object has not grown in size. This is good for insert performance if the
collection has many indexes.

Mongo adaptively learns if objects in a collection tend to grow, and if they do, it adds some padding to prevent excessive movements. This
statistic is tracked separately for each collection.

Blocking

Staring in 1.5.2, multi updates yield occasionally so you can safely update large amounts of data. If you want a multi update to be truly atomic,
you can use the $atomic flag.

See Also

¢ findandmodify Command
® Atomic Operations

Atomic Operations

® Modifier operations
® "Update if Current"
® The ABA Nuance
® "Insert if Not Present”
Find and Modify (or Remove)
® Applying to Multiple Objects At Once

MongoDB supports atomic operations on single documents. MongoDB does not support traditional locking and complex transactions for a
number of reasons:

® First, in sharded environments, distributed locks could be expensive and slow. Mongo DB's goal is to be lightweight and fast.

® We dislike the concept of deadlocks. We want the system to be simple and predictable without these sort of surprises.

® We want Mongo DB to work well for realtime problems. If an operation may execute which locks large amounts of data, it might stop
some small light queries for an extended period of time. (We don't claim Mongo DB is perfect yet in regards to being "real-time", but we
certainly think locking would make it even harder.)

MongoDB does support several methods of manipulating single documents atomically, which are detailed below.

Modifier operations
The Mongo DB update command supports several modifiers, all of which atomically update an element in a document. They include:

® $set - set a particular value

® $unset - set a particular value (since 1.3.0)

® $inc - increment a particular value by a certain amount
® $push - append a value to an array

® $pushAll - append several values to an array

® 3$pull - remove a value(s) from an existing array

® $pullAll - remove several value(s) from an existing array

These modifiers are convenient ways to perform certain operations atomically.

"Update if Current"

Another strategy for atomic updates is "Update if Current”. This is what an OS person would call Compare and Swap. For this we
1. Fetch the object.
2. Modify the object locally.
3. Send an update request that says "update the object to this new value if it still matches its old value".

Should the operation fail, we might then want to try again from step 1.

For example, suppose we wish to fetch one object from inventory. We want to see that an object is available, and if it is, deduct it from the
inventory. The following code demonstrates this using mongo shell syntax (similar functions may be done in any language):

{ > t=db.inventory ;
i >s =t.findOne({sku:"abc'}) !
{"_id" : "49df4d3c9664d32c73ea865a" , "sku" : "abc" , "qty" : 30}
i >qty_old = s.qty;
[> --s.aty; Z
> t.update({_id:s._id, qty:qty_old}, s); db.$cmd.findOne({getlasterror:1});
{ {"err" : , "updatedExisting" : true, "n" : 1, "ok" : 1} // it worked

For the above example, we likely don't care the exact sku quantity as long as it is as least as great as the number to deduct. Thus the following
code is better, although less general -- we can get away with this as we are using a predefined modifier operation ($inc). For more general
updates, the "update if current" approach shown above is recommended.

> t.update({sku:"abc", gty: {$gt:0}}, { $inc : { qty : -1} }) ; db.$cnd. findOne({getlasterror:1})

“err" : , "updatedExisting" : true , "n" : 1, "ok" : 1} // it worked
> t.update({sku:"abcz",qty: {$gt:0}}, { $inc : { gty : -1} }) ; db.$cnd. findOne({getlasterror:1})
{"err" : , "updatedExisting" : false, "n" : 0, "ok" : 1} // did not work

The ABA Nuance

In the first of the examples above, we basically did "update object if gty is unchanged". However, what if since our read, sku had been modified?
We would then overwrite that change and lose it!

There are several ways to avoid this problem ; it's mainly just a matter of being aware of the nuance.

Use the entire object in the update's query expression, instead of just the _id and qty field.

Use $set to set the field we care about. If other fields have changed, they won't be effected then.
Put a version variable in the object, and increment it on each update.

. When possible, use a $ operator instead of an update-if-current sequence of operations.

PONPE

"Insert if Not Present"

Another optimistic concurrency scenario involves inserting a value when not already there. When we have a unique index constraint for the
criteria, we can do this. The following example shows how to insert monotonically increasing _id values into a collection using optimistic
concurrency:

function insertject(o) {
x = db. nyCol | ecti on;
while(1) {
/1 determine next _id value to try
var ¢ = x.find({},{_id:1}).sort({_id:-1}).limt(1);
var i = c.hasNext() ? c.next()._id + 1 : 1;
o._id =1i;
X.insert(o);
var err = db.getLastErrorj();
if(err & err.code) {
if(err.code == 11000 /* dup key */)
conti nue;
el se
print("unexpected error inserting data: " + tojson(err));

br eak;

Find and Modify (or Remove)

See the findandmodify Command documentation for more information.

Applying to Multiple Objects At Once

You can use multi-update to apply the same modifier to every relevant object. By default a multi-update will allow some other operations (which
could be writes) to interleave. Thus, tthis will only be pseudo-atomic (pseudo-isolated). To make it fullly isolated you can use the $atomic motifier:

not isolated:

db.foo.update({ x : 1}, { $inc: { y: 1} } , false, true);

db. foo.update({ x : 1, $atomic : 1} , { $inc: { y: 1} } , false, true);

findandmodify Command

http://en.wikipedia.org/wiki/ABA_problem
http://en.wikipedia.org/wiki/ABA_problem

Find and Modify (or Remove)

', v1.3.0 and higher

L]

MongoDB 1.3+ supports a “find, modify, and return" command. This command can be used to atomically modify a document (at most one) and
return it. Note that, by default, the document returned will not include the modifications made on the update.

!, If you don't need to return the document, you can use Update (which can affect multiple documents, as well).

21

The general form is

db. runCommand({ findandnodify : <coll ection>,
<options> })

The MongoDB shell includes a helper method, findAndModify(), for executing the command. Some drivers provide helpers also.

At least one of the update or remove parameters is required; the other arguments are optional.

Argument Description Default
query a filter for the query {

sort if multiple docs match, choose the first one in the specified sort order as the object to manipulate | {}
remove set to a true to remove the object before returning N/A
update a modifier object N/A
new set to true if you want to return the modified object rather than the original. Ignored for remove. false
fields see Retrieving a Subset of Fields (1.5.0+) All fields
upsert create object if it doesn't exist. examples (1.5.4+) false

The sort option is useful when storing queue-like data. Let's take the example of fetching the highest priority job that hasn't been grabbed yet and
atomically marking it as grabbed:

i job = db.jobs.findAndMdi fy({ :
! query: {inprogress:false}, !
sort:{priority:-1},
update: {$set: {inprogress: true, started: new Date()}}

You could also simply remove the object to be returned, but be careful. If the client crashes before processing the job, the document will be lost
forever.

See the tests for more examples.

If your driver doesn't provide a helper function for this command, run the command directly with something like this:

job = db.runComrand({ findandnodify : "jobs", :
sort : { priority : -1}, :

remove : true

}) . val ue;

Sharding limitations

findandmodify will behave the same when called through a mongos as long as the collection it is modifying is unsharded. If the collection is
sharded, then the query must contain the shard key. This is the same as regular sharded updates.

http://github.com/mongodb/mongo/blob/master/jstests/find_and_modify4.js
http://github.com/mongodb/mongo/blob/master/jstests/find_and_modify.js

See Also

® Atomic Operations

Updating Data in Mongo
® Updating a Document in the mongo Shell with save()

® Embedding Documents Directly in Documents
® Database References

Updating a Document in the mongo Shell with save()

As shown in the previous section, the save() method may be used to save a new document to a collection. We can also use save() to update
an existing document in a collection.

Continuing with the example database from the last section, lets add new information to the document {nane: " nongo" } that already is in the

collection.

> var nongo = db.things. findOne({nare: "nongo"});
> print(tojson(nongo));

{"_id" : "497dab624ee47b3a675d2d9c" , "nane" : "nobngo"}
> nongo.type = "dat abase";

dat abase
> db. t hi ngs. save(nongo) ;
> db. t hi ngs. fi ndOne({nane: "nongo"});
{"_id" : "497dab624ee47b3a675d2d9c" , "name" : "nobngo" , "type" : "database"}

This was a simple example, adding a string valued element to the existing document. When we called save() , the method saw that the
document already had an "_id" field, so it simply performed an update on the document.

In the next two sections, we'll show how to embed documents within documents (there are actually two different ways), as well as show how to
query for documents based on values of embedded documents.

Embedding Documents Directly in Documents

As another example of updating an existing document, lets embed a document within an existing document in the collection. We'll keep working
with the original {nane: " nongo" } document for simplicity.

> var nongo = db.things. findOne({nane: "nongo"});

> print(tojson(nongo));

{"_id" : "497da93d4ee47b3a675d2d9b" , "nane" : "nongo", "type" : "database"}

> nongo.data = { a:1, b:2};

{"a" : 1, "b" : 2}

> db. t hi ngs. save(nongo) ;

> db. t hi ngs. fi ndOne({nane: "nongo"});

{"_id" : "497da93d4ee47b3a675d2d9b" , "nane" : "nongo" , "type" : "database", "data" : {"a" : 1, "b"

2}}

As you can see, we added new data to the mongo document, adding {a: 1, b: 2} under the key "data".

Note that the value of "data" is a document itself - it is embedded in the parent mongo document. With BSON, you may nest and embed
documents to any level. You can also query on embedded document fields, as shown here:

> db. things.findOne({ "data.a" : 1});

{"_id" : "497da93d4ee47b3a675d2d9b" , "nane" : "nongo" , "data" : {"a" : 1, "b" : 2}}
> db.things.findOne({ "data.a" : 2});
>

Note that the second f i ndOne() doesn't return anything, because there are no documents that match.

Database References

Alternatively, a document can reference other documents which are not embedded via a database reference, which is analogous to a foreign key

in a relational database. A database reference (or "DBRef" for short), is a reference implemented according to the Database References. Most
drivers support helpers for creating DBRefs. Some also support additional functionality, like dereference helpers and auto-referencing. See
specific driver documentation for examples / more information

Lets repeat the above example, but create a document and place in a different collection, say otherthings, and embed that as a reference in our

favorite "mongo" object under the key "otherdata":

/1 first, save a new doc in the 'otherthings' collection

> var other = { s : "other thing", n: 1};

> db. ot hert hi ngs. save(ot her);

> db. ot herthings. find();

{"_id" : "497dbcb36b27d59a708e89a4" , "s" : "other thing" , "n" : 1}

/1 now get our nongo object, and add the 'other' doc as 'otherthings'

> var nongo = db.things.findOne();
> print(tojson(nongo));

{"_id" : "497dab624ee47b3a675d2d9c" , "nane" : "nobngo" , "type" : "database" , "data" : {"a" : 1, "b"
24}

> nongo. ot herthings = new DBRef ('otherthings' , other._id);

"s" : "other thing" “n" 1, "_id" : "497dbch36b27d59a708e89a4"}

> db. t hi ngs. save(nongo) ;
> db. things. findOne(). ot herthings.fetch(); 1
{"_id" : "497dab624ee47b3a675d2d9c" , "nane" : "nobngo" , "type" : "database" , "data" : {"a" : 1, "b"

2} , "otherthings" : {"_id" : "497dbcb36b27d59a708e89a4" , "s" : "other thing" , "n" : 1}}

/1 now, lets nodify our 'other' document, save it again, and see that when the dbshell
/1 gets our nongo object and prints it, if follows the dbref and we have the new val ue

> other.n = 2;
2
> db. ot hert hi ngs. save(ot her);
> db. ot herthings. find();
{"_id" : "497dbcb36b27d59a708e89a4" , "s" : "other thing" , "n" : 2}
> db. things.findOne().otherthings.fetch();
{"_id" : "497dab624ee47b3a675d2d9c" , "nane" : "nobngo" , "type" : "database" , "data" : {"a" : 1, "b"
2} , "otherthings" : {"_id" : "497dbcb36b27d59a708e89a4" , "s" : "other thing" , "n" : 2}}
>
MapReduce

Map/reduce in MongoDB is useful for batch manipulation of data and aggregation operations. It is similar in spirit to using something like Hadoop
with all input coming from a collection and output going to a collection. Often, in a situation where you would have used GROUP BY in SQL,
map/reduce is the right tool in MongoDB.

‘1, Indexing and standard queries in MongoDB are separate from map/reduce. If you have used CouchDB in the past, note this is a
big difference: MongoDB is more like MySQL for basic querying and indexing. See the queries and indexing documentation for
those operations.

® Overview
® Map Function
® Reduce Function
® Finalize Function
® Sharded Environments
® Examples
® Shell Example 1
¢ Shell Example 2
® More Examples
® Note on Permanent Collections
® Parallelism
® Presentations
® See Also

Overview

. Version 1.1.1 and above

=1

map/ r educe is invoked via a database command. The database creates a temporary collection to hold output of the operation. The collection is
cleaned up when the client connection closes, or when explicitly dropped. Alternatively, one can specify a permanent output collection name. nmap
and r educe functions are written in JavaScript and execute on the server.

Command syntax:

db. runConmand(
{ mapreduce : <collection>,

map : <mapfunction>,
reduce : <reducefunction>
[, query : <query filter object>]
[, sort : <sort the query. useful for optinization>]
[, limt : <nunber of objects to return fromcollection>]
[, out : <output-collection nane>]
[, keeptenmp: <true|false>]
[, finalize : <finalizefunction>]
[, scope : <object where fields go into javascript global scope >]
[, verbose : true]

® keept enp - if true, the generated collection is not treated as temporary. Defaults to false. When out is specified, the collection is
automatically made permanent.

® finalize - function to apply to all the results when finished

® ver bose - provide statistics on job execution time

® scope - can pass in variables that can be access from map/reduce/finalize example mr5

Result:

{ result : <collection_nane>,

counts : {
input : <nunber of objects scanned>,
emt : <nunber of tinmes enit was called>,
output : <nunmber of itens in output collection>

}o

timeMIlis : <job_tine>,

ok : <1_if_ok>,

[, err : <errmsg_if_error>]

map, reduce, and f i nal i ze functions are written in JavaScript.

Map Function

The map function references the variable t hi s to inspect the current object under consideration. A map function must call emi t (key, val ue) at
least once, but may be invoked any number of times, as may be appropriate.

i function map(void) -> void

Reduce Function

The r educe function receives a key and an array of values. To use, reduce the received values, and return a result.

http://github.com/mongodb/mongo/tree/master/jstests/mr5.js

i function reduce(key, value_array) -> value

The MapReduce engine may invoke reduce functions iteratively; thus, these functions must be idempotent. That is, the following must hold for
your reduce function:

for all k,vals : reduce(k, [reduce(k,vals)]) == reduce(k,vals)
If you need to perform an operation only once, use a finalize function.

‘t,. The output of emit (the 2nd param) and reduce should be the same format to make iterative reduce possible. If not, there will be
weird bugs that are hard to debug.

Currently, the return value from a reduce function cannot be an array (it's typically an object or a number).

L
-

Finalize Function

Afinalize function may be run after reduction. Such a function is optional and is not necessary for many map/reduce cases. The finalize
function takes a key and a value, and returns a finalized value.

i function finalize(key, value) -> final _val ue

Sharded Environments

In sharded environments, data processing of map/reduce operations runs in parallel on all shards.
Examples

Shell Example 1

The following example assumes we have an event s collection with objects of the form:

<tinme>, wuser_id : <userid> type : <type> ... }

é.

> m= function() { emt(this.user_id, 1); }
>r = function(k,vals) { return 1; }
> res = db. events. mapReduce(m r, { query : {type:'sale'} });
> db[res.result].find().limt(2)

{ "_id" : 8321073716060 , "val ue"
{ "_id" : 7921232311289 , "val ue"

i >r = function(k,vals) { :
[var sumr0; i
for(var i in vals) sum+= vals[i];
return sum

Note, here, that we cannot simply return val s. | engt h, as the reduce may be called multiple times.

Shell Example 2

> db.things.insert({ _id: 1, tags : ['dog', 'cat'] }):

> db.things.insert({ _id: 2, tags : ['cat'] });

> db.things.insert({ _id: 3, tags : ['nouse', 'cat', 'dog'] });
> db.things.insert({ _id: 4, tags : [] });

> [/ map function
> m= function(){
this.tags. forEach(
function(z){
emt(z, { count : 11});
}
.-)
3
> [/ reduce function
> r = function(key , values){
var total = O;
for (var i=0; i<values.length; i++)
total += values[i].count;
return { count : total };

1
> res = db.things. mapReduce(mr);
> res
{"tineMIlis.emt" : 9, "result" : "nr.things.1254430454.3" |,
"nuntbj ects" : 4, "tineMIlis" : 9, "errnmsg" : "" , "ok" : 0}
> db[res.result].find()
{"_id" : "cat" , "value" : {"count" : 3}}
{"_id" : "dog" , "value" : {"count" : 2}}
{"_id" : "nouse" , "value" : {"count" : 1}}

> db[res.result].drop()

More Examples

® example mrl
® Finalize example: example mr2

Note on Permanent Collections

Even when a permanent collection name is specified, a temporary collection name will be used during processing. At map/reduce completion, the
temporary collection will be renamed to the permanent name atomically. Thus, one can perform a map/reduce job periodically with the same
target collection name without worrying about a temporary state of incomplete data. This is very useful when generating statistical output
collections on a regular basis.

Parallelism

As of right now, MapReduce jobs on a single mongod process are single threaded. This is due to a design limitation in current JavaScript engines.
We are looking into alternatives to solve this issue, but for now if you want to parallelize your MapReduce jobs, you will need to either use
sharding or do the aggregation client-side in your code.

Presentations
Map/reduce, geospatial indexing, and other cool features - Kristina Chodorow at MongoSF (April 2010)
See Also

® Aggregation
® Kyle's Map/Reduce basics

Data Processing Manual

DRAFT - TO BE COMPLETED.

http://github.com/mongodb/mongo/tree/master/jstests/mr1.js
http://github.com/mongodb/mongo/tree/master/jstests/mr2.js
http://www.10gen.com/event_mongosf_10apr30#cool
http://kylebanker.com/blog/2009/12/mongodb-map-reduce-basics/

This guide provides instructions for using MongoDB batch data processing oriented features including map/reduce.

By "data processing", we generally mean operations performed on large sets of data, rather than small interactive operations.

Import

One can always write a program to load data of course, but the mongoimport utility also works for some situations. mongoimport supports
importing from json, csv, and tsv formats.

A common usage pattern would be to use mongoimport to load data in a relatively raw format and then use a server-side script (db.eval() or
map/reduce) to reduce the data to a more clean format.

See Also

® Import/Export Tools
® Server-Side Code Execution
® Map/Reduce

mongo - The Interactive Shell

® Introduction

® More Information

® Some Notes on Datatypes in the Shell
® Numbers
® Dates
® BinData

® Presentations

Introduction

The MongoDB distribution includes bi n/ nongo, the MongoDB interactive shell. This utility is a JavaScript shell that allows you to issue
commands to MongoDB from the command line. (Basically, it is an extended SpiderMonkey shell.)

The shell is useful for:

inspecting a database's contents
testing queries

creating indices

other administrative functions.

When you see sample code in this wiki and it looks like JavaScript, assume it is a shell example. See the driver syntax table for a chart that can
be used to convert those examples to any language.

More Information

® Shell Overview
® Shell Reference

® Shell APIDocs
Some Notes on Datatypes in the Shell

Numbers

The shell treats all numbers as floating-point values. If you have long/integer BSON data from the database you may see something like this:

"bytes" : {
"fl oat Approx" : 575175

or something like this for larger numbers:

https://developer.mozilla.org/En/SpiderMonkey/Introduction_to_the_JavaScript_shell
http://api.mongodb.org/js/index.html

"bytes" : {
"fl oat Approx" : 5284376243087482000,
"top" : 1230364721,
"bottont' : 4240317554

In addition, setting/incrementing any number will (most likely) change the data type to a floating point value

Dates

The Date() function returns a string and a "new Date()" will return an object (which is what you should use to store values).

...

> Date()

Sun May 02 2010 19:07:40 GMI-0700 (Pacific Daylight Tinme)
> new Dat e()

"Sun May 02 2010 19:07:43 GMI-0700 (Pacific Daylight Tine)"
> typeof (new Date())

obj ect

> typeof (Date())

string

BinData

The BSON BinData datatype is represented via class BinData in the shell. Run hel p m sc for more information.

Presentations

® CRUD and the JavaScript Shell - Presentation by Mike Dirolf at MongoSF (April 2010)

Overview - The MongoDB Interactive Shell

Starting the Shell

The interactive shell is included in the standard MongoDB distribution. To start the shell, go into the root directory of the distribution and type

...

It might be useful to add nongo_di stri buti on_r oot/ bi n to your PATH so you can just type nongo from anywhere.

If you start with no parameters, it connects to a database named "test" running on your local machine on the default port (27017). You can see the
db to which you are connecting by typing db:

i ./mongo
type "hel p" for help
> db
test

...

You can pass nongo an optional argument specifying the address, port and even the database to initially connect to:

./ mongo foo connects to the f oo database on your local machine
./ nongo 192. 168. 13. 7/ f oo connects to the f oo database on 192.168.13.7
./ mongo dbserver. mydomai n. coni f oo | connects to the f oo database on dbserver.mydomain.com

./ nongo 192. 168. 13. 7: 9999/ f oo connects to the f oo database on 192.168.13.7 on port 9999

Connecting

http://www.10gen.com/event_mongosf_10apr30#crud

If you have not connected via the command line, you can use the following commands:

i conn = new Mongo(host); !
i db = conn. get DB(dbnare) ;
i db. aut h(user name, password) ; i

where host is a string that contains either the name or address of the machine you want to connect to (e.g. "192.168.13.7") or the machine and
port (e.g. "192.168.13.7:9999"). Note that host in an optional argument, and can be omitted if you want to connect to the database instance
running on your local machine. (e.g. conn = new Mongo())

Alternatively you can use the connect helper method:

v
o
IS5
I
o
o
=}
=}
I}
(¢}
e
—
o
o
=3
=
o
7]
a2
)
~
o
N
o
2
2
®
[%2]
@
o
o
-
-
2
I
<
3
®
B3
_-
=
®
>
o
=1
7]
-
o
=}
o
o
=
o
)
<}
=
=
*

Basics Commands
The following are three basic commands that provide information about the available databases, and collections in a given database.
show dbs displays all the databases on the server you are connected to

use db_nane switches to db_nan®e on the same server

show col | ecti ons displays a list of all the collections in the current database

Querying

nongo uses a JavaScript API to interact with the database. Because nongo is also a complete JavaScript shell, db is the variable that is the
current database connection.

To query a collection, you simply specify the collection name as a property of the db object, and then call the f i nd() method. For example:

DBQuery. shel | Bat chSi ze = #

‘1, If the shell does not accept the collection name (for example if it starts with a number, contains a space etc), use

- db[* foo'].find()
instead.

Inserting Data

In order to insert data into the database, you can simply create a JavaScript object, and call the save() method. For example, to save an object {
nane: "sara"}in a collection called foo, type:

db. foo. save({ nane : "sara"});

Note that MongoDB will implicitly create any collection that doesn't already exist.

Modifying Data

Let's say you want to change someone's address. You can do this using the following nrongo commands:

person = db. people.findOne({ nane : "sara" });
i person.city = "New York";
. db. peopl e. save(person);

Deleting Data

db. f 0o. drop() drop the entire f oo collection
db. f 0o. renmove() remove all objects from the collection

db.foo.remove({ name : "sara"}) ' remove objects from the collection where nane is sar a

Indexes
db. f 0o. get | ndexKeys() get all fields that have indexes on them
db. foo. ensurel ndex({ _field_: 1 }) createanindexonfield ifitdoesn't exist

Line Continuation

If a line contains open '(* or '{' characters, the shell will request more input before evaluating:

X = 1;

You can press Ctrl-C to escape from "..." mode and terminate line entry.

See Also

® MongoDB Shell Reference

dbshell Reference

Command Line

Special Command Helpers

Basic Shell Javascript Operations
Queries

Error Checking

Administrative Command Helpers
Opening Additional Connections
Miscellaneous

Examples

Command Line

--hel p = Show command line options

--nodb Start without a db, you can connect later with new Mongo() or connect ()

--shel | = After running a .js file from the command line, stay in the shell rather than terminating

Special Command Helpers

Non-javascript convenience macros:

hel p Show help

db. hel p() Show help on db methods

db. nyCol | . hel p()
show dbs

use dbnamne

show col | ecti ons
show users

show profile

Show help on collection methods

Print a list of all databases on this server

Set the db variable to represent usage of dbname on the server
Print a list of all collections for current database

Print a list of users for current database

Print most recent profiling operations that took >= 1ms

Basic Shell Javascript Operations

db

db. aut h(user, pass)
coll = db.collection
cursor = coll.find();

col | .renmove(obj pattern

)

col | . save(obj ect)

coll.insert(object)

col | .update(...)

col | . ensurel ndex({
nane : 1})

col |l .update(...)
coll.drop()

db. get Si st er DB(nane)

The variable that references the current database object / connection. Already defined for you in your
instance.

Authenticate with the database (if running in secure mode).
Access a specific collection within the database.
Find all objects in the collection. See queries.

Remove matching objects from the collection.

obj pat t er n is an object specifying fields to match. E.g.: col | . renove({ nanme: "Joe" });

Save an object in the collection, or update if already there.
If your object has a presave method, that method will be called before the object is saved to the db (before
both updates and inserts)

Insert object in collection. No check is made (i.e., no upsert) that the object is not already present in the
collection.

Update an object in a collection. See the Updating documentation; update() has many options.

Creates an index on t ab. name. Does nothing if index already exists.

Drops the collection col |

Return a reference to another database using this same connection. Usage example:
db. get Si ster DB(' production').getColl ecti onNanes()

Queries

coll.find() Find all.

it Continue iterating the last cursor returned from find().

col I . find(Find objects matching cri t eri a in the collection. E.g.: col | . find({ nane: "Joe" });
criteria);

col | . findOne(

criteria);
col | . find(
criteria, fields
)i
coll.find().sort(
{field:1[, field
1)
col I . find(
criteria).sort(
{ field: 11})
col | . find(

). limt(n)

Get just specific fields from the object. E.g.: col | . find({},

Find and return a single object. Returns null if not found. If you want only one object returned, this is more efficient
thanjustfind() aslimt (1) isimplied. You may use regular expressions if the element type is a string, number,
ordate: col | . find({ nane:

/joeli

})

{nane:true});

Return results in the specified order (field ASC). Use -1 for DESC.

Return the objects matching cri teri a, sorted by fi el d.

Limit result to n rows. Highly recommended if you need only a certain number of rows for best performance.

http://mongodb.onconfluence.com/display/DOCS/Queries+and+Cursors

coll.find(... Skip n results.

).skip(n)

col | . count() Returns total number of objects in the collection.

coll.find(... Returns the total number of objects that match the query. Note that the number ignores limit and skip; for example if
). count () 100 records match but the limit is 10, count () will return 100. This will be faster than iterating yourself, but still take

time.
More information: see queries.
Error Checking

db. get Last Error () @ Returns error from the last operation.
db. get PrevError () @ Returns error from previous operations.

db.resetError () Clear error memory.

Administrative Command Helpers

db. cl oneDat abase(fromhost) Clone the current database from the other host specified. fromhost database must be in
noauth mode.

db. copyDat abase(frondb, todb, Copy fromhost/fromdb to todb on this server. fromhost must be in noauth mode.

fromhost)

db. r epai r Dat abase() Repair and compact the current database. This operation can be very slow on large
databases.

db. addUser (user, pwd) Add user to current database.

db. get Col | ecti onNames() get list of all collections.

db. dr opDat abase() Drops the current database.

Opening Additional Connections

db = Open a new database connection. One may have multiple connections within a single shell,

connect (" <host >: <port >/ <dbname>") however, automatic getLastError reporting by the shell is done for the 'db’ variable only. See
here for an example of connect().

conn = new Mngo("host nane") Open a connection to a new server. Use get DB() to select a database thereafter.

db = conn. get DB("dbnane") Select a specific database for a connection

Miscellaneous

bj ect . bsonsi ze(db. foo. fi ndOne()) prints the bson size of a db object (mongo version 1.3 and greater)

db. foo. fi ndOne() . bsonsi ze() prints the bson size of a db object (mongo versions predating 1.3)
For a full list of functions, see the shell API.

Examples

The MongoDB source code includes a jstests/ directory with many mongo shell scripts.

Developer FAQ

® What's a "namespace"?

®* How do | copy all objects from one database collection to another?
® |If you remove an object attribute is it deleted from the store?

® Are null values allowed?

® Does an update fsync to disk immediately?

® How do | do transactions/locking?

® How do | do equivalent of SELECT count * and GROUP BY?

http://mongodb.onconfluence.com/display/DOCS/Queries+and+Cursors
http://mongodb.onconfluence.com/display/DOCS/getlasterror
http://api.mongodb.org/js/index.html
http://github.com/mongodb/mongo/tree/master/jstests/

What are so many "Connection Accepted" messages logged?
What RAID should | use?

Can | run on Amazon EBS? Any issues?

Why are my data files so large?

Do | Have to Worry About SQL Injection
How does concurrency work

SQL to Mongo Mapping Chart

What is the Compare Order for BSON Types

Also check out Markus Gattol's excellent FAQ on his website.
What's a "namespace"?

MongoDB stores BSON objects in collections. The concatenation of the database name and the collection name (with a period in between) is
called a namespace.

For example, acne. user s is a namespace, where acne is the database name, and user s is the collection name. Note that periods can occur in
collection names, so a name such as acne. bl og. post s is legal too (in that case bl og. post s is the collection name.

How do | copy all objects from one database collection to another?

See below. The code below may be ran server-side for high performance with the eval() method.

o
=
o
=
Q
=}
L
.
=
o
=
Z
.
o
=
m
©
o
=
=3
.
c
>
(¢}
e
<}
=
=
<
Z
—~
o
=
o
o
S
<
n
o
<
)
=
<
Z
-~
-

If you remove an object attribute is it deleted from the store?

Yes, you remove the attribute and then re-save() the object.

Are null values allowed?

For members of an object, yes. You cannot add null to a database collection though as null isn't an object. You can add {}, though.

Does an update fsync to disk immediately?

No, writes to disk are lazy by default. A write may hit disk a couple of seconds later. For example, if the database receives a thousand increments
to an object within one second, it will only be flushed to disk once. (Note fsync options are available though both at the command line and via
getLastError.)

How do | do transactions/locking?

MongoDB does not use traditional locking or complex transactions with rollback, as it is designed to be lightweight and fast and predictable in its

performance. It can be thought of as analogous to the MySQL MylISAM autocommit model. By keeping transaction support extremely simple,
performance is enhanced, especially in a system that may run across many servers.

The system provides alternative models for atomically making updates that are sufficient for many common use cases. See the wiki page
Atomics Operations for detailed information.

How do | do equivalent of SELECT count * and GROUP BY?
See aggregation.
What are so many "Connection Accepted" messages logged?

If you see a tremendous number of connection accepted messages in the mongod log, that means clients are repeatedly connecting and
disconnected. This works, but is inefficient.

With CGl this is normal. If you find the speed acceptable for your purposes, run mongod with --quiet to suppress these messages in the log. If
you need better performance, switch to a solution where connections are pooled -- such as an Apache module.

What RAID should | use?
We recommend not using RAID-5, but rather, RAID-10 or the like. Both will work of course.
Can | run on Amazon EBS? Any issues?

Works fine in our experience; more information here.

http://sunoano.name/ws/public_xhtml/mongodb.html

Why are my data files so large?

MongoDB does aggressive preallocation of reserved space to avoid file system fragmentation. This is configurable. More info here.

Do | Have to Worry About SQL Injection

Generally, with MongoDB we are not building queries from strings, so traditional SQL Injection attacks are not a problem. More details and some
nuances are covered below.

MongoDB queries are represented as BSON objects. Typically the programming language gives a convenient way to build these objects that is
injection free. For example in C++ one would write:

BSONCbj ny_query = BSON("nanme" << a_nane);
aut o_ptr<DBC i ent Cursor> cursor = c.query("tutorial.persons", my_query);

my_query then will have a value such as { name : "Joe" }. If my_query contained special characters such as ", :, {, etc., nothing bad happens, they
are just part of the string.

Javascript

Some care is appropriate when using server-side Javascript. For example when using the $where statement in a query, do not concatenate user
supplied data to build Javascript code; this would be analogous to a SQL injection vulnerability. Fortunately, most queries in MongoDB can be
expressed without Javascript. Also, we can mix the two modes. It's a good idea to make all the user-supplied fields go straight to a BSON field,
and have your Javascript code be static and passed in the $where field.

If you need to pass user-supplied values into a $where clause, a good approach is to escape them using the CodeWScope mechanism. By
setting the user values as variables in the scope document you will avoid the need to have them eval'ed on the server-side.

If you need to use db.eval() with user supplied values, you can either use a CodeWScope or you can supply extra arguments to your function.
Something like: db.eval(function(userVal){...}, user_value); This will ensure that user_value gets sent as data rather than code.

User-Generated Keys

Sometimes it is useful to build a BSON object where the key is user-provided. In these situations, keys will need to have substitutions for the
reserved $ and . characters. If you are unsure what characters to use, the Unicode full width equivalents aren't a bad choice: U+FF04 () and
U+FFOE ()

For example:
| BSONObj my_object = BSON(a_key << a_nane);

The user may have supplied a $ value within a_key. my_object could be { $where : "things" }. Here we can look at a few cases:

® Inserting. Inserting into the the database will do no harm. We are not executing this object as a query, we are inserting the data in the
database.
Note: properly written MongoDB client drivers check for reserved characters in keys on inserts.

® Update. update(query, obj) allows $ operators in the obj field. $where is not supported in update. Some operators are possible that
manipulate the single document only -- thus, the keys should be escaped as mentioned above if reserved characters are possible.

® Querying. Generally this is not a problem as for { x : user_obj }, dollar signs are not top level and have no effect. In theory one might let
the user build a query completely themself and provide it to the database. In that case checking for $ characters in keynames is
important. That however would be a highly unusual case.

One way to handle user-generated keys is to always put them in sub-objects. Then they are never at top level (where $operators live) anyway.

See Also

® http://groups.google.com/group/mongodb-user/browse_thread/thread/b4ef57912cbf09d7

How does concurrency work

® mongos
® mongod
® v1.0-v1.2 Concurrency
Viewing Operations in Progress
Read/Write Lock
Operations
On Javascript

http://en.wikipedia.org/wiki/SQL_injection
http://groups.google.com/group/mongodb-user/browse_thread/thread/b4ef57912cbf09d7

® Multicore

mongos

For sharded environments, mongos can perform any number of operations concurrently. This results in downstream operations to mongod
instances. Execution of operations at each mongod is independent; that is, one mongod does not block another.

mongod
The original mongod architecture is concurrency friendly; however, some work with respect to granular locking and latching is not yet done. This

means that some operations can block others. This is particular true in versions < 1.3. Version 1.3+ has improvements to concurrency, although
future work will make things even better.

v1.0-v1.2 Concurrency

In these versions of mongod, most operations prevent concurrent execution of other operations. In many circumstances, this worked reasonably
as most operations can be executed very quickly.

The following operations do have concurrent support in v1.2 and below:
1. db.currentOp() and db.killOp() commands
2. map/reduce

3. queries returning large amounts of data do interleave with other operations (but does block when scanning data that is not returned)
The rest of this document focuses on concurrency for v1.3+.
Viewing Operations in Progress
Use db. current Op() to view operations in progress, and db. ki | | Op() to terminate an operation.
You can also see operations in progress from the adminstrative Http Interface.
Read/Write Lock
mongod uses a read/write lock for many operations. Any humber of concurrent read operations are allowed, but typically only one write operation

(although some write operations yield and in the future more concurrency will be added). The write lock acquisition is greedy: a pending write lock
acquisition will prevent further read lock acquisitions until fulfilled.

Operations
Operation Lock type Notes
OP_QUERY (query) Acquires read lock = see also: SERVER-517

OP_GETMORE (get more from cursor) = Acquires read lock

OP_INSERT (insert) Acquires write lock ' Inserts are normally fast and short-lived operations

OP_DELETE (remove) Acquires write lock = Yields while running to allow other operations to interleave.

OP_UPDATE (update) Acquires write lock = Will yield for interleave (1.5.2+)

map/reduce At times locked Allows substantial concurrent operation.

create index See notes Batch build acquires write lock. But a background build option is available.
db.eval() Acquires write lock

getLastError command Non-blocking

ismaster command Non-blocking

serverStatus command Non-blocking

On Javascript

http://jira.mongodb.org/browse/SERVER-517

Only one thread in the mongod process executes Javascript at a time (other database operations are often possible concurrent with this).

Multicore

With read operations, it is easy for mongod 1.3+ to saturate all cores. However, because of the read/write lock above, write operations will not yet
fully utilize all cores. This will be improved in the future.

SQL to Mongo Mapping Chart

This page not done. Please help us finish it!

MySQL Program Mongo Program
nmysql d nongod

nysql nongo

MongoDB queries are expressed as JSON (BSON) objects. This quick reference chart shows examples as both SQL and in Mongo Query
Language syntax.

The query expression in MongoDB (and other things, such as index key patterns) is represented as JSON. However, the actual verb (e.g. "find")
is done in one's regular programming language. The exact forms of these verbs vary by language. The examples below are Javascript and can
be executed from the mongo shell.

SQL Statement Mongo Query Language Statement

e . implicit; can be done explicitly

! CREATE TABLE USERS (a Number, b Nunber) §

i I NSERT I NTO USERS VALUES(1, 1) ! i db.users.insert({a:1,b:1})
! SELECT a, b FROM users § i db.users.find({}, {a: 1, b:1}) §
{ SELECT * FROM users ; i db.users.find()
i SELECT * FROM users WHERE age=33 H i db.users.find({age: 33})
i SELECT a, b FROM users WHERE age=33 i db.users.find({age: 33}, {a:1,b:1})

SELECT *
name

FROM users WHERE age=33 ORDER BY

db.

users. find({age: 33}).sort({nane: 1})

SELECT *

FROM users WHERE age>33

db

.users.find({' age': {$gt:33}})})

SELECT *

FROM users WHERE age<33

db

.users.find({ age':{$/t:33}})})

SELECT *

FROM users ORDER BY nanme DESC

db

.users.find().sort({nane:-1})

CREATE | NDEX nyi ndexnane ON users(name)

db

. users. ensur el ndex({nane: 1})

db

.users.find({a:1,b:'q'})

db

.users.find().limt(210).skip(20)

SELECT * FROM users WHERE a=1 and b='q'
SELECT * FROM users LIMT 10 SKIP 20
SELECT * FROM users LIMT 1

db.

users. findOne()

EXPLAI N SELECT * FROM users WHERE z=3

db.

users. find({z:3}).explain()

SELECT DI STI NCT | ast _nanme FROM users

db.

users.distinct('last_nane')

SELECT COUNT(*y)
FROM user s

db.

users. count ()

SELECT COUNT(*y)
FROM users where ACGE > 30

db.

users.find({age: {'$gt': 30}}).count()

{ SELECT COUNT(AGE) from users ; i db.users.find({age: {'$exists': true
e eeeeoeenmenmeenmeenmeenmeenmeneemeeneeneeneee | i 1}).count() |
! UPDATE users SET a=1 WHERE b='(q' ; { db.users.update({b:'q'}, {$set:{a:1}},
e i i false, true) :

What is the Compare Order for BSON Types

MongoDB allows objects in the same collection which have values which may differ in type. When comparing values from different types, a
convention is utilized as to which value is less than the other. This (somewhat arbitary but well defined) ordering is listed below.

Note that some types are treated as equivalent for comparison purposes -- specifically numeric types which undergo conversion before
comparison.

See also the BSON specification.

Null

Numbers (ints, longs, doubles)
Symbol, String

Object

Array

BinData

ObjectID

Boolean

Date, Timestamp

Regular Expression

Example (using the mongo shell):

t = db.nycol |;

t.insert({x:3});

t.insert({x : 2.9});

t.insert({x : new Date()});

t.insert({x : true})

t.find().sort({x:1})

'_id" : Objectld("4b03155dce8de6586f b002c7"), "x" 2.9}
_id" : Qbjectld("4b03154cce8de6586f b002c6"), "x" 3}

_id" : Objectld("4b031566ce8de6586f b002c9"), "x" : true }

"_id" : Qbjectld("4b031563ce8de6586f b002c8"), "x" "Tue Nov 17 2009 16:28:03 GMr-0500 (EST)" }

MinKey and MaxKey

In addition to the above types MongoDB internally uses a special type for MinKey and MaxKey which are less than, and greater than all other
possible BSON element values, respectively.

From the mongo Javascript Shell

For example we can continue our example from above adding two objects which have x key values of MinKey and MaxKey respectively:

>t.insert({ x : MuxKey }) H
>t.insert({ x : MnKey }) :
> t.find().sort({x:1}) ;
{ "_id" : Opjectld("4b04094b7c65b846€2090112"), "X { $minKey : 1} }
{ "_id" : Opjectld("4b03155dce8de6586f b002c7"), "x" : 2.9 } :
{ "_id" : Opjectld("4b03154cce8de6586fb002c6"), "x" : 3}
{ "_id" : Objectld("4b031566ce8de6586f b002c9"), "x" : true }
{ "_id" : Objectld("4b031563ce8de6586f b002c8"), "x :
{ "_id" : Opjectld("4b0409487c65b846€2090111"), "x :

" : "Tue Nov 17 2009 16:28: 03 GMI-0500 (EST)" }
"o { $maxKey @ 1} }

From C++

See also the Tailable Cursors page for an example of using MinKey from C++. See also minKey and maxKey definitions in jsobj.h.

Admin Zone

Production Notes

Replication

Sharding

Hosting Center

Monitoring and Diagnostics
Backups

Durability and Repair
Security and Authentication
Admin Uls

Starting and Stopping Mongo
GridFS Tools

DBA Operations from the Shell
Architecture and Components
Troubleshooting

Community Admin-Related Articles

® boxedice.com - notes from a production deployment
® Survey of Admin Uls for MongoDB
® MongoDB Nagios Check

® MongoDB Cacti Graphs

See Also

® Commands in Developer Zone

Production Notes

® Architecture
® Production Options
® Backups
Recommended Unix System Settings
TCP Port Numbers
File Systems
Tips
See Also

Architecture

Production Options

® Master Slave
® 1 master, N slaves - failover is handled manually
® Version 1.6: Replica Sets
® N servers, 1 is always primary, auto-failover, auto-recovery

Backups

® Import Export Tools

Recommended Unix System Settings

® Turn off atime
® Set file descriptor limit to 4k+ (see etc/limits and ulimit)
® Do not use large VM pages with Linux (more info)

TCP Port Numbers

http://github.com/mongodb/mongo/blob/master/db/jsobj.h
http://blog.boxedice.com/2010/02/28/notes-from-a-production-mongodb-deployment/
http://blog.timgourley.com/post/453680012/tuesday-night-tech-mongodb-ui-edition
http://tag1consulting.com/blog/mongodb-nagios-check
http://tag1consulting.com/blog/mongodb-cacti-graphs
http://linuxgazette.net/155/krishnakumar.html

Default TCP port numbers for MongoDB processes:

Standalone mongod — 27017

mongos — 27017

shard server (nbngod - -shardsvr) - 27018

config server (mongod - - confi gsvr)—27019

web stats page for mongod — add 1000 to port number (28017, by default)

File Systems

® MongoDB uses large files for storing data, and preallocates these. Some filesystems are much better at this
® ext4
® xfs

Tips
® Handling Halted Replication

See Also

® Starting and Stopping the Database

Replication

MongoDB supports asynchronous replication of data between servers for failover and redundancy. Only one server (in the set/shard) is active for
writes (the primary, or master) at a given time. With a single active master at any point in time, strong consistency semantics are available. One
can optionally send read operations to the slaves/secondaries when eventual consistency semantics are acceptable.

® Master-Slave Replication
® Replica Sets

Master / Slave Replication . . Replica Set

Member 1

SECONDARY ‘X\ Member 3

PRIBMARY

\ .

Member 2

RECOVERING

Slave(s)

Which should | use?

if using <v1.6 : master/slave

if need automatic fail-over and recovery (easy administration): replica sets

if using - - aut h (security) or - - sl avedel ay : for now, master/slave

if using sharding : either, but replica sets are best for clusters that are not small
if risk averse : master/slave (replica sets are new to v1.6.0)

Verifying propagation of writes with get | ast error

A client can block until a write operation has been replicated to N servers -- read more here .

Presentations

® Replication Video

http://blog.mongodb.org/post/498145601/on-distributed-consistency-part-2-some-eventual
http://jira.mongodb.org/browse/SERVER-1567
http://lacantine.ubicast.eu/videos/21-06-2010-130932-partie-6/

® Replication Slides Only

Verifying Propagation of Writes with getLastError

. vl1.5+.

]

A client can block until a write operation has been replicated to N servers. Use the getlasterror command with a new parameter w.

If wis not set, or equals 1, the command returns immediately, implying the data is on 1 server (itself). If w is 2, then the data is on the current
server and 1 other server (a secondary).

The higher wis, the longer acknowledgement may take. A recommended way of using this feature in a web context is to do all the write
operations for a page, then call this once if needed. That way you're only paying the cost once.

There is an optional wt i neout parameter that allows you to timeout after a certain number of milliseconds and perhaps return an error or
warning to a user. For example, the following will wait for 3 seconds before giving up:

> db. runCommand({getlasterror : 1, w: 40, wineout : 3000})

o i
: “err" : null, i
"n" 1 0,
i "wtinmeout" : true, i
| "wai ted" : 30086, f
"errnsg" : "tinmed out waiting for slaves",
"ok" : 0
B 5

Note: the current implementation returns when the data has been delivered to w servers. Future versions will provide more options for delivery
vs. say, physical fsync at the server.

See also replica set configuration for information on how to change the getlasterror default parameters.

Replica Sets

', v1.6.0 and higher.

]

Replica sets are an elaboration on the existing master/slave replication, adding automatic failover and automatic recovery of member nodes.

Replica Sets are "Replica Pairs version 2" and are available in MongoDB version 1.6. Replica Pairs will be deprecated.

Features

Supports 1-7 servers in the cluster

Automatic failover and recovery

Data center aware (v1.6.1) (rack aware too, eventually)
Supports passive set members (slaves) that are never primary

Docs

To get started:

® Try it out
® Learn how to configure your set

If you would like to start using replica sets with an existing system:

® Learn how to migrate your existing setup
® Upgrade your client code to use replica set connections (see also your driver's documentation for details)

When running replica sets, it is important to know about:

http://www.slideshare.net/mongodb/replica-sets

® The admin Ul
® Administrative commands

More Docs

® Sample Replica Set Config Session.pdf
® Limits
® Design Concepts
®* HowTo
® Resyncing a Very Stale Replica Set Member
Adding a New Set Member
Adding an Arbiter
About the local database
Reconfiguring when members are up
Reconfiguring when members are down
Data Center Awareness

See Also

® Replication Video
® Replica Sets Slides

About the local database
nongod reserves the database | ocal for special functionality. It is special in that its contents are never replicated.

Using the database for end-user data

You may place end user application data in local, if you would like it to not replicate to other servers. Put your collections under | ocal . usr. *.

Replica Sets
Replica sets use the following collections in | ocal :

® | ocal .systemrepl set the replica set's configuration object is stored here. (View via the r s. conf () helper in the shell — or query it
directly.)

® | ocal . opl og. r s is a capped collection that is the oplog. You can use the - - opl 0gSi ze command line parameter to set the size of
this collection.

® | ocal . repl set. m nval i d sometimes contains an object used internally by replica sets to track sync status

Master/Slave Replication

® Master
® | ocal . opl og. $mai n the "oplog”
® local.slaves

® Slave
® local.sources

® Other
® local.nme

® | ocal . pair.* (replica pairs, which are deprecated)

Data Center Awareness

The 1.6.0 build of replica sets does not support much in terms of data center awareness. However additional functionality will be added in the
future. Below are some suggestions configurations which work today.

Primary plus DR site

Use one site, with one or more set members, as primary. Have a member at a remote site with priority=0. For example:

{ _id: '"nyset',
menbers: [
{ _id:0, host:'"sfl1', priority:1 },
{ _id:1, host:'sf2', priority:1 },
{ _id:2, host:'nyl', priority:0 }

http://www.mongodb.org/download/attachments/9830402/mongodb+replica+sets+intro.pdf
http://lacantine.ubicast.eu/videos/21-06-2010-130932-partie-6/
http://www.slideshare.net/mongodb/mongodb-replica-sets

Multi-site with local reads

Another configuration would be to have one member in each of three data centers. One node arbitrarily becomes primary, the others though are
secondaries and can process reads locally.

{ _id: "nyset',
nenbers: [
{ _id:0, host:"'sfl1', priority:1 },
{ _id:1, host:'nyl', priority:1 },
{ _id:2, host:"ukl', priority:1}
|
}

Reconfiguring a replica set when members are down

One may modify a set when some members are down as long as a majority is established. In that case, simply send the reconfig command to the
current primary.

If there is no primary (and this condition is not transient), no majority is available. Reconfiguring a minority partition would be dangerous as two
sides of a network partition won't both be aware of the reconfiguration. Thus, this is not allowed.

However, in some administrative circumstances we will want to take action even though there is no majority. Suggestions on how to deal with this
are outlined below.

Example 1

A replica set has three members, which in the past were healthy. Two of the servers are permanently destroyed. We wish to bring the remaining
member online immediately.

One option is to make the last standing mongod a standalone server and not a set member:

1. stop the surviving nongod

2. consider doing a backup...

3. delete the | ocal . * datafiles in the data directory. this will prevent potential future confusion if it is ever restarted with --replSet in the
future.

4. restart nongod without the - - r epl Set parameter.

We are now back online with a single node that is not a replica set member. Clients can use it for both reads and writes.

Example 2

A replica set has three members, which in the past were healthy. Two of the servers are permanently destroyed. We wish to bring the remaining
member online and add a new member to its set.

We cannot reconfigure the existing set with only 1 of 3 members available. However, we can "break the mirror" and start a new set:

. stop the surviging nongod

. consider doing a backup...

. delete the | ocal . * datafiles in the data directory.
. restart the mongod with a new replica set name

. initiate this new set

. then, add the new second member

OoOUhA WNBE

Example 3

A replica set has five members, which in the past were healthy. Three of the servers are permanently destroyed. We wish to bring the remaining
members online.

As in example 2 we will use the "break the mirror" technique. Unfortunately one of the two members must be re-synced.

. stop the surviging nongod's

. consider doing a backup...

. delete the | ocal . * datafiles on server 1

. delete (ideally just move to a backup location) all the datafiles from server 2

. restart both nongod's with the new replica set name on the command line for each
. initiate this new set on server 1

. then, add the new second member (server 2)

~NOoO O WN R

See Also

® Reconfiguring when Members are Up

Reconfiguring when Members are Up

Use the rs.reconfig() helper in the shell. You can also do this from other languages/drivers using the replSetReconfig command directly. (Run
"rs.reconfig" in the shell with no parenthesis to see what it does.)

: $ nongo :
i > /] exanple : give 1st set nenber 2 votes i
> c¢fg = rs.conf();
i > cfg. menbers[0].votes = 2;
> rs.reconfig(cfg);

Requirements:

® You must connect to the current primary.
® A majority of members of the set must be up.

Note that you may experience a short downtime period while the set renegotiates master after a reconfiguration. This typically is 10-20 seconds.
As always, it is best to do admin work during planned maintenance windows regardless just to be safe.

See Also

® Reconfiguring when members are down
Replica Set Desigh Concepts

1

A write is only truly committed once it has replicated to a majority of members of the set. For important writes, the client should request
acknowledgement of this with a get Last Error ({w: ...}) call

2.

Writes which are committed at the primary of the set may be visible before the true cluster-wide commit has occurred. This property, which is
more relaxed than some traditional RDBMS products, makes theoretically achievable performance and availability higher.

3.
On a failover, if there is data which has not replicated from the primary, the data is dropped (thus the use of getlasterror in #1 above).

., Datais now backed up on rollback, although the assumption is that in most cases this data is never recovered as that would
require operator intervention: http://jira.mongodb.org/browse/SERVER-1512.

Replica Sets Troubleshooting
can't get local.system.replset config from self or any seed (EMPTYCONFIG)

Set needs to be initiated. Runrs.initiate() from the shell.

If the set is already initiated and this is a new node, verify it is present in the replica set's configuration and there are no typos in the host names:

> // send to a working node in the set:
i > rs.conf() |

Replica Set Tutorial
This tutorial will guide you through the basic configuration of a replica set on a single machine. If you're attempting to deploy replica sets in

production, be sure to read the comprehensive replica set documentation. Also, do keep in mind that replica sets are production-ready as of
MongoDB 1.6.

http://jira.mongodb.org/browse/SERVER-1512

Introduction

Starting the nodes

Initializing the set

Replication

Failing Over

Changing the replica set configuration
Running with two nodes

Drivers

Introduction

A replica set is group of N nongod nodes that work together to provide automated failover.

Setting up a replica set is a two-step process that requires starting each node and then formally initiating the set. Here, we'll be configuring a set
of three nodes, which is standard.

Once the nbngod nodes are started, we'll issue a command to properly initialize the set. After a few seconds, one node will be elected master,
and you can begin writing to and querying the set.

Starting the nodes

First, create a separate data directory for each of the nodes in the set:

. nkdir -p /data/r0
i nkdir -p /data/rl i
i nkdir -p /data/r2 §

Next, start each mongod process with the - - r epl Set parameter. The parameter requires that you specify the name of the replica set. Let's call
our replica set "foo." We'll launch our first node like so:

The second node gets launched on port 27018:

Let's start the second node on port 27018:

Mon Aug 2 11:30:19 [startRepl Sets] repl Set can't get |ocal.systemreplset config fromself or any
i seed (EMPTYCONFI G H

We can't use the replica set until we've initialized it, which we'll do next.

Initializing the set

We can initiate the replica set by connecting to one of the members and running the replSetinitiate command. This command takes a
configuration object that specifies the name of the set and each of the members.

nongo | ocal host: 27017

[kyl e@rete ~$]$ nongo | ocal host: 27017

MongoDB shel |l version: 1.5.7

connecting to: |ocal host:27017/test

> config = {_id: 'foo', nenbers: [
{_id: 0, host: 'local host:27017'},
{_id: 1, host: 'local host:27018'},
{_id: 2, host: 'local host:27019'}]

}
> rs.initiate(config);
{
"info" : "Config now saved locally. Should cone online in about a mnute.",
"ok" : 1
}

We specify the config object and then passittors.initiate(). Then, if everything is in order, we get a response saying that the replica set will
be online in a minute. During this time, one of the nodes will be elected master.

To check the status of the set, runrs. st at us:

> rs.status()
{
"set" : "foo",
"date" : "Mon Aug 02 2010 11:39: 08 GMr- 0400 (EDT)",
"nyState" : 1,
"menbers" : [
{
"nane" : "arete.local:27017",
"self" : true,
1,
{

"nane" : "local host:27019",

"health" : 1,

“uptinme" : 101,

"l ast Heartbeat" : "Mon Aug 02 2010 11:39: 07 GMr-0400",
},
{

"nane" : "local host:27018",
"health" : 1,
"uptinme" : 107,
"l ast Heartbeat" : "Moyn Aug 02 2010 11:39: 07 GMI-0400",
}
1,
"ok" : 1

You'll see that both of the other members of the set are up. You may also notice that the my St at e value is 1, indicating that we're connected to
the master node; a value of 2 indicates a slave.

You can also check the set's status in the HTTP Admin Ul.
Replication

Go ahead and write something to the master node:

db. nessages. save({name: "Repl Set Tutorial"});

If you pay attention to the logs on the slave nodes, you'll see the write being replicated. This initial replication is essential for failover; the system
won't fail over to a new master until an initial sync between nodes is complete.

Failing Over

Now, the purpose of a replica set is to provide automated failover. This means that, if the master node is killed, a slave node can take over. To
see how this works in practice, go ahead and kill the master node with ~C:

ACVbn Aug 2 11:50:16 got kill or ctrl ¢ or hup signal 2 (Interrupt), will termnate after current cnd

Mon Aug 2 11:50:16

i ends
| Mon Aug 2 11:50:16

[interrupt Thread] now exiting
dbexi t:

! Mon Aug 2 11:50: 16
respond)
{ Mdn Aug 2 11:50:17
i Mon Aug 2 11:50:17
recently
i Mn Aug 2 11:50:27

Mon Aug 2 11:50:17
respond)

Mon Aug 2 11:50:17
Mon Aug 2 11:50:17
Mon Aug 2 11:50:27

[Repl Set Heal t hPol | Task] repl Set info |ocal host: 27017 is now down (or slowto

[connl] repl Set info voting yea for 2
[rs Manager] repl Set not trying to el ect self as responded yea to someone el se

[rs_sync] repl Set SECONDARY

[Repl Set Heal t hPol | Task] repl Set info |ocal host: 27017 is now down (or slowto

[rs Manager] repl Set info electSelf 2
[rs Manager] repl Set PRI MARY
[initandlisten] connection accepted from 127.0.0.1: 61263 #5

Both nodes notice that the master has gone down and, as a result, a new primary node is elected. In this case, the node at port 27019 is
promoted. If we bring the failed node on 27017 back online, it will come up as a slave.

Changing the replica set configuration

There are times when you'll want to change the replica set configuration. Suppose, for instance, that you want to adjust the number of votes

available to each node. To do this, you need to pass a hew configuration object to the database's r epl Set Reconf i g command. Here's how.

First, define the new configuation:

new config = {_id:

'foo', nenbers: [

{_id: 0, host: 'local host:27017', votes: 1},
{_id: 1, host: 'local host:27018', votes: 2},
{_id: 2, host: 'local host:27019', votes: 3}]

use | ocal

new_confi g. version

ol d_config = db.systemrepl set.findOne();

ol d_config.version + 1;

db. runCommand({r epl Set Reconfi g: new_config});

! use adnmin

Running with two nodes

Suppose you want to run replica sets with just two database servers. This is possible as long as you also use an arbiter on a separate node; most
likely, running the arbiter on one or more application servers will be ideal. With an arbiter in place, the replica set will behave appropriately,
recovering automatically during both network partitions and node failures (e.g., machine crashes).

You start up an arbiter just as you would a standard replica set node, with the - - r epl Set option. However, when initiating, you need to include
the ar bi t er Onl y option in the config document.
With an arbiter, the configuration presented above would look like this instead:

config = {_id: 'foo', nenmbers: [
{_id: 0, host: 'local host:27017'},
{_id: 1, host: 'local host:27018'},
{_id: 2, host: 'local host:27019', arbiterOnly: true}]

The other requirement here is that the total number of votes for the database nodes needs to consist of a majority. This means that if you have
two database nodes and ten arbiters, there's a total of twelve votes. So the best bet in this case it to give each database node enough votes so
that even if all but a single arbiter goes down, the master still has enough votes to stay up. In that situation, each database node would need at
least three votes.

For more information on arbiters and other interesting config options, see the replica set configuration docs.

Drivers

All of the MongoDB drivers are designed to take any number of replica set seed hosts from a replica set and then cache the hosts of any other
known members.

With this complete set of potential master nodes, the driver can automatically find the new master if the current master fails. See your driver's
documentation for details. If you happen to be using the Ruby driver, check out Replica Sets in Ruby.

Replica Set Configuration

Command Line

Initial Setup

The Replica Set Config Object
Shell Example 1

Shell Example 2

See Also

Command Line

Each nongod participating in the set should have a - - r epl Set parameter on its command line. The syntax is

3
=}
«Q
[e]
o
.
.
i
(0]
=
w
2
(%]
@
@
=}
QD
3

setname is the logical name of the set.

1, The--rest command line parameter is also recommended when using replica sets, as the web admin interface of mongod
(normally at port 28017) shows status information on the set.

Initial Setup

We use the initiate command for initial configuration of a replica set. Send the initiate command to a single server with the set to christen the set.
The member being initiated may have initial data; the other servers in the set should be empty.

> db. runCommand({ repl Setlnitiate : <config_object>1})

Y
-
n
3.
-
I
=4
®
~
A
o
o
=
=4
2
o
I
®
o
24
Y
<

A quick way to initiate a set is to leave out the config object parameter. The initial set will then consist of the member to which the shell is
communicating, along with all the seeds that member knows of. However, see the configuration object details below for more options.

The Replica Set Config Object

local.system.replset holds a singleton object which contains the replica set configuration. The config object automatically propagates among
members of the set. The object is not directly manipulated, but rather changed via commands (such as replSetinitiate).

The config object has the form:

o |
_id : <setnane>,
menbers: [
o |
: _id : <ordinal>, :
host : <hostname[: port]>,
: [, priority: <priority>] :
[, arbiterOnly : true]
[, votes : <n>]
: [, hidden : true] :
[, slaveDelay : <n>]
[, buildlndexes : <bool >]
o |
Nt |
settings: {
i [get Last ErrorDefaul ts: <l asterrdefaul ts>] :
[, heartbeat Sleep : <seconds>]
[, heartbeatTimeout : <seconds>]
[, heartbeat ConnRetries : <n>]
) |
- i

® _id - the set name. must match command line setting.
® nmenbers - an array of servers in the set.
® _id-each member has an _id ordinal, typically beginning with zero and numbered in increasing order. when a node is retired
(removed from the config), its _id should not be reused.
® host - host name and optionally the port for the member
® priority - priority a server has for potential election as primary. The highest priority member which is up will become primary.
Default 1.0. Priority zero means server can never be primary.
ar bi t er Onl y - participates in consensus, but receives no data.
vot es - number of votes this set member gets in elections. Default 1.
hi dden - when true, do not advertise the member's existence to clients in isMaster command responses. (v1.7+)
sl aveDel ay - how far behind this slave's replication should be (in seconds). Defaults to O (as up-to-date as possible). Can be
used to recover from human errors (accidentally dropping a database, etc.). This option can only be set on passive members.
(v1.6.3+)
® buil dl ndexes - boolean, defaults to t r ue. If the priority is 0, you can set bui | dl ndexes to f al se to prevent indexes from
being created on this member. This could be useful on a machine which is for backup-only as there is less overhead on writes if
there are no secondary indexes. Note: the _id index is always created.
® settings for the replica set as a whole. Heartbeat params are optional as reasonable settings are predefined.
® get Last Error Def aul t s specifies defaults for the getlasterror command. If the client calls getLastError with no parameters,
the default object specified here is used. (v1.6.2+)
® heart beat Sl eep how frequently nodes should send a heartbeat to each other (default: 2 seconds, must be greater than 10
milliseconds).
® heart beat Ti meout indicates how long a node needs to fail to send data before we note a problem (default: 10 seconds, must
be greater than 10 milliseconds).
® heartbeat ConnRetri es is how many times after hear t beat Ti meout to try connecting again and getting a new heartbeat
(default: 3 tries).

Shell Example 1

> // all at once nethod
> cfg = {
_id: "acne_a",
nenbers : [
{ _id: 0, host : "sfl. acne.conl },
{ _id: 1, host : "sf2. acne.conl },

{ _id: 2, host : "sf3.acne.conm }] }
> rs.initiate(cfg)
> rs.status()

$ # incremental configuration method
nongo sfl.acne. conl adnmin
rs.initiate();
rs.add("sf2. acne. cont); :
rs.add("sf 3. acne. cont');
rs.status();

V V V V &

See Also

® Adding a New Set Member

Adding a New Set Member

Adding a new node to an existing replica set is easy. The new node should either have an empty data directory or a recent copy of the data from
another set member. When we start the new node, we only need to provide the replica set name:

i $./rmongo !
¢ MongoDB shel | version: i
connecting to: test
{ > rs.add("broadway: 27017");
{ "ok" : 1}

After adding the node it will perform a full resync and come online as a secondary. If the node is started with a recent copy of data from another
node in the set it won't need a full resync.

See also:
Adding an Arbiter

Adding an Arbiter

Arbiters are nodes in a replica set that only participate in elections: they don't have a copy of the data and will never become the primary node (or
even a readable secondary). They are mainly useful for breaking ties during elections (e.qg. if a set only has two members).

To add an arbiter, bring up a new node and point it at the replica set using the - - r epl Set flag - this part is identical to when Adding a New Set
Member. To start as an arbiter, we'll use r s. addAr b() instead of r s. add() . While connected to the current primary:

> rs. addAr b("broadway: 27017");
{ "ok" : 11}

See Also

® Adding a New Set Member

Upgrading to Replica Sets

® Upgrading From a Single Server
® Upgrading From Replica Pairs or Master/Slave
® Upgrading Drivers

Upgrading From a Single Server
If you're running MongoDB on a single server, upgrading to replica sets is trivial (and a good idea!). First, we'll initiate a new replica set with a

single node. We need a name for the replica set - in this case we're using f 00. Start by shutting down the server and restarting with the
--repl Set option, and our set name:

@ Add the --rest option too (just be sure that port is secured): the <host>:28017/_replSet diagnostics page is incredibly useful.

The server will allocate new local data files before starting back up. Consider pre-allocating those files if you need to minimize downtime.

Next we'll connect to the server from the shell and initiate the replica set:

$./ nongo

MongoDB shel | version:
connecting to: test
>rs.initiate();

"info2" : "no configuration explicitly specified -- nmeking one",
"info" : "Config now saved locally. Should cone online in about a mnute.",
"ok" : 1

}

The server should now be operational again, this time as the primary in a replica set consisting of just a single node. The next step is to add some
additional nodes to the set.

Upgrading From Replica Pairs or Master/Slave

Version 1.6.1 will have more seamless support for upgrading, track this case for details: http://jira.mongodb.org/browse/SERVER-1553.

With 1.6.0 the best way to upgrade is to simply restart the current master as a single server replica set, and then add any slaves after wiping their
data directory. To find the master in a replica pair, use the i snast er command.

Once you know the master, the process will look like this:

http://jira.mongodb.org/browse/SERVER-1553

n$ # shut down nongod master and sl ave
n$ killall mongod
s$ killall nongod

n$ # backup your /data/db directory on the master
n$ cp /data/db/* /to_sonmewhere_backup/

s$ # we start enpty on the slave. so let's save the old data (assuming drive |arge enough)
s$ nv /data/db /datal/ol d_slave_data

s$ nkdir /data/db

s$ # /data/db is now enpty

n$ nmongod --rest --repl Set nyset name
n$ nongo

e rs.initiate()
m> // try these:
m> db. i sMaster ()
m> rs. hel p()

m> rs.status()

m> rs. conf()

m> // see also http://1ocal host: 28017/ _repl Set

s$ # start replica set menber on the old slave.

s$ # it has no data and will do a full sync initially
s$ nongod --rest --repl Set nysetnane

s$ nongo m admin

m> // still in the nmongo shell on the naster
m> rs.add("s") // "s" is your slave host nane
m> rs.status(); // see also http://1ocal host: 28017/ _repl Set

ar b$ desired and also to avoid confusion. the /data/arb directory

ar b$ will be very light in content.

arb$ nkdir /datal/arb

arb$ nmongod --rest --repl Set nmysetnanme --dbpath /data/arb --port 30000 --opl ogSize 8

arb$ # we should now add an arbiter so break ties on elections and
arb$ # know who is up in a network partition.
arb$ # arbiter is very lightweight and can run on about any server
arb$ # including 32 bit servers.
arb$ # we use different directories and ports here so that the server
arb$ # is still available as a "nornal" nongod server if that is

#

#

m> rs. addArb("arb: 30000"); // replace 'arb' with your arb host nane
> rs.status()

Upgrading Drivers

There are new versions of most MongoDB Drivers which support replica sets elegantly. See the documentation pages for the specific driver of
interest.

Replica Set Admin Ul

The nongod process includes a simple administrative Ul for checking the status of a replica set.

To use, first enable - - r est from the nongod command line. The rest port is the db port plus 1000 (thus, the default is 28017). Be sure this port
is secure before enabling this.

Then you can navigate to ht t p: / / <host nanme>: 28017/ in your web browser. Once there, click Replica Set Status (/_replSet) to move to the
Replica Set Status page.

http://127.0.0.1:28017/_replSet

« C' || 9% httpy//localhost: 28007/ _replSet

Home | View Replset Config | replSetGetStatus | Docs

Setname: zz
Majority up: yes

Member id Up cctime Lastheartbeat Votes State Status optime skew
dm_hp: 27005 0|1 |37secs|1secago 1 PRIMARY 4c5996c9:1d8a
dm_hp:27006 111 |39secs|1secago 1 SECONDARY 4c5996c9:1d8a
dm_hp:27007 (me)|2 |1 40 secs 1 SECONDARY 4c5996c9:1d8a
dm_hp: 27009 3|1 |39secs|1secago 1 SECONDARY 4c5996c9:1d8a
dm_hp: 27008 4 11 |39secs 1secago 1 ARBITER 0:0

Recent replset log activity:

Tha Aung 05 13:04:12
13:04:12

13:04:12

[etartBeplSets] replSet load config ok from self
will not try to elect self

[rs Manager] replSet can't see a majority,
[EeplSetHealthPollTask] replSet i

See Also

® Hittp Interface

Replica Set Commands

® Shell Helpers

¢ Commands

{isMaster: 1}

{ replSetGetStatus : 1}

{ replSetinitiate : <config> }
{ replSetStepDown : true }

{ replSetFreeze : <bool>}

{ replSetReconfig: <config> }

Shell Helpers
rs. hel p() show hel p
rs.status() { repl SetGetStatus : 1}
rs.initiate() { replSetlnitiate : null } initiate

rs.initiate(cfg)

rs. add(hostportstr)
rs. add(nenber cf gobj)
rs. addArb(host portstr)
rs. stepbDown()
rs.conf()

db. i sMaster ()

Commands

{isMaster : 1}

Checks if the node to which we are connecting is currently primary. Most drivers do this check automatically and then send requires to the current

primary.

Returns an object that looks like:

with default settings
{ replSetlnitiate : cfg }
add a new nmenber to the set
add a new nmenber to the set
add a new nmenber which is arbiterOnly:true
{ repl Set StepDown : true }
return configuration fromlocal.systemreplset
check who is prinary

http://localhost:28017/isMaster?text

“ismaster" : fal se,
"secondary” : true,

: "hosts" : [

"sf 1. exanpl e. cont',
"sf 4. exanpl e. cont',
"ny3. exanpl e. cont
5 1,

; "passives" : [

i "sf 3. exanpl e. cont',
"sf 2. exanpl e. cont',

i "ny2. exanpl e. cont',

; 1

! "arbiters" @ [

"nyl. exanpl e. cont,

l]

"primary" : "sf4.exanple.conf,
"ok" 1 1

The hosts array lists primary and secondary servers, the passives array lists passive servers, and the arbiters array lists arbiters.

If the "i smast er " field is f al se, there will be a "pr i mar y" field that indicates which server is primary.

{replSetGetStatus : 1}

Status information on the replica set from this node's point of view.

The output looks like:

P

"set" : "florble",

"date" : "Wed Jul 28 2010 15:01:01 GMr-0400 (EST)",
i "nyState" : 1,

"menbers" : [

| {

1 "nane" : "devl.exanple.cont,

"self" : true,

“errmsg" : ""

g b,

g {

i "name" : "dev2.exanple.cont,

: “health" : 1,

| “uptine" : 13777,

"| ast Heartbeat" : "Wed Jul 28 2010 15:01:01 GMr-0400 (EST)",
i "errnmsg" : "initial sync done"

i }

S

1 "ok" : 1

o}

The myState field indicates the state of this server. Valid states are:

0 Starting up, phase 1
1 Primary

2 Secondary

3 Recovering

4 | Fatal error

5 Starting up, phase 2

http://localhost:28017/replSetGetStatus?text

6 Unknown state
7 Arbiter

8 Down
The health field is 1 if the server is up and O if it is down.
The errmsg field can contain informational messages, as shown above.
{ replSetinitiate : <config>}

Initiate a replica set. Run this command at one node only, to initiate the set. Whatever data is on the initiating node becomes the initial data for the
set. This is a one time operation done at cluster creation. See also Configuration.

{ replSetStepDown : true }

Step down as primary. Node will become eligible to be primary again after 1 minute. (Presumably, another node will take over by then if it were
eligible.)

This command will be enhanced later to allow specification of a min duration of the step-down.

{ replSetFreeze : <bool>}

Freezing a replica set prevents failovers from occurring. This can be useful during maintenance.
Note: As of v1.6.0, replSetFreeze is not yet implemented.

{ replSetReconfig: <config>}

Adjust configuration of a replica set (just like initialize)

db. _adm nCommand({repl Set Reconfig: cfg })

Note: db._adminCommand is short-hand for db.getSisterDB("admin").runCommand();

Replica Set FAQ

How long does failover take?

Failover thresholds are configurable. With the defaults, it may take 20-30 seconds for the primary to be declared down by the other members and
a new primary elected. During this window of time, the cluster is down for "primary" operations — that is, writes and strong consistent reads.
However, you may execute eventually consistent queries to secondaries at any time, including during this window.

Should | use replica sets or replica pairs?

After 1.6, use Replica Sets.

Connecting to Replica Sets from Clients

Most drivers have been updated to provide ways to connect to a replica set. In general, this is very similar to how the drivers support connecting
to a replica pair.

Instead of taking a pair of hostnames, the drivers will typically take a comma separated list of host[:port] names. This is a seed host list; it need
not be every member of the set. The driver then looks for the primary from the seeds. The seed members will report back other members of the
set that the client is not aware of yet. Thus we can add members to a replica set without changing client code.

With Sharding
With sharding, the client connects to a nongos process. The nongos process will then automatically find the right member(s) of the set.
See Also

® Driver authors should review Connecting Drivers to Replica Sets.

Replica Sets Limits

v1.6

¢ Authentication mode not supported. JIRA

® Limits on config changes to sets at first. Especially when a lot of set members are down.

® Map/reduce writes new collections to the server. Because of this, for now it may only be used on the primary. This will be enhanced
later.

Resyncing a Very Stale Replica Set Member

Error RS102

MongoDB writes operations to an oplog. For replica sets this data is stored in collection local.oplog.rs. This is a capped collection and wraps
when full "RRD"-style. Thus, it is important that the oplog collection is large enough to buffer a good amount of writes when some members of a
replica set are down. If too many writes occur, the down nodes, when they resume, cannot catch up. In that case, a full resync would be
required.

Sizing the oplog

The command line - - opl 0gSi ze parameter sets the oplog size. A good rule of thumb is 5 to 10% of total disk space. On 64 bit builds, the
default is large and similar to this percentage. You can check your existing oplog sizes from the nongo shell :

> use | ocal
> db. opl og.rs.stats()

What to do on a sync error
If one of your members has been offline and is now too far behind to catch up, you will need to resync. There are a number of ways to do this.

1. Delete all data. If you stop the failed mongod, delete all data, and restart it, it will automatically resynchronize itself. Of course this may be slow
if the database is huge or the network slow.

2. Copy data from another member. You can copy all the data files from another member of the set IF you have a snapshot of that member's data
file's. This can be done in a number of ways. The simplest is to stop nongod on the source member, copy all its files, and then restart rongod on
both nodes. The Mongo fsync and lock feature is another way to achieve this. On a slow network, snapshotting all the datafiles from another
(inactive) member to a gziped tarball is a good solution. Also similar strategies work well when using SANs and services such as Amazon Elastic
Block Service snapshots.

3. Find a member with older data. Each member of the replica set has an oplog. It is possible that a member has a larger oplog than the current
primary.

Replica Set Internals

® Design Concepts
® Configuration
® Command Line
* Node Types
® |ocal.system.replset
® Set Initiation (Initial Setup)

Server States
Applying Operations
OpOrdinal
Picking Primary
Heartbeat Monitoring
Assumption of Primary
Failover
Resync (Connecting to a New Primary)
Consensus
Increasing Durability
® Reading from Secondaries and Staleness
® Example
® Administration
® Future Versions

Design Concepts

Check out the Replica Set Design Concepts for some of the core concepts underlying MongoDB Replica Sets.

Configuration

http://jira.mongodb.org/browse/SERVER-1567

Command Line
We specify --replSet set_name/seed_hostname_list on the command line. seed_hostname_list is a (partial) list of some members of the set. The

system then fetches full configuration information from the collection local.system.replset. set_name is specified to help the system catch
misconfigurations.

Node Types

Conceptually, we have some different types of nodes:
® Standard - a standard node as described above. Can transition to and from being a primary or a secondary over time. There is only one
primary (master) server at any point in time.
® Passive - a server can participate as if it were a member of the replica set, but be specified to never be Primary.
® Arbiter - member of the cluster for consensus purposes, but receives no data. Arbiters cannot be seed hosts.
Each node in the set has a priority setting. On a resync (see below), the rule is: choose as master the node with highest priority that is healthy. If

multiple nodes have the same priority, pick the node with the freshest data. For example, we might use 1.0 priority for Normal members, 0.0 for
passive (0 indicates cannot be primary no matter what), and 0.5 for a server in a less desirable data center.

local.system.replset

This collection has one document storing the replica set's configuration. See the configuration page for details.

Set Initiation (Initial Setup)

For a new cluster, on negotiation the max OpOrdinal is zero everywhere. We then know we have a new replica set with no data yet. A special
command

{repl Setlnitiate: 1}

is sent to a (single) server to begin things.
Design

Server States

® Primary - Can be thought of as "master" although which server is primary can vary over time. Only 1 server is primary at a given point in
time.

® Secondary - Can be thought of as a slave in the cluster; varies over time.

® Recovering - getting back in sync before entering Secondary mode.

Applying Operations

Secondaries apply operations from the Primary. Each applied operation is also written to the secondary's local oplog. We need only apply from
the current primary (and be prepared to switch if that changes).

OpOrdinal
We use a monotonically increasing ordinal to represent each operation.

These values appear in the oplog (local.oplog.$main). maxLocalOpOrdinal() returns the largest value logged. This value represents how
up-to-date we are. The first operation is logged with ordinal 1.

Note two servers in the set could in theory generate different operations with the same ordinal under some race conditions. Thus for full
uniqueness we must look at the combination of server id and op ordinal.

Picking Primary

We use a consensus protocol to pick a primary. Exact details will be spared here but that basic process is:
. get maxLocalOpOrdinal from each server.

. if a majority of servers are not up (from this server's POV), remain in Secondary mode and stop.

. if the last op time seems very old, stop and await human intervention.
. else, using a consensus protocol, pick the server with the highest maxLocalOpOrdinal as the Primary.

A WNBE

Any server in the replica set, when it fails to reach master, attempts a new election process.

Heartbeat Monitoring

All nodes monitor all other nodes in the set via heartbeats. If the current primary cannot see half of the nodes in the set (including itself), it will fall
back to secondary mode. This monitoring is a way to check for network partitions. Otherwise in a network partition, a server might think it is still
primary when it is not.

Assumption of Primary

When a server becomes primary, we assume it has the latest data. Any data newer than the new primary's will be discarded. Any discarded data
is backed up to a flat file as raw BSON, to allow for the possibility of manual recovery (see this case for some details). In general, manual
recovery will not be needed - if data must be guaranteed to be committed it should be written to a majority of the nodes in the set.

Failover
We renegotiate when the primary is unavailable, see Picking Primary.

Resync (Connecting to a New Primary)

When a secondary connects to a new primary, it must resynchronize its position. It is possible the secondary has operations that were never
committed at the primary. In this case, we roll those operations back. Additionally we may have new operations from a previous primary that never
replicated elsewhere. The method is basically:

® for each operation in our oplog that DNE at the primary, (1) remove from oplog and (2) resync the document in question by a query to the
primary for that object. update the object, deleting if it does not exist at the primary.

We can work our way back in time until we find a few operations that are consistent with the new primary, and then stop.

Any data that is removed during the rollback is stored offline (see Assumption of Primary, so one can manually recover it. It can't be done
automatically because there may be conflicts.

Reminder: you can use w= to ensure writes make it to a majority of slaves before returning to the user, to ensure no writes need to be rolled back.
Consensus

Fancier methods would converge faster but the current method is a good baseline. Typically only ~2 nodes will be jockeying for primary status at
any given time so there isn't be much contention:

® query all others for their maxappliedoptime
® try to elect self if we have the highest time and can see a majority of nodes
® if a tie on highest time, delay a short random amount first
® elect (selfid,maxoptime) msg -> others
if we get a msg and our time is higher, we send back NO
we must get back a majority of YES
if a YES is sent, we respond NO to all others for 1 minute. Electing ourself counts as a YES.
repeat as necessary after a random sleep

Increasing Durability

We can trade off durability versus availability in a replica set. When a primary fails, a secondary will assume primary status with whatever data it
has. Thus, we have some desire to see that things replicate quickly. Durability is guaranteed once a majority of servers in the replica set have an
operation.

To improve durability clients can call getlasterror and wait for acknowledgement until replication of a an operation has occurred. The client can
then selectively call for a blocking, somewhat more synchronous operation.

Reading from Secondaries and Staleness

Secondaries can report via a command how far behind the primary they are. Then, a read-only client can decide if the server's data is too stale or
close enough for usage.

Example

server-a: secondary oplog: ()
server-b: secondary oplog: ()
server-c: secondary oplog: ()

-s.e.rver-a: primary oplog: (al,a2,a3,a4,a5)
server-b: secondary oplog: ()
server-c: secondary oplog: ()

server-a: primary oplog: (al,a2,a3,a4,a5)
server-b: secondary oplog: (al)
server-c: secondary oplog: (al,a2,a3)

http://jira.mongodb.org/browse/SERVER-1512

I/ server-a goes down

server-b: secondary oplog: (al)
server-c: secondary oplog: (al,a2,a3)

.s.érver-b: secondary oplog: (al)
server-c: primary oplog: (al,a2,a3) // ¢ has highest ord and becomes primary

server-b: secondary oplog: (al,a2,a3)
server-c: primary oplog: (al,a2,a3,c4)

server-a resumes

server-a: recovering oplog: (al,a2,a3,a4,a5)
server-b: secondary oplog: (al,a2,a3)
server-c: primary oplog: (al,a2,a3,c4)

server-a: recovering oplog: (al,a2,a3,c4)
server-b: secondary oplog: (al,a2,a3,c4)
server-c: primary oplog: (al,a2,a3,c4)

server-a: secondary oplog: (al,a2,a3,c4)
server-b: secondary oplog: (al,a2,a3,c4)
server-c: primary oplog: (al,a2,a3,c4,c5,c6,c7,c8)

server-a: secondary oplog: (al,a2,a3,c4,c5,c6,c7,c8)
server-b: secondary oplog: (al,a2,a3,c4,c5,c6,c7,c8)
server-c: primary oplog: (al,a2,a3,c4,c5,c6,c7,c8)

In the above example, server-c becomes primary after server-a fails. Operations (a4,a5) are lost. c4 and c5 are new operations with the same
ordinals.

Administration

See the Replica Set Commands page for full info.
Commands:

* {replSetFreeze : <bool> } "freeze" or unfreeze a set. When frozen, new nodes cannot be elected master. Used when doing
administration. Details TBD.

* {replSetGetStatus : 1} get status of the set, from this node's POV

* {replSetlnitiate : 1}

® {lismaster : 1} check if this node is master

Future Versions

® add support for replication trees / hierarchies
® replicating to a slave that is not a member of the set (perhaps we do not need this given we have the Passive set member type)

Master Slave

® Configuration and Setup
® Command Line Options
® Master
® Slave
® --slavedelay
® Diagnostics
® Security
® Administrative Tasks
® Failing over to a Slave (Promotion)
® Inverting Master and Slave
® Creating a slave from an existing master's disk image
® Creating a slave from an existing slave's disk image
® Resyncing a slave that is too stale to recover
® See Also

Configuration and Setup

To configure an instance of Mongo to be a master database in a master-slave configuration, you'll need to start two instances of the database,
one in master mode, and the other in slave mode.

Data Storage

The following examples explicitly specify the location of the data files on the command line. This is unnecessary if you are
running the master and slave on separate machines, but in the interest of the readers who are going try this setup on a single
node, they are supplied in the interest of safety.

=

$ bin/nmongod --nmaster [--dbpath /datal/masterdb/]

As a result, the master server process will create a | ocal . opl og. $nmai n collection. This is the “transaction log" which queues operations which
will be applied at the slave.

To configure an instance of Mongo to be a slave database in a master-slave configuration:

©»
=2
=}
=
=}

«Q
o
o

I
@
Q
<
@

I
1]
o
c
=
(]
@
2
7]
—
(2]
=
>
o
1]
-
=}
3

N,
JAY
©
o
=
—_
N
—_

'

'
Q
O

e]
QD
=
>
-
o
Q
-
QD
=
<
Q
<
@D
Q
o
=

—

Details of the source server are then stored in the slave's | ocal . sour ces collection. Instead of specifying the - - sour ce parameter, one can
add an object to | ocal . sour ces which specifies information about the master server:

i $ bin/nmongo <sl avehost name>/ | ocal
¢ > db.sources.find(); // confirns the collection is enpty. then: :
i > db.sources.insert({ host: <nasterhostnane>}); :

® host: nmsterhost nane is the IP address or FQDN of the master database machine. Append : port to the server hostname if you
wish to run on a nonstandard port number.

®* only: databasenane (optional) if specified, indicates that only the specified database should replicate. NOTE: A bug with onl y is
fixed in v1.2.4+.

A slave can pull from multiple upstream masters. In such a situation add multiple configuration objects to the | ocal . sour ces collection. See the
One Slave Two Masters doc page.

A slave may become out of sync with a master if it falls far behind the data updates available from that master, or if the slave is terminated and
then restarted some time later when relevant updates are no longer available from the master. If a slave becomes out of sync, replication will
terminate and operator intervention is required by default if replication is to be restarted. An operator may restart replication using the {r esync: 1}
command. Alternatively, the command line option - - aut or esync causes a slave to restart replication automatically (after ten second pause) if it
becomes out of sync. If the - - aut or esync option is specified, the slave will not attempt an automatic resync more than once in a ten minute
periond.

The - - opl 0gSi ze command line option may be specified (along with - - mast er) to configure the amount of disk space in megabytes which will

be allocated for storing updates to be made available to slave nodes. If the - - opl 0gSi ze option is not specified, the amount of disk space for
storing updates will be 5% of available disk space (with a minimum of 1GB) for 64bit machines, or 50MB for 32bit machines.

Command Line Options

Master
i --master mast er node
: --opl ogSi ze arg size limt (in MB) for op |log :
Slave
| --slave sl ave node
: --source arg arg specifies master as <server:port> :
i --only arg arg specifies a single database to replicate i
--slavedel ay arg arg specifies delay (in seconds) to be used
: when appl yi ng naster ops to slave :
: --autoresync automatically resync if slave data is stale :
--slavedelay

Sometimes its beneficial to have a slave that is purposefully many hours behind to prevent human error. In MongoDB 1.3.3+, you can specify this
with the --slavedelay mongod command line option. Specify the delay in seconds to be used when applying master operations to the slave.

Specify this option at the slave. Example command line:

Diagnostics

Check master status from the mongo shell with:

/'l inspects contents of |ocal.oplog.$min on nmaster and reports status:
db. printReplicationlnfo()

/'l inspects contents of |ocal.sources on the slave and reports status:
db. print Sl aveReplicationlnfo()

(Note you can evaluate the above functions without the parenthesis above to see their javascript source and a bit on the internals.)

As of 1.3.2, you can do this on the slave

Nis the level of diagnostic information and can have the following values:

® 0-none
® 1 -local (doesn't have to connect to other server)
¢ 2 -remote (has to check with the master)

Security

When security is enabled, one must configure a user account for the local database that exists on both servers.

The slave-side of a replication connection first looks for a user repl in local.system.users. If present, that user is used to authenticate against the
local database on the source side of the connection. If repl user does not exist, the first user object in local.system.users is tried.

The local database works like the admin database: an account for local has access to the entire server.

Example security configuration when security is enabled:

$ nongo <sl avehost nane>/adnin -u <exi stingadni nuser name> - p<adni npasswor d> H
> use | ocal :
> db. addUser (' repl', <repl password>);
re :
$ nobngo <mast er host nanme>/ admi n -u <exi sti ngadni nuser name> - p<adni npasswor d>
> use | ocal
> db. addUser (' repl', <repl password>);

Administrative Tasks

Failing over to a Slave (Promotion)
To permanently fail over from a down master (A) to a slave (B):
¢ shut down A
® stop nongod on B
® backup or delete local.* datafiles on B
® restart nrongod on B with the - - mast er option

Note that is a one time cutover and the "mirror" is broken. A cannot be brought back in sync with B without a full resync.

Inverting Master and Slave

If you have a master (A) and a slave (B) and you would like to reverse their roles, this is the recommended sequence of steps. Note the following

assumes A is healthy and up.

. Halt writes on A (using the fsync command)

Make sure B is caught up

Shut down B

. Wipe local.* on B to remove old local.sources

Start up B with the - - mast er option

. Do a write on B (primes the oplog)

Shut down B. B will now have a new set of local.* files.

. Shut down A and replace A's local.* files with a copy of B's new local.* files.
. Start B with the - - mast er option

. Start A with all the usual slave options plus - - f ast sync

COOMNDUTAWNPE

[N

If A is not healthy but the hardware is okay (power outage, server crash, etc.):

® Skip the first two steps
® Replace all of A's files with B's files in step 7.

If the hardware is not okay, replace A with a new machine and then follow the instructions in the previous paragraph.
Creating a slave from an existing master's disk image
- -fast sync is a way to start a slave starting with an existing master disk image/backup. This option declares that the adminstrator guarantees

the image is correct and completely up to date with that of the master. If you have a full and complete copy of data from a master (and the master
is not accepting new writes concurrently!) you can use this option to avoid a full synchronization upon starting the slave.

Creating a slave from an existing slave's disk image

You can just copy the other slave's data file snapshot without any special options. Note data snapshots should only be taken when a nongod
process is down or in fsync-and-lock state.

Resyncing a slave that is too stale to recover

Slaves asynchronously apply write operations from the master. These operations are stored in the master's oplog. The oplog is finite in length. If a
slave is too far behind, a full resync will be necessary. See the Halted Replication page.

See Also

® Replica Sets

One Slave Two Masters

This document shows an example session with one slave pulling data from two different masters.

@ Despite the example shown here, it is better, simpler, and generally recommended to have multiple mongod - - sl ave
processes on a single box than to have one process pull from multiple masters.

A few notes:

® Each master host has a different hostname (hostname:port).
® Pulling the same database from two different databases can have unexpected results. This can be done in certainly limited ways, as the
data will tend to be merged, but there are some edge cases: for example the two masters should have exactly the same set of collections

or else some may not show up. Generally, this is not recommended.
® Slaving a replica pair is unfortunately not currently supported — see SERVER-30.

$ nkdir /data/l
$ nkdir /datal2
$ nkdir /data/3
$./nmongod --port 27020 --dbpath /data/l --naster &
$./nmongod --port 27021 --dbpath /data/2 --naster &
$./nongod --port 27022 --dbpath /data/3 --slave &

$ # add sone data to nmasters
$./ nongo | ocal host: 27020
> use dbl

> db. foo.insert({x:1})

> db. foo.insert({x:2})

~C

$ # master 2

$./nongo | ocal host: 27021

> use db2

> db. foo.insert({x:999, note:"in db2"})
N

c

$ # configure slave
$./nongo | ocal host: 27022
> use | ocal

> db. sources.insert({host:"local host:27020"})

> db. sources.insert({host:"local host:27021"})

> db. sources. find()

{ "_id" : Opjectld("4b8ecfac0ch095ca52b62949"), "host" : "l ocal host:27020" }
{ "_id" : Oojectld("4b8ecfc30ch095ca52b6294a"), "host" : "local host:27021" }
> // wait alittle, still connected to slave

> use dbl

> db. f0o. count ()

2

> use db2

> db. foo. find()

{ "_id" : Opjectld("4b8ed00ald42d47b3afa3c47"), "x" : 999, "note" : "in db2" }
> db. print Sl aveRepl i cationl nfo()

sour ce: | ocal host: 27020

syncedTo: Wed Mar 03 2010 16: 04: 35 GMI- 0500 (EST)
= 2717secs ago (0. 75hrs)

sour ce: | ocal host: 27021

syncedTo: Wed Mar 03 2010 16:09: 31 GMT- 0500 (EST)
= 2421secs ago (0.67hrs)

Replica Pairs

Setup of Replica Pairs

Consistency

Security

Replacing a Replica Pair Server

Querying the slave

What is and when should you use an arbiter?
Working with an existing (non-paired) database
See Also

Setup of Replica Pairs

1, Replica Sets will soon replace replica pairs. If you are just now setting up an instance, you may want to wait for that and use
master/slave replication in the meantime.

Mongo supports a concept of replica pairs. These databases automatically coordinate which is the master and which is the slave at a given point
in time.

http://jira.mongodb.org/browse/SERVER-30

At startup, the databases will negotiate which is master and which is slave. Upon an outage of one database server, the other will automatically
take over and become master from that point on. In the event of another failure in the future, master status would transfer back to the other
server. The databases manage this themselves internally.

Note: Generally, start with empty /data/db directories for each pair member when creating and running the pair for the first time. See section on
Existing Databases below for more information.

To start a pair of databases in this mode, run each as follows:

@
-
=}

Q
o
1<%

'
el
2,
-
=3
—-
>
A
A
0}
3
®
[%2]
0}
=
<
®
=
v
.

o
=
=2
-
0}
=
A
o
=
=3
—-
®
=
»
®
=
<
®
=
v

®* renoteserver is the hostname of the other server in the pair. Append : por t to the server hostname if you wish to run on a
nonstandard port number.

® arbiterserver isthe hostname (and optional port number) of an arbiter. An arbiter is a Mongo database server that helps negotiate
which member of the pair is master at a given point in time. Run the arbiter on a third machine; it is a "tie-breaker" effectively in
determining which server is master when the members of the pair cannot contact each other. You may also run with no arbiter by not
including the --arbiter option. In that case, both servers will assume master status if the network partitions.

One can manually check which database is currently the master:

! $./nongo
i > db. $cnd. findOne({i smaster:1}); :
i { "ismaster" : 0.0, "renpote" : "192.168.58.1:30001" , "ok" : 1.0 } :

(Note: When security is on, r enpt e is only returned if the connection is authenticated for the adm n database.)

However, Mongo drivers with replica pair support normally manage this process for you.

Consistency

Members of a pair are only eventually consistent on a failover. If machine L of the pair was master and fails, its last couple seconds of operations
may not have made it to R - R will not have those operations applied to its dataset until L recovers later.

Security

Example security configuration when security is enabled:

$./nmongo <l efthost>/adnin -u <adm nuser nane> - p<adm npasswor d> !
> use | ocal :
> db. addUser (' repl', <repl password>);
rc :
$./nongo <righthost>/adnin -u <adm nuser nane> - p<adm npasswor d>
> use | ocal
> db. addUser (' repl', <repl password>);

Replacing a Replica Pair Server

When one of the servers in a Mongo replica pair set fails, should it come back online, the system recovers automatically. However, should a
machine completely fail, it will need to be replaced, and its replacement will begin with no data. The following procedure explains how to replace
one of the machines in a pair.

Let's assume nodes (n1, n2) is the old pair and that n2 dies. We want to switch to (n1,n3).

1. If possible, assure the dead n2 is offline and will not come back online: otherwise it may try communicating with its old pair partner.
2. We need to tell n1 to pair with n3 instead of n2. We do this with a r epl acepeer command. Be sure to check for a successful return
value from this operation.

nl> ./ nongo nl/admn
> db. $cnd. fi ndOne({repl acepeer: 1});
{

"info" : "adjust local.sources hostnane; db restart now required" ,
"ok" : 1.0

At this point, n1 is still running but is reset to not be confused when it begins talking to n3 in the future. The server is still up although
replication is now disabled.

3. Restart n1 with the right command line to talk to n3

S
=
v
-~
>
Q
[}
=%
'
'
o
Q.
-
=
—-
=
>
w
'
'
®
=
=3
—~
®
2
A
o
=
g
—-
o}
=
»
®
=
<
®
=
v

n3> ./nongod --pairwith nl --arbiter <arbiterserver>

Note that n3 will not accept any operations as "master” until fully synced with n1, and that this may take some time if there is a
substantial amount of data on n1.

Querying the slave

You can query the slave if you set the slave ok flag. In the shell:

What is and when should you use an arbiter?

The arbiter is used in some situations to determine which side of a pair is master. In the event of a network partition (left and right are both up, but
can't communicate) whoever can talk to the arbiter becomes master.

If your left and right server are on the same switch, an arbiter isn't necessary. If you're running on the same ec2 availability zone, probably not
needed as well. But if you've got left and right on different ec2 availability zones, then an arbiter should be used.

Working with an existing (non-paired) database

Care must be taken when enabling a pair for the first time if you have existing datafiles you wish to use that were created from a singleton
database. Follow the following procedure to start the pair. Below, we call the two servers "left" and "right".

® assure no mongod processes are running on both servers

® we assume the data files to be kept are on server left. Check that there is no local.* datafiles in left's /data/db (--dbpath) directory. If there
are, remove them.

® check that there are no datafiles at all on right's /data/db directory

® start the left process with the appropriate command line including --pairwith argument

® start the right process with the appropriate paired command line

If both left and right servers have datafiles in their dbpath directories at pair initiation, errors will occur. Further, you do not want a local database
(which contains replication metadata) during initiation of a new pair.

See Also

® Replica Pairs in Ruby

Master Master Replication

Mongo does not support full master-master replication. However, for certain restricted use cases master-master can be used. Generally
speaking, we don't recommend the using a master-master configuration with MongoDB.

Master-master usages is eventually consistent.
To configure master-master, simply run both databases with both the --master and --slave parameters. For example, to set up this configuration

on a single machine as a test one might run:

$ nohup nongod --dbpath /datal/db --port 27017 --master --slave --source |ocal host: 27018 > /tnp/dbl ogl
&
$ nohup nongod --dbpath /data2/db --port 27018 --naster --slave --source |ocal host:27017 > /tnp/dbl og2

This mode is safe for:

® insert operations

® delete operations by _id;

® any query
Master-master should not be used if:

® concurrent updates of single object may occur (including $inc and other updates)
A sample test session on a single computer follows:

$ # ternnal
$./nongod --slave --master --source |ocal host: 10000

1, we run a nongod on default db port (27017)

$ # terminal 2, we run a nongod on port 10000
$./nongod --slave --naster --dbpath /data/slave --port 10000 --source | ocal host

$ # terminal 3, we run the shell here
$. /nongo
> [/ "db' is now connected to |ocal host: 27017/t est

> z = connect ("l ocal host: 10000/ test")
> [/ "z' is now connected to | ocal host: 10000/ test db

> db. foo.insert({x:7});
> z.foo.find()

{"id" Obj ect 1 d("4ab917d7c50e4c10591cedb6") , "x" : 7}
> db. foo. find()

{"_id" Obj ect I d("4ab917d7c50e4c10591ce3b6") , "x" : 7}
> db.foo.insert({x:8})

> db. foo. find()

{" id" Obj ect 1 d("4ab917d7c50e4c10591ce3b6") , "x" : 7}
{" id" Obj ect 1 d("4ab9182a938798896f d8a906") , "x" : 8}
> z.foo.find()

{"_id" Obj ect 1 d("4ab917d7c50e4c10591ce3db6") , “"x" : 7}
{"_ia"

> z.foo.save({x:9})
> z. foo.find()

{"_ ;. Objectld("4ab917d7c50e4c10591ce3b6") , "x" : 7}
{"_ Obj ect 1 d("4ab9182a938798896f d8a906") , "x" : 8}
{"_i d" Obj ect 1 d("4ab9188ac50e4c10591ce3b7") , "x" : 9}
> db. foo. find()

{"_id" oj ectld("4ab917d7c¢50e4c10591ce3b6") , "x" : 7}
{"_ia" Cbj ect 1 d("4ab9182a938798896f d8a906") , "x" : 8}
{"_id" oj ect 1 d("4ab9188ac50e4c10591ce3b7") , "x" : 9}

> z.foo.renpve({x: 8})
> db foo.find()

{"_ : Objectld("4ab917d7c50e4c10591ce3b6") , "x" 7}

{"_| oj ect 1 d("4ab9188ac50e4c10591ce3b7") , "x" 9}

> z. foo find()

{"_id" oj ectld("4ab917d7c¢50e4c10591ce3b6") , "x" 7}

{"_id" oj ect 1 d("4ab9188ac50e4c10591ce3b7") , "x" 9}

> db. foo. drop()

{"nl ndexesWas" 1, "nsg" "all indexes deleted for collection" "ns" : "test.foo" , "ok" : 1}

> db. f 0o. fi nd()

bj ect 1 d(" 4ab9182a938798896 d8a906") , "x" : 8} i
> z.fo00. find() E

Replication Oplog Length

Replication uses an operation log ("oplog") to store write operations. These operations replay asynchronously on other nodes.

The length of the oplog is important if a secondary is down. The larger the log, the longer the secondary can be down and still recover. Once the
oplog has exceeded the downtime of the secondary, there is no way for the secondary to apply the operations; it will then have to do a full

synchronization of the data from the primary.

By default, on 64 bit builds, oplogs are quite large - perhaps 5% of disk space. Generally this is a reasonable setting.

The nongod - - opl 0gSi ze command line parameter sets the size of the oplog.
This collection is named:

® |ocal.oplog.$main for master/slave replication;
® |ocal.oplog.rs for replica sets

See also

® The Halted Replication page
® Resyncing a Very Stale Replica Set Member

Halted Replication
', These instructions are for master/slave replication. For replica sets, see Resyncing a Very Stale Replica Set Member instead.

If you're running mongod with master-slave replication, there are certain scenarios where the slave will halt replication because it hasn't kept up
with the master's oplog.

The first is when a slave is prevented from replicating for an extended period of time, due perhaps to a network partition or the killing of the slave
process itself. The best solution in this case is to resyc the slave. To do this, open the mongo shell and point it at the slave:

©»
=
«Q
[S)
A
@
QD
<
©
>
o
]
2
|
o
>
2
e
o
=
-
v

> use adnin
> db. runCommand({resync: 1})

This will force a full resync of all data (which will be very slow on a large database). The same effect can be achieve dby stopping nongod on the
slave, delete all slave datafiles, and restarting it.

Increasing the OpLog Size

Since the oplog is a capped collection, it's allocated to a fixed size; this means that as more data is entered, the collection will loop around and
overwrite itself instead of growing beyond its pre-allocated size. If the slave can't keep up with this process, then replication will be halted. The
solution is to increase the size of the master's oplog. There are a couple of ways to do this, depending on how big your oplog will be and how
much downtime you can stand. But first you need to figure out how big an oplog you need.

If the current oplog size is wrong, how do you figure out what's right? The goal is not to let the oplog age out in the time it takes to clone the
database. The first step is to print the replication info. On the master node, run this command:

You

i configured oplog size: 1048. 576MB H
¢ log length start to end: 7200secs (2hrs) !
! oplog first event time: Wed Mar 03 2010 16:20:39 GMI-0500 (EST) i
! oplog last event time: \Wed Mar 03 2010 18:20:39 GMI-0500 (EST) ;
| now Ved Mar 03 2010 18:40:34 GMI-0500 (EST) ;

This indicates that you're adding data to the database at a rate of 524MB/hr. If an initial clone takes 10 hours, then the oplog should be at least
5240MB, so something closer to 8GB would make for a safe bet.

The standard way of changing the oplog size involves stopping the nongod master, deleting the local.* oplog datafiles, and then restarting with
the oplog size you need, measured in MB:

i $ # Stop nmongod - killall mongod or kill -2 or ctrl-c) - then: !
i $ rm/data/db/local.* :
! $ nongod --opl 0g=8038 - - naster H

i nmongod --slave --autoresync

This method of oplog creation might pose a problem if you need a large oplog (say, > 10GB), since the time it takes nongod to pre-allocate the
oplog files may mean too much downtime. If this is the case, read on.

Manually Allocating OpLog Files

An alternative approach is to create the oplog files manually before shutting down nongod. Suppose you need an 20GB oplog; here's how you'd
go about creating the files:

1. Create a temporary directory, /tmp/local.
2. You'll be creating ten 2GB datafiles. Here's a shell script for doing just that:

cd /tnp/local
for i in {0..9}
do
echo $i
head -c 2146435072 /dev/zero > | ocal . $i
done

Note that the datafiles aren't exactly 2GB due MongoDB's max int size.
3. Shut down the nongod master (kill -2) and then replace the oplog files:

$ nv /data/db/local.* /safelplace
$ nv /tnp/local/* /dataldb/

5. Finally, resync the slave. This can be done by shutting down the slave, deleting all its datafiles, and restarting it.

Sharding

MongoDB scales horizontally via an auto-sharding architecture.
Sharding offers:

Scaling out to thousands of nodes

Easy addition of new machines

Automatic balancing for changes in load and data distribution
Zero single points of failure

Automatic failover

*Sharding will be production-ready in MongoDB v1.6, estimated to be released in Aug 6th, 2010. * Please see the limitations page for progress
updates and current restrictions.

Documentation

1. What Is Sharding?
Here we provide an introduction to MongoDB's auto-sharding, highlighting its philosophy, use cases, and its core components.

2. How To Set Up and Manage a Cluster
How to set up a sharding cluster and manage it.

® Configuration
® Administration
® Failover

3. Sharding Internals
Auto-Sharding implementation details.

4. Restrictions and Limitations
Sharding in the 1.5.x development branch is not yet production-ready. Here you can find out the current limitations and keep track of progress
towards the 1.6 production release.

5. FAQ
Common questions.

Presentations and Further Materials

® Sharding Presentation from MongoSF April 2010

Sharding Introduction

MongoDB supports an automated sharding architecture, enabling horizontal scaling across multiple nodes. For applications that outgrow the
resources of a single database server, MongoDB can convert to a sharded cluster, automatically managing failover and balancing of nodes, with
few or no changes to the original application code.

This document explains MongoDB's auto-sharding approach to scalability in detail and provides an architectural overview of the various
components that enable it.

Be sure to acquaint yourself with the current limitations.

® MongoDB's Auto-Sharding
® Sharding in a Nutshell
® Balancing and Failover
® Scaling Model
® Architectural Overview
® Shards
® Shard Keys
® Chunks
Config Servers
Routing Processes
Operation Types
Server Layout
Configuration

MongoDB's Auto-Sharding

Sharding in a Nutshell

Sharding is the partitioning of data among multiple machines in an order-preserving manner. To take an example, let's imagine sharding a
collection of users by their state of residence. If we designate three machines as our shard servers, the first of those machines might contain
users from Alaska to Kansas, the second from Kentucky to New York, and the third from North Carolina to Wyoming.

Our application connects to the sharded cluster through a nrongos process, which routes operations to the appropriate shard(s). In this way, the
sharded MongoDB cluster continues to look like a single-node database system to our application. But the system's capacity is greatly enhanced.
If our user s collection receives heavy writes, those writes are now distributed across three shard servers. Queries continue to be efficient, as
well, because they too are distributed. And since the documents are organized in an order-preserving manner, any operations specifying the state
of residence will be routed only to those nodes containing that state.

Sharding occurs on a per-collection basis, not on the database as a whole. This makes sense since, as our application grows, certain collections
will grow much larger than others. For instance, if we were building a service like Twitter, our collection of tweets would likely be several orders of
magnitude larger than the next biggest collection. The size and throughput demands of such a collection would be prime for sharding, whereas
smaller collections would still live on a single server. In the context on MongoDB's sharded architecture, non-sharded collections will reside on just
one of the sharded nodes.

Balancing and Failover

A sharded architecture needs to handle balancing and failover. Balancing is necessary when the load on any one shard node grows out of
proportion with the remaining nodes. In this situation, the data must be redistributed to equalize load across shards.

Automated failover is also quite important since proper system functioning requires that each shard node be always online. In practice, this means
that each shard consists of more than one machine in a configuration known as a replica set. A replica set is a set of n servers, frequently three or
more, each of which contains a replica of the entire data set for the given shard. One of the n servers in a replica set will always be master. If the

http://www.10gen.com/event_mongosf_10apr30#sharding

master replica fails, the remaining replicas are capable of electing a new master. Thus is automated failover provided for the individual shard.

Replica sets were another focus of development in 1.5.x (along with sharding). See the documentation on replica sets for more details.

Scaling Model

MongoDB's auto-sharding scaling model shares many similarities with Yahoo's PNUTS and Google's BigTable. Readers interested in detailed
discussions of distributed databases using order-preserving partitioning are encouraged to look at the PNUTS and BigTable white papers.

Architectural Overview

A MongoDB shard cluster consists of two or more shards, one or more config servers, and any number of routing processes to which the
application servers connect. Each of these components is described below in detail.

shard, shard, shard; shard,

rephcs 52t
config servers

mongos mongos waa

client .

Shards

Each shard consists of one or more servers and stores data using nongod processes (nongod being the core MongoDB database process). In a
production situation, each shard will consist of multiple replicated servers per shard to ensure availability and automated failover. The set of
servers/mongod process within the shard comprise a replica set.

Replica sets, as discussed earlier, represent an improved version of MongoDB's replication (SERVER-557).

For testing, you can use sharding with a single nbngod instance per shard. If you need redundancy, use one or more slaves for each shard's
nongod master. This configuration will require manual failover until replica sets become available.

Shard Keys

To partition a collection, we specify a shard key pattern. This pattern is similar to the key pattern used to define an index; it names one or more
fields to define the key upon which we distribute data. Some example shard key patterns include the following:

{ state : 11}

{ name : 1}

{ _id: 11}

{ lastname : 1, firstname : 1}
{ tag : 1, timestanmp : -1}

MongoDB's sharding is order-preserving; adjacent data by shard key tends to be on the same server. The config database stores all the metadata
indicating the location of data by range:

http://research.yahoo.com/files/pnuts.pdf
http://labs.google.com/papers/bigtable.html
http://jira.mongodb.org/browse/SERVER-557

collection minkey maxkey location

Users { name : 'Miller' } { name : 'Messman’ } shard;

Users { name : 'Messman’ } { name : 'Cgden’ shard.

Chunks

A chunk is a contiguous range of data from a particular collection. Chunks are described as a triple of col | ect i on, m nKey, and maxKey.
Thus, the shard key K of a given document assigns that document to the chunk where minKey <= K < maxKey.

Chunks grow to a maximum size, usually 200MB. Once a chunk has reached that approximate size, the chunk splits into two new chunks. When
a particular shard has excess data, chunks will then migrate to other shards in the system. The addition of a new shard will also influence the
migration of chunks.

When choosing a shard key, keep in mind that these values should be granular enough to ensure an even distribution of data. For instance, in the
above example, where we're sharding on nane, we have to be careful that we don't have a disproportionate number of users with the same
name. In that case, the individual chunk can become too large and find itself unable to split, e.g., where the entire range comprises just a single
key.

Thus, if it's possible that a single value within the shard key range might grow exceptionally large, it's best to use a compound shard key instead
so that further discrimination of the values will be possible.

Config Servers

The config servers store the cluster's metadata, which includes basic information on each shard server and the chunks contained therein.

Chunk information is the main data stored by the config servers. Each config server has a complete copy of all chunk information. A two-phase
commit is used to ensure the consistency of the configuration data among the config servers.

If any of the config servers is down, the cluster's meta-data goes read only. However, even in such a failure state, the MongoDB cluster can still
be read from and written to.

Routing Processes

The nongos process can be thought of as a routing and coordination process that makes the various components of the cluster look like a single
system. When receiving client requests, the nongos process routes the request to the appropriate server(s) and merges any results to be sent
back to the client.

nongos processes have no persistent state; rather, they pull their state from the config server on startup. Any changes that occur on the the
config servers are propagated to each nbngos process.

nmongos processes can run on any server desired. They may be run on the shard servers themselves, but are lightweight enough to exist on each

application server. There are no limits on the number of nongos processes that can be run simultaneously since these processes do not
coordinate between one another.

Operation Types

Operations on a sharded system fall into one of two categories: global and targeted.

For targeted operations, nrongos communicates with a very small number of shards -- often a single shard. Such targeted operations are quite
efficient.

Global operations involve the nongos process reaching out to all (or most) shards in the system.

The following table shows various operations and their type. For the examples below, assume a shard key of { x: 1}.

Operation Type Comments
db.foo.find({x:300}) Targeted = Queries a single shard.
db.foo.find({ x : 300, age : 40 }) Targeted = Queries a single shard.
db.foo.find({age :40}) Global Queries all shards.

db.foo.find() Global sequential

db.foo.find(...).count() Variable = Same as the corresponding find() operation

db.foo.find(...).sort({age :1}) Global parallel
db.foo.find(...).sort({x:1}) Global sequential
db.foo.count() Global parallel
db.foo.insert(<object>) Targeted

db.foo.update({ x : 100 }, <object>) @ Targeted
db.foo.remove({x:100})

db.foo.update({ age : 40 }, <object>) Global
db.foo.remove({age:40})
db.getLastError()

db.foo.ensurelndex(...) Global

Server Layout

Machines may be organized in a variety of fashions. For instance, it's possible to have separate machines for each config server process,
nongos process, and nmongod process. However, this can be overkill since the load is almost certainly low on the config servers. Here, then, is
an example where some sharing of physical machines is used to lay out a cluster.

server 1 server 3 server 5
| mongod shard, 4 | | mongod shardo; | mongod shardz
| mongod config; | | mongod configy |
server 2 server 4 server &
| mongod shard; 5 | | mongod shardss | | mongod shardas |
| mongos; | | mongosz | | mongosz |

client appservery |

server 7

Yet more configurations are imaginable, especially when it comes to nongos. For example, it's possible to run nbngos processes on all of
servers 1-6. Alternatively, as suggested earlier, the nbongos processes can exists on each application server (server 7). There is some potential
benefit to this configuration, as the communications between app server and nongos then can occur over the localhost interface.

Configuration

Sharding becomes a bit easier to understand one you've set it up. It's even possible to set up a sharded cluster on a single machine. To try it for
yourself, see the configuration docs.

Configuring Sharding

Introduction
This document describes the steps involved in setting up a basic sharding cluster. A sharding cluster requires, at minimum, three components:

1. Two or more shards.
2. At least one config server.
3. A nongos routing process.

For testing purposes, it's possible to start all the required processes on a single server, whereas in a production situation, a number of server
configurations are possible.

Once the shards, config servers, and mongos processes are running, configuration is simply a matter of issuing a series of commands to
establish the various shards as being part of the cluster. Once the cluster has been established, you can begin sharding individual collections.

This document is fairly detailed; if you're the kind of person who prefers a terse, code-only explanation, see the sample shard configuration. If
you'd like a quick script to set up a test cluster on a single machine, we have a python sharding script that can do the trick.

® |ntroduction
® 1. Sharding Components
® Shard Servers
® Config Servers
® nongos Router
® 2. Configuring the Shard Cluster
® Adding shards
® Optional Parameters
® Listing shards
® Removing a shard
Enabling Sharding on a Database
¢ 3. Sharding a Collection
® Relevant Examples and Docs

1. Sharding Components
First, start the individual shards, config servers, and nongos processes.

Shard Servers

Run nongod on the shard servers. Use the --shardsvr command line parameter to indicate this nongod is a shard. For auto failover support,
replica sets will be required. See replica sets for more info.

Note that replica pairs will never be supported as shards.

To get started with a simple test, we recommend running a single nongod process per shard, as a test configuration doesn't demand automated
failover.

Config Servers

Run mongod on the config server(s) with the --configsvr command line parameter. If the config servers are running on a shared machine, be sure
to provide a separate dbpath for the config data (--dbpath command line parameter).

nongos Router

Run mongos on the servers of your choice. Specify the --configdb parameter to indicate location of the config database(s).

2. Configuring the Shard Cluster

Once the shard components are running, issue the sharding commands. You may want to automate or record your steps below in a .js file for
replay in the shell when needed.

Start by connecting to one of the nongos processes, and then switch to the admi n database before issuing any commands.

Keep in mind that once these commands are run, the configuration data will be persisted to the config servers. So, regardless of the number of
nongos processes you've launched, you'll only need run these commands on one of those processes.

You can connect to the admin database via nongos like so:

http://www.mongodb.org/display/DOCS/Sharding+Introduction#ShardingIntroduction-ServerLayout
http://www.mongodb.org/display/DOCS/Sharding+Introduction#ShardingIntroduction-ServerLayout
http://github.com/mongodb/mongo-snippets/blob/master/sharding/simple-setup.py
http://www.mongodb.org/display/DOCS/Starting+and+Stopping+Mongo#StartingandStoppingMongo-StartingMongo

i ./rmongo <mongos- host name>: <nbngos- port >/ admi n !
i > db i
! admi n H

Adding shards

Each shard can consist of more than one server (see replica sets); however, for testing, only a single server with one nongod instance need be
used.

You must explicitly add each shard to the cluster's configuration using the addshar d command:

> db. runCommand({ addshard : "<serverhostname>[:<port>]" });
{"ok" : 1, "added" : ...}

Run this command once for each shard in the cluster.

If the individual shards consist of replica sets, they can be added by specifying replicaSetName
/<serverhostname>[:port][,serverhostname?2[:port],...], where at least one server in the replica set is given.

> db. runCommand({ addshard : "foo/ <serverhostnane>[:<port>]" });
{"ok" : 1, "added" : "foo0"}

Optional Parameters

name
Each shard has a name, which can be specified using the name option. If no name is given, one will be assigned automatically.

maxSize

The addshar d command accepts an optional maxSi ze parameter. This parameter lets you tell the system a maximum amount of disk space
megabytes to use on the specified shard. If unspecified, the system will use the entire disk. maxSize is useful when you have machines with
different disk capacities or when you want to prevent storage of too much data on a particular shard.

in

As an example:

{ > db.runCommand({ addshard : "sf103", nmaxSize: 100000 });

Listing shards

To see current set of configured shards, run the | i st shar ds command:
{ > db.runCommand({ listshards : 1});

This way, you can verify that all the shard have been committed to the system.

Removing a shard

Before a shard can be removed, we have to make sure that all the chunks and databases that once lived there were relocated to other shards.
The 'removeshard' command takes care of "draining" the chunks out of a shard for us. To start the shard removal, you can issue the command

> db. runCommand({ renoveshard : "l ocal host:10000" });
{ neg : "draining started succesfully" , state: "started" , shard :"l|ocal host: 10000" , ok : 1

That will put the shard in "draining mode". Its chunks are going to be moved away slowly over time, so not to cause any disturbance to a running
system. The command will return right away but the draining task will continue on the background. If you issue the command again during it, you'll
get a progress report instead:

> db. runCommand({ renoveshard : "l ocal host:10000" });
{ nBQg: "draining ongoing" , state: "ongoing" , remaining : { chunks :23 , dbs : 1}, ok : 11}

Whereas the chunks will be removed automatically from that shard, the databases hosted there will need to be moved manually. (This has to do

with a current limitation that will go away eventually):

> db. runCommand({ noveprimary : "test", to : "local host:10001" });
{ "primary" : "local host:10001", "ok" : 1}

> db. runCommand({ renoveshard : "l ocal host:10000" });
{ nBg: "renove shard conpleted succesfully" , stage: "conpleted", host: "local host: 10000", ok : 1}

After the 'removeshard' command reported being done with that shard, you can take that process down.

Enabling Sharding on a Database

Once you've added the various shards, you can enable sharding on a database. This is an important step; without it, all collection in the database
will be stored on the same shard.

{ > db.runCommand({ enabl esharding : "<dbname>" });

Once enabled, nongos will place different collections for the database on different shards, with the caveat that each collection will still exists on
one shard only. To enable real partitioning of data, we have to shard an individual collection.

3. Sharding a Collection

Use the shar dcol | ecti on command to shard a collection. When you shard a collection, you must specify the shard key. If there is data in the
collection, mongo will require an index to be create upfront (it speeds up the chunking process) otherwise an index will be automatically created
for you.

> db. runCommand({ shardcoll ection : "<nanespace>",
key : <shardkeypatternobject> });

For example, let's assume we want to shard a GridFS chunks collection stored in the t est database. We'd want to shard on the fi | es_i d key,
so we'd invoke the shar dcol | ect i on command like so:

> db. runCommand({ shardcollection : "test.fs.chunks", key : { files_id: 1} })
{"ok" : 1}

One note: a sharded collection can have only one unique index, which must exist on the shard key. No other unique indexes can exist on the
collection.

Of course, a unique shard key wouldn't make sense on the GridFS chunks collection. But it'd be practically a necessity for a users collection
sharded on email address:

db. runCommand({ shardcollection : "test.users" , key : { email : 1} , unique : true });

Relevant Examples and Docs

Examples

® Sample configuration session
® The following example shows how to run a simple shard setup on a single machine for testing purposes: Sharding JS Test.

Docs

® Sharding Administration
® Notes on TCP Port Numbers

A Sample Configuration Session

The following example uses two shards (one server each), one config db, and one mongos process, all running on a single test server. In addition
to the script below, a python script for starting and configuring shard components on a single machine is available.

http://github.com/mongodb/mongo-snippets/blob/master/sharding/first.js
http://github.com/mongodb/mongo-snippets/blob/master/sharding/simple-setup.py

Creating the Shards

First, start up a couple _mongod_s to be your shards.

$ nkdir /data/db/a /data/db/b

$./nmongod --shardsvr --dbpath /data/db/a --port 10000 > /tnp/sharda.log &
$ cat /tnp/sharda.log

$./nongod --shardsvr --dbpath /data/db/b --port 10001 > /tnp/shardb.log &
$ cat /tnp/shardb. | og

$ nkdir /datal/db/config

$./nongod --configsvr --dbpath /data/db/config --port 20000 > /tnp/configdb.log &
$ cat /tnp/configdb.|og

$./nongos --configdb | ocal host: 20000 > /tnp/ nongos. | og &

$ cat /tnp/nongos. | og

mongos does not require a data directory, it gets its information from the config server.

‘t, In areal production setup, mongod's, mongos's and configs would live on different machines. The use of hostnames or IP
addresses is mandatory in that case. 'localhost' appearance here is merely illustrative — but fully functional — and should be
confined to single-machine, testing scenarios only.

You can toy with sharding by using a small - - chunkSi ze, e.g. IMB. This is more satisfying when you're playing around, as you won't have to
insert 200MB of documents before you start seeing them moving around. It should not be used in production.

Setting up the Cluster

We need to run a few commands on the shell to hook everything up. Start the shell, connecting to the mongos process (at localhost:27017 if you
followed the steps above).

To set up our cluster, we'll add the two shards (a and b).

$./ nongo

MongoDB shel |l version: 1.6.0
connecting to: test

> use adnmin

switched to db adnin

> db. runCommand({ addshard : "l ocal host:10000" })
{ "shardadded" : "shard0000", "ok" : 1}
> db. runCommand({ addshard : "l ocal host:10001" })

{ "shardadded" : "shard0001", "ok" : 1}

Now you need to tell the database that you want to spread out your data at a database and collection level. You have to give the collection a key
(or keys) to partition by.
This is similar to creating an index on a collection.

> db. runCommand({ enabl esharding : "test" })
ok s 1 s
> db. runCommand({ shardcollection : "test.people", key : {name : 1} })
©o{"ok" 1 1} :

Administration

To see what's going on in the cluster, use the config database.

. > use config H
! switched to db config
{ > show col | ections
i chunks !
| dat abases
{1 ockpings
i locks :
i nongos i
i settings !
i shards !
| systemindexes :
i version i

These collections contain all of the sharding configuration information.

Upgrading from a Non-Sharded System

A nmongod process can become part of a sharded cluster without any change to that process or downtime. If you haven't done so yet, feel free to
have a look at the Sharding Introduction to familiarize yourself with the components of a sharded cluster and at the Sample Configuration
Sesssion to get to know the basic commands involved.

‘1. Sharding is a new feature introduced at the 1.6.0 release. This page assumes your non-sharded nongod is on that release.

Adding the nongod process to a cluster

If you haven't changed the nongod default port, it would be using port 27017. You care about this now because a mongo shell will always try to
connect to it by default. But in a sharded environment, you want your shell to connect to a nongos instead.

If the port 27017 is taken by a nbngod process, you'd need to bring up the nongos in a different port. Assuming that port is 30000 you can
connect your shell to it by issuing:

MongoDB shel | version: 1.6.0
connecting to: <nobngos-address>: 30000/ adni n
{ > db.runCommand({ addshard : "192.168.25.203:27017" }) ;
> { "shardAdded" : "shard0000", "ok" : 1}

The host address and port you see on the command are the original mongod's. All the databases of that process were added to the cluster and
are accessible now through nongos.

> db. runCommand({ listdatabases : 1})

{
"dat abases" : [
{
"nane" : "nydb"
"shards" : {
"shard0000" : <size-in-shard00000>
}

Note that that doesn't mean that the database or any of its collections is sharded. They haven't moved (see next). All we did so far is to make
them visible within the cluster environment.

You should stop accessing the former stand-alone nongod directly and should have all the clients connect to a nrbongos process, just as we've
been doing here.

Sharding a collection

All the databases of your mongod-process-turned-shard can be chunked and balanced among the cluster's shards. The commands and examples
to do so are listed at the

Configuring Sharding page. Note that a chunk size defaults to 200MB in version 1.6.0, so if you want to change that — for testing purposes, say —
you would do so by starting the nongos process with the additional --chunkSize parameter.

Difference between upgrading and starting anew

You should pay attention to the host addresses and ports when upgrading, is all.
Again, if you haven't changed the default ports of your nongod process, it would be listening on 27017, which is the port that nrongos would try to
bind by default, too.

Sharding Administration

Here we present a list of useful commands for obtaining information about a sharding cluster.
To set up a sharding cluster, see the docs on sharding configuration.

Identifying a Shard Cluster

List Existing Shards

List Which Databases are Sharded
View Sharding Details

Chunk Operations

Identifying a Shard Cluster

/Il Test if we're speaking to a nobngos process or
i /] straight to a nongod process :
{ > db.runCommand({ isdbgrid : 1}); §

// if connected to nongos, this command returns { ismaster: 0.0, nsg: "isdbgrid" }
> db. runCommand({i snmaster: 1});

> db. runCommand({ listShards : 1});

"servers"
[[{"_.id" : njectld("4a9d40c981bala87cclaa634")

"host" : "local host:10000"},
: {"_id" : Objectld("4a9d40df81bal487ccfaab35") , 1
"host" : "local host:10001"}
oy i
"ok" 1

List Which Databases are Sharded

Here we query the config database, albeit through nongos. The get Si st er DB command is used to return the config database.

> config = db. getSisterDB("config")
> config.system nanespaces. find()

View Sharding Details

http://www.mongodb.org/display/DOCS/Configuring+Sharding#ConfiguringSharding-3.ShardingaCollection

> use admin
> db. print Shardi ngSt at us();

/1 A very basic sharding configuration on | ocal host

on : |ocal host:30002 { "t" : 1272557259000, "i" : 1}

sharding version: { "_id" : 1, "version" : 2}
shar ds:
: { "_id" : pnjectld("4bd9ae3e0a2e26420e556876"), "host" : "l ocal host:30001" } :
i { "_id" : pnjectld("4bd9ae420a2e26420e556877"), "host" : "l ocal host:30002" } :
i { "_id" : Objectld("4bd9ae460a2e26420e556878"), "host" : "l ocal host:30003" } i
! dat abases: H
{ "nane" "admin", "partitioned" : false,
: "primary" : "local host:20001", 1
| " id" : Onbjectld("4bd9add2c0302e394c6844b6") } ;
i ny chunks
{ "nane" "foo", "partitioned" : true,
: "primary" : "local host:30002", :
i "sharded" : { "foo.foo" : { "key" : { "_id" : 13}, "unique" : false } }, i
: " id" : Objectld("4bd9ae60c0302e394c6844b7") } :
: my chunks :
: foo.foo { "_id" : { $minKey : 1} } -->>{ "_id" : { $nmaxKey : 1} } :

Notice the output to the pri nt Shar di ngSt at us command. First, we see the locations the the three shards comprising the cluster. Next, the
various databases living on the cluster are displayed.

The first database shown is the admin database, which has not bee patrtitioned. The primary field indicates the location of the database, which, in
the case of the admin database, is on the config server running on port 20001.

The second database is partitioned, and it's easy to see the shard key and the location and ranges of chunks comprising the partition. Since
there's no data in the f oo database, only a single chunk exists. That single chunk includes the entire range of possible shard keys.

Chunk Operations

MongoDB v1.6 will managing the arrangement chunks automatically. However, it may be desirable to move a chunk manually; here's the
command to do that:

db. runCommand({ noveChunk : "test.bl og. posts" ,
find : { author : "eliot" } ,
to : "shardl" })

Parameters:
® novechunk: a full collection namespace, including the database name

® find: a query expression that falls within the chunk to be moved
® to: shard id where the chunk will be moved

Sharding and Failover

A properly-configured MongoDB shard cluster will have no single point of failure.

This document describes the various potential failure scenarios of components within a shard cluster, and how failure is handled in each situation.
1. Failure of a nongos routing process.

One npngos routing process will be run on each application server, and that server will communicate to the cluster exclusively through the
nDNQgos process. Mbngos process aren't persistent; rather, they gather all necessary config data on startup from the config server.

This means that the failure of any one application server will have no effect on the shard cluster as a whole, and all other application servers will
continue to function normally. Recovery is simply a matter starting up a new app server and Nnbngos process.

2. Failure of a single nongod server within a shard.

Each shard will consist of a group of n servers in a configuration known as a replica set. If any one server in the replica set fails, read and write
operations on the shard are still permitted. What's more, no data need be lost on the failure of a server because the replica allows an option on
write that forces replication of the write before returning. This is similar to setting W to 2 on Amazon's Dynamo.

Replica sets will be available as of MongoDB v1.6. Read more about replica set internals or follow the jira issue.
3. Failure of all nrbngod servers comprising a shard.

If all replicas within a shard are down, the data within that shard will be unavailable. However, operations that can be resolved at other shards will
continue to work properly. See the documentation on global and targeted operations to see why this is so.

If the shard is configured as a replica set, with at least one member of the set in another data center, then an outage of an entire shard is
extremely unlikely. This will be the recommended configuration for maximum redundancy.

4. Failure of a config server.

A production shard cluster will have three config server processes, each existing on a separate machine. Writes to config servers use a
two-phase commit to ensure an atomic and replicated transaction of the shard cluster's metadata.

On the failure of any one config server, the system's metadata becomes read-only. The system will continue to function, but chunks will be unable
to split within a single shard or migrate across shards. For most use cases, this will present few problems, since changes to the chunk metadata
will be infrequent.

That said, it will be important that the down config server be restored in a reasonable time period (say, a day) so that shards do not become
unbalanced due to lack of migrates (again, for many production situations, this may not be an urgent matter).

Sharding Limits
Sharding Release 1 (MongoDB v1.6.0)

Differences from Unsharded Configurations

® Sharding must be ran in trusted security mode, without explicit security.
® Shard keys are immutable in the current version.
* All (non-multiyupdates, upserts, and inserts must include the current shard key. This may cause issues for anyone using a mapping
library since you don't have full control of updates.
$where
$where works with sharding. However do not reference the db object from the $where function (one normally does not do this anyway).

db.eval

db.eval() may not be used with sharded collections. However, you may use db.eval() if the evaluation function accesses unsharded collections
within your database. Use map/reduce in sharded environments.

getPrevError
getPrevError is unsupported for sharded databases, and may remain so in future releases (TBD). Let us know if this causes a problem for you.
Unique Indexes

For a sharded collection, you may only (optionally) specify a unique constraint on the shard key. Other secondary indexes work (via a global
operation) as long as no unique constraint is specified.

Scale Limits

Goal is support of systems of up to 1,000 shards. Testing so far has been limited to clusters with a modest number of shards (e.g., 20). More
information will be reported here later on any scaling limitations which are encountered.

MongoDB sharding supports two styles of operations -- targeted and global. On giant systems, global operations will be of less applicability.

Sharding Internals

This section includes internal implementation details for MongoDB auto sharding. See also the main sharding documentation.

Note: some internals docs could be out of date -- if you see that let us know so we can fix.

Internals

http://jira.mongodb.org/browse/SERVER-557
http://www.mongodb.org/display/DOCS/Sharding+Introduction#ShardingIntroduction-OperationTypes

Moving Chunks
Sharding Config Schema
Sharding Design
Sharding Use Cases
Shard Ownership
Splitting Chunks

Unit Tests

Moving Chunks

inc version

try to set on from

if set is successful, have it "locked"
start transfer

finish transfer

commit result

max version for a shard is MAX(chunks on shard)

this poses slight problem when moving last chunk off of a shard, so add a special marker

Sharding Config Schema
Sharding configuration schema. This lives in the config servers.

Collections
version
This is a singleton that contains the current meta-data version number.

> db. get Col | ection("version").findOne()
o "_id" @ 1, "version" : 2}

settings

Key/Value table for configurable options (chunkSize)

> db. settings.find()
{ "_id" : "chunksize", "value" : 200 }
{ "_id" : "balancer", "who" : "ubuntu:27017", "x"

shards

Stores information about the shards.

> db. shards. fi ndone()
v { "_id" : "shard0", "host" : "local host:30001" }

Obj ect | d(" 4bd0ch39503139ae28630ee9") }

databases

{
"id" : "admin",
"partitioned" : false,
"primary" : "local host:20001"

}

chunks

{

"_id" : "test.foo-x_M nKey",
"lastnod" : {
"t" : 1271946858000,
i1

}

"ns" "test.foo",

"mn" o {
"Xt { $mnKey : 1}

}

"max" o {
"x" i { $maxKey : 1}

}

"shard" : "l ocal host: 30002"

}

mongos

Record of all mongos affiliated with this cluster. mongos will ping every 30 seconds so we know who is alive.

> db. nongos. fi ndOne()

{
"_id" : "erh-wdl:27017",
"ping" : "Fri Apr 23 2010 11:08:39 GMI-0400 (EST)",
"up" : 30

changelog

Human readable log of all meta-data changes. Capped collection that defaults to 10mb.

> db. changel og. fi ndOne()

P o :
{ "_id" : "erh-wdl-2010-3-21-17-24-0", ;
i "server" : "erh-wdl", :
E "time" : "Wed Apr 21 2010 13:24:24 GMI-0400 (EST)", E
i "what" : "split",
1 "ns" : "test.foo", H
i "details" : { i
: "before" : { i
; "mint | i
; "x" 1 { $ninkKey : 1} !
- i
i "max" o { i
"x" : { $maxKey : 1}
- !
S i
; “left @ { :
; "mn" o | :
i "x" : { $minkKey : 1} i
; 1, :
: "max" o { i
; "' 5 i
i } i
P i
L trigntt s g :
mn" o {
L s |
o |
: “max" o { :
"Xt { $nmaxKey 1}
) i
: } :
. i
B ;
Changes

2 (<= 1.5.0)-> 3 (1.5.1)

® shards: _id is now the name
® databases : _id is now the db name
® general : all references to a shard can be via name or host

Sharding Design

concepts

® config database - the top level database that stores information about servers and where things live.
® shard. this can be either a single server or a replica pair.
® database - one top level namespace. a database can be partitioned or not

® chunk - a region of data from a particular collection. A chunk can be though of as (collectionname,fieldname,lowvalue,highvalue). The
range is inclusive on the low end and exclusive on the high end, i.e., [lowvalue,highvalue).

components and database collections

® config database
® config.servers - this contains all of the servers that the system has. These are logical servers. So for a replica pair, the entry would be
192.168.0.10,192.168.0.11
* config.databases - all of the databases known to the system. This contains the primary server for a database, and information about
whether its partitioned or not.
® config.shards - a list of all database shards. Each shard is a db pair, each of which runs a db process.
® config.homes - specifies which shard is home for a given client db.
® shard databases
® client.system.chunklocations - the home shard for a given client db contains a client.system.chunklocations collection. this

collection lists where to find particular chunks; that is, it maps chunk->shard.
® mongos process
® “routes” request to proper db's, and performs merges. can have a couple per system, or can have 1 per client server.
® gets chunk locations from the client db's home shard. load lazily to avoid using too much mem.
¢ chunk information is cached by mongos. This information can be stale at a mongos (it is always up to date at the owning
shard; you cannot migrate an item if the owning shard is down). If so, the shard contacted will tell us so and we can then
retry to the proper location.

db operations

® moveprimary - move a database's primary server
® migrate - migrate a chunk from one machine to another.
® lock and migrate
® shard db's coordinate with home shard to atomically pass over ownership of the chunk (two phase commit)
® split - split a chunk that is growing too large into pieces. as the two new chunks are on the same machine after the split, this is really just
a metadata update and very fast.
® reconfiguration operations
® add shard - dbgrid processes should lazy load information on a new (unknown) shard when encountered.
® retire shard - in background gradually migrate all chunks off

minimizing lock time
If a chunk is migrating and is 50MB, that might take 5-10 seconds which is too long for the chunk to be locked.

We could perform the migrate much like Cloner works,where we copy the objects and then apply all operations that happened during copying.
This way lock time is minimal.

Sharding Use Cases
What specific use cases do we want to address with db partioning (and other techniques) that are challenging to scale? List here for discussion.

® video site (e.g., youtube) (also, GridFS scale-up)

® seems straightforward: partition by video

® for related videos feature, see search below
® social networking (e.g., facebook)

® this can be quite hard to partition, because it is difficult to cluster people.
® very high RPS sites with small datasets

® N replicas, instead of partioning, might help here

® replicas only work if the dataset is really small as we are using/wasting the same RAM on each replica. thus, partioning
might help us with ram cache efficiency even if entire data set fits on one or two drives.

® twitter
® search & tagging

Log Processing

Use cases related to map-reduce like things.
® massive sort

® top N queries per day
® compare data from two nonadjacent time periods

Shard Ownership
By shard ownership we mean which server owns a particular key range.

Early draft/thoughts will change:

Contract
® the master copy of the ownership information is in the config database
® mongos instances have cached info on which server owns a shard. this information may be stale.

®* mongod instances have definitive information on who owns a shard (atomic with the config db) when they know about a shards
ownership

mongod

The mongod processes maintain a cache of shards the mongod instance owns:

State values are as follows:
® missing - no element in the map means no information available. In such a situation we should query the config database to get the state.

® 1 -this instance owns the shard
® 0 - this instance does not own the shard (indicates we queried the config database and found another owner, and remembered that fact)

Initial Assignment of a region to a node.
This is trivial: add the configuration to the config db. As the ShardKey is new, no nodes have any cached information.
Splitting a Key Range

The mongod instance A which owns the range R breaks it into R1,R2 which are still owned by it. It updates the config db. We take care to handle
the config db crashing or being unreachable on the split:

lock(R) on A

update the config db -- ideally atomcally perhaps with eval (). await return code.
owner shi p[R] . erase

unl ock(R) on A

After the above the cache has no information on the R,R1,R2 ownerships, and will requery configdb on the next request. If the config db crashed
and failed to apply the operation, we are still consistent.

Migrate ownership of keyrange R from server A->B. We assume here that B is the coordinator of the job:

B copies range fromA
lock(R) on A and B
B copi es any additional operations fromA (fast)
clear ownership maps for Ron A and B. B waits for a response fromA on this operation.
B then updates the ownership data in the config db. (Perhaps even fsyncing.) await return code.
unl ock(R) on B
del ete R on A (cleanup)
unlock (R on A

We clear the ownership maps first. That way, if the config db update fails, nothing bad happens, IF mongos filters data upon receipt for being in
the correct ranges (or in its query parameters).

R stays locked on A for the cleanup work, but as that shard no longer owns the range, this is not an issue even if slow. It stays locked for that
operation in case the shard were to quickly migrate back.

Migrating Empty Shards

Typically we migrate a shard after a split. After certain split scenarios, a shard may be empty but we want to migrate it.

Splitting Chunks

Normally, splitting chunks is done automatically for you. Currently, the splits happen as a side effect of inserting (and are transparent). In the
future, there may be other cases where a chunk is automatically split.

A recently split chunk may be moved immediately to a new shard if the system finds that future insertions will benefit from that move. (Chunk
moves are transparent, t0o.)

Moreover, MongoDB has a sub-system called Balancer, which constantly monitors shards loads and, as you guessed, moves chunks around if it
finds an imbalance. Balancing chunks automatically helps incremental scalability. If you add a new shard to the system, some chunks will
eventually be moved to that shard to spread out the load.

That all being said, in certain circumstances one may need to force a split manually.
The Balancer will treat all chunks the same way, regardless if they were generated by a manual or an automatic split.

L
=

The following command splits the chunk where the _id 99 would reside using that key as the split point. Note that a key need not exist for a chunk

to use it in its range.

...

> use admin
switched to db admin
> db. runCommand({ split : "test.foo" , mddle : { _id: 991} })

The following command splits the chunk where the _id 99 would reside in two. The key used as the middle key is computed internally to roughly
divide the chunk in equally sized parts.

...

> use adnin
switched to db adnin
> db. runCommand({ split : "test.foo" , find: { _id: 99} })

Sharding FAQ

How does sharding work with replication?

Where do unsharded collections go if sharding is enabled for a database?
When will data be on more than one shard?

What happens if | try to update a document on a chunk that is being migrated?
What if a shard is down or slow and | do a query?

How do queries distribute across shards?

Now that | sharded my collection, how do | <...> (e.g. drop it)?

If I don't shard on _id how is it kept unique?

Why is all my data on one server?

How does sharding work with replication?

Each shard is a logical collection of partitioned data. The shard could consist of a single server or a cluster of replicas. Typically in production one
would use a replica set for each shard.

Where do unsharded collections go if sharding is enabled for a database?

In alpha 2 unsharded data goes to the "primary" for the database specified (query config.databases to see details). Future versions will parcel out
unsharded collections to different shards (that is, a collection could be on any shard, but will be on only a single shard if unsharded).

When will data be on more than one shard?

MongoDB sharding is range based. So all the objects in a collection get put into a chunk. Only when there is more than 1 chunk is there an option
for multiple shards to get data. Right now, the chunk size is 50mb, so you need at least 50mb for a migration to occur.

What happens if | try to update a document on a chunk that is being migrated?

The update will go through immediately on the old shard, and then the change will be replicated to the new shard before ownership transfers.
What if a shard is down or slow and | do a query?

If a shard is down, the query will return an error. If a shard is responding slowly, mongos will wait for it. You won't get partial results.

How do queries distribute across shards?

There are a few different cases to consider, depending on the query keys and the sort keys. Suppose 3 distinct attributes, X, Y, and Z, where X is
the shard key. A query that keys on X and sorts on X will translate straightforwardly to a series of queries against successive shards in X-order. A
query that keys on X and sorts on Y will execute in parallel on the appropriate shards, and perform a merge sort keyed on Y of the documents
found. A query that keys on Y must run on all shards: if the query sorts by X, the query will serialize over shards in X-order; if the query sorts by Z,
the query will parallelize over shards and perform a merge sort keyed on Z of the documents found.

Now that | sharded my collection, how do | <...> (e.g. drop it)?

Even if chunked, your data is still part of a collection and so all the collection commands apply.

If I don't shard on _id how is it kept unique?

If you don't use _id as the shard key then it is your responsibility to keep the _id unique. If you have duplicate _id values in your collection bad
things will happen (as mstearn says).

Why is all my data on one server?

MongoDB sharding breaks data into chunks. By default, these chunks are 200mb. Sharding will keep chunks balanced across shards. This

means that you need many chunks to trigger balancing, typically 2gb of data or so. db.printShardingStatus() will tell you how many chunks you
have, typically need 10 to start balancing.

Hosting Center

Cloud-Style

® MongoHQ provides cloud-style hosted MongoDB instances
® Mongo Machine is currently in private beta

Dedicated Servers

® ServerBeach offers preconfigured, dedicated MongoDB servers Blog

® EngineYard supports MongoDB on its private cloud.

VPS

* (mt) Media Temple's (ve) server platform is an excellent choice for easy MongoDB deployment.

® Dreamhost offers instant configuration and deployment of MongoDB

® LOCUM Hosting House is a project-oriented shared hosting and VDS. MongoDB is available for all customers as a part of their
subscription plan.

Setup Instructions for Others

Amazon EC2
Joyent
Linode
Webfaction

rm}r@c}HﬁlDrvaumHus’r m (L)

Amazon EC2

Instance Types

Linux

EC2 TCP Port Management
EBS Snapshotting

EBS vs. Local Drives

MongoDB runs well on Amazon EC2 . This page includes some notes in this regard.

Instance Types

MongoDB works on most EC2 types including Linux and Windows. We recommend you use a 64 bit instance as this is required for all MongoDB
databases of significant size. Additionally, we find that the larger instances tend to be on the freshest ec2 hardware.

Linux

One can download a binary or build from source. Generally it is easier to download a binary. We can download and run the binary without being
root. For example on 64 bit Linux:

[~]$ curl -O http://downl oads. mongodb. or g/ | i nux/ nongodb- | i nux-x86_64-1.0. 1.tgz
[~]1$ tar -xzf nongodb-1inux-x86_64-1.0.1.tgz

[~]1$ cd nongodb-Iinux-x86_64-1.0.1/bin

[bin]$./nbngod --version

...

Before running the database one should decide where to put datafiles. Run df -h to see volumes. On some images /mnt will be the many locally
attached storage volume. Alternatively you may want to use Elastic Block Store which will have a different mount point. Regardless, create a

http://mongohq.com/
http://mongomachine.com/
http://www.serverbeach.com/services/mongodb.php
 http://serverbeach.wordpress.com/2010/05/19/serverbeach-now-offers-mongodb-dedicated-servers/
http://www.engineyard.com/technology/stack
http://mediatemple.net
http://mediatemple.net/webhosting/ve/
http://wiki.mediatemple.net/w/Installing_MongoDB_on_Ubuntu
http://www.wiki.dreamhost.com/V12.01_January_2010
http://locum.ru
http://library.linode.com/databases/mongodb/
http://docs.webfaction.com/software/mongodb.html
http://mongohq.com/
http://www.dreamhost.com/
http://mongomachine.com/
http://mediatemple.net
http://aws.amazon.com/ec2/
http://blog.mongodb.org/post/137788967/32-bit-limitations
http://blog.mongodb.org/post/137788967/32-bit-limitations
http://aws.amazon.com/ebs/

directory in the desired location and then run the database:

nkdir /mmt/db
./ mongod --fork --1ogpath ~/ nongod.|og --dbpath /mt/db/

EC2 TCP Port Management

By default the database will now be listening on port 27017. The web administrative Ul will be on port 28017.

EBS Snapshotting

o v13.1+

]

If your datafiles are on an EBS volume, you can snapshot them for backups. Use the fsync lock command to lock the database to prevent writes.
Then, snapshot the volume. Then use the unlock command to allow writes to the database again. See the fsync documentation for more
information.

This method may also be used with slave databases.

EBS vs. Local Drives

Local drives may be faster than EBS; however, they are impermanent. One strategy is to have a hot server which uses local drives and a slave
which uses EBS for storage.

We have seen sequential read rates by MongoDB from ebs (unstriped) of 400Mbps on an extra large instance box. (YMMV)

Joyent

The prebuilt MongoDB Solaris 64 binaries work with Joyent accelerators.
Some newer gcc libraries are required to run -- see sample setup session below.
$ # assuming a 64 bit accel erator

$ /usr/bin/isainfo -kv
64-bit and64 kernel nodul es

$ # get nongodb

$ # note this is 'latest’ you nmay want a different version

$ curl -O http://downl oads. nongodb. or g/ sunos5/ nongodb- sunos5- x86_64-1 atest.tgz
$ gzip -d nongodb-sunos5-x86_64-1atest.tgz

$ tar -xf nongodb-sunos5-x86_64-1 atest.tar

$ mv "nongodb- sunos5-x86_64-2009- 10- 26" nongo

$ cd nongo

$ # get extra libraries we need (else you will get a |ibstdc++.s0.6 dependency issue)
$ curl -O http://downl oads. nongodb. or g. s3. amazonaws. conl sunos5/ nongo- ext r a- 64. t gz

$ gzip -d nongo-extra-64.tgz

$ tar -xf nongo-extra-64.tar

$ # just as an exanple - you will really probably want to put these somewhere better:
$ export LD_LI BRARY_PATH=npngo- extr a- 64

$ bi n/ nongod - - hel p

Monitoring and Diagnostics

Query Profiler

Http Console

db.serverStatus() from mongo shell
Trending/Monitoring Adaptors
Hosted Monitoring

Database Record/Replay

Checking Server Memory Usage
Database Profiler

Munin configuration examples
Http Interface

mongostat

mongosniff

® Admin Uls

Query Profiler

Use the Database Profiler to analyze slow gueries.

Http Console

The mongod process includes a simple diagnostic screen at http://localhost:28017/. See the Http Interface docs for more information.

db.serverStatus() from mongo shell

> db. stats()

> db. server St at us()

> db. foo. find().explain()
> hel p

> db. hel p()

> db. f oo. hel p()

Server Status Fields

globalLock - totalTime & lockTime are total microsecs since startup that there has been a write lock
mem - current usage in megabytes

indexCounters - counters since startup, may rollover

opcounters - operation counters since startup

asserts - assert counters since startup

Trending/Monitoring Adaptors
® munin, and another munin

® ganglia
® cacti

Chris Lea from (mt) Media Temple has made an easy to install Ubuntu package for the munin plugin.
Hosted Monitoring

® Server Density
® scout app slow queries

Database Record/Replay
Recording database operations, and replaying them later, is sometimes a good way to reproduce certain problems in a controlled environment.

To enable logging:

db. _adm nCommand({ diaglLogging : 11})

db. _adm nCommand({ diagLogging : 0})

Values for diagLogging:

0 off. Also flushes any pending data to the file.

1 log writes

2 log reads

3 log both

Note: if you log reads, it will record the findOnes above and if you replay them, that will have an effect!

http://localhost:28017/
http://github.com/erh/mongo-munin
http://github.com/pcdummy/mongomon
http://github.com/quiiver/mongodb-ganglia
http://tag1consulting.com/blog/mongodb-cacti-graphs
http://mediatemple.net
https://launchpad.net/~chris-lea/+archive/munin-plugins
http://www.serverdensity.com/faq/#q1
http://scoutapp.com/plugin_urls/291-mongodb-slow-queries

Output is written to diaglog.bin_in the /data/db/ directory (unless --dbpath is specified).

To replay the logged events:

nc ''database_server_ip'' 27017 < ''sonelog.bin'' | hexdunmp -c

Checking Server Memory Usage

Checking using DB Commands

The serverStatus() command provides memory usage information.

add: how to interpret. what would indicate a memory leak

Checking via Unix Commands
nmongod uses memory-mapped files; thus the memory stats in top are not that useful. On a large database, virtual bytes/VSIZE will tend to be the

size of the entire database, and if the server doesn't have other processes running, resident bytes/RSIZE will be the total memory of the machine
(as this counts file system cache contents).

vnst at can be useful. Try running vnstat 2. On OS X, use vm st at .

Checking in Windows

Help, any Windows admin experts our there? What should be here?

Historial Memory Leak Bugs (that are fixed)

(4 issues)

Key FixVersion Summary

SERVER-1827 1.7.1 Memory leak when there's multiple query plans with empty result
SERVER-768 134 Memory leak and high memory usage from snapshots thread
SERVER-774 MessagingPorts are leaking

SERVER-1897 admin page plugins and handlers leak memory

Database Profiler

Mongo includes a profiling tool to analyze the performance of database operations.

See also the currentOp command.

Enabling Profiling

To enable profiling, from the nongo shell invoke:

...

> db. setProfilingLevel (2);
{"was" : 0, "ok" : 1}
> db. getProfilingLevel ()

Profiling levels are:
® 0-off
® 1 -log slow operations (>100ms)
® 2 -log all operations

Starting in 1.3.0, you can also enable on the command line, - - profi | e=1

http://jira.mongodb.org/secure/IssueNavigator.jspa?reset=true&query=+leak&summary=true&description=true&body=true&type=1&pid=10000&customfield_10033=Memory+Leak&tempMax=1000
http://jira.mongodb.org/browse/SERVER-1827
http://jira.mongodb.org/browse/SERVER-1827
http://jira.mongodb.org/browse/SERVER-768
http://jira.mongodb.org/browse/SERVER-768
http://jira.mongodb.org/browse/SERVER-774
http://jira.mongodb.org/browse/SERVER-774
http://jira.mongodb.org/browse/SERVER-1897
http://jira.mongodb.org/browse/SERVER-1897

‘t, When profiling is enabling, there is continual writing to the system.profile table. This is very fast but does use a write lock which
has certain implications for concurrency. An alternative which has no impact on concurrency is to use the currentOp command.

Viewing
Profiling data is recorded in the database's syst em pr of i | e collection. Query that collection to see the results.
> db. system profile.find()

{"ts" : "Thu Jan 29 2009 15:19:32 GVI-0500 (EST)" , "info" : "query test.$cnd ntoreturn:1 reslen: 66
nscanned: 0
query: { profile: 2} nreturned:1 bytes:50" , "millis" : 0}

> db.systemprofile.find({ info: /test.foo/ })

bytes: 53" , "millis" : 88}

v {"ts" : "Thu Jan 29 2009 15:19:40 GMI-0500 (EST)" , "info" : "insert test.foo" , "mllis" : 0} !
{"ts" : "Thu Jan 29 2009 15:19:42 GWIT-0500 (EST)" , "info" : "insert test.foo" , "mllis" : 0}
{"ts" : "Thu Jan 29 2009 15:19:45 GMI-0500 (EST)" , "info" : "query test.foo ntoreturn:0 reslen: 102
! nscanned: 2
query: {} nreturned:2 bytes:86" , "mllis" : 0} 1
{"ts" : "Thu Jan 29 2009 15:21:17 GMI-0500 (EST)" , "info" : "query test.foo ntoreturn:0 reslen: 36
| nscanned:2
query: { $not: { x: 2} } nreturned:0 bytes:20" , "nillis" : 0}
{"ts" : "Thu Jan 29 2009 15:21:27 GMI-0500 (EST)" , "info" : "query test.foo ntoreturn:0 exception

i > db.systemprofile.find({ mllis : { $gt : 5} })
{"ts" : "Thu Jan 29 2009 15:21:27 GMI-0500 (EST)" , "info" : "query test.foo ntoreturn:0 exception
i bytes:53" , "mllis" : 88}

db. systemprofile.find().sort({$natural:-1})

The mongo shell includes a helper to see the most recent 5 profiled events that took at least 1ms to execute. Type show profile at the command
prompt to use this feature.

Understanding the Output

The output reports the following values:

® t s Timestamp of the profiled operation.
® nillis Time, in milliseconds, to perform the operation. This time does not include time to acquire the lock or network time, just the time
for the server to process.
® i nf o Details on the operation.
® quer y A database query operation. The query info field includes several additional terms:
nt or et ur n Number of objects the client requested for return from a query. For example, <code>findOne()</code> sets
ntoreturn to 1. <code>limit()</code> sets the appropriate limit. Zero indicates no limit.
query Details of the query spec.
nscanned Number of objects scanned in executing the operation.
r esl en Query result length in bytes.
nr et ur ned Number of objects returned from query.
® updat e A database update operation. <code>save()</code> calls generate either an update or insert operation.
® fast nod Indicates a fast modify operation. See Updates. These operations are normally quite fast.
® fastnodi nsert -indicates a fast modify operation that performed an upsert.

® upsert Indicates on upsert performed.
®* noved Indicates the update moved the object on disk (not updated in place). This is slower than an in place update, and

normally occurs when an object grows.

® insert A database insert.
® get nor e For large queries, the database initially returns partial information. get nor e indicates a call to retrieve further

information.
Optimizing Query Performance

® |f nscanned is much higher than nr et ur ned, the database is scanning many objects to find the target objects. Consider creating an
index to improve this.

® resl en Alarge number of bytes returned (hundreds of kilobytes or more) causes slow performance. Consider passing
<code>find()</code> a second parameter of the member names you require.

Not e: There is a cost for each index you create. The index causes disk writes on each insert and some updates to the collection. If a rare query,
it may be better to let the query be "slow" and not create an index. When a query is common relative to the number of saves to the collection, you

will want to create the index.

Optimizing Update Performance
® Examine the nscanned info field. If it is a very large value, the database is scanning a large number of objects to find the object to

update. Consider creating an index if updates are a high-frequency operation.
® Use fast modify operations when possible (and usually with these, an index). See Updates.

Profiler Performance

When enabled, profiling affects performance, although not severely.

Profile data is stored in the database's syst em pr of i | e collection, which is a Capped Collection. By default it is set to a very small size and
thus only includes recent operations.

Configuring "Slow"

Since 1.3.0 there are 2 ways to configure "slow"

® --slowms on the command line when starting mongod (or file config)
¢ db.setProfilingLevel(level , slowms)

db. setProfilingLevel (1, 10);

will log all queries over 10ms to system.profile

See Also
® Optimization

® explain()
® Viewing and Terminating Current Operation

Munin configuration examples

Overview
Munin can use be used monitoring aspects of you running system. The following is a mini tutorial to help you setup and use the MongoDB plugin

with munin.

Setup

Munin is made up of two components

® agent and plugins that are installed on the system you want to monitor
¢ server which polls the agent(s) and creates the basic web pages and graphs to visualize the data

Install

You can download from SourceForge , but pre-built packages are also available. For example on Ubuntu you can do the following

http://www.mongodb.org/display/DOCS/Optimization#Optimization-Explain
http://munin-monitoring.org
http://sourceforge.net/projects/munin/files/

Agent install

To install the agent, repeat the following steps on each node you want to monitor

{ shell> sudo apt-get install rmunin-node

Server install

The server needs to be installed once. It relies on apache2, so you will need to ensure that it is installed as well

shel | > apt-get install apache2
shel | > apt-get install nunin

Configuration

Both the agent(s) and server need to be configured with the IP address and port to contact each other. In the following examples we will use
these nodes

® dbil:10.202.210.175
® db2:10.203.22.38
® munin-server : 10.194.102.70

Agent configuration

On each node, add an entry as follows into
for db1:

i /etc/ muni n/ muni n-node. conf !
: host_name dbl-ec2-174-129-52-161. conput e- 1. amazonaws. com H
i allow ~10\. 194\. 102\ . 70$:

i /etc/ muni n/ muni n-node. conf !
i host_name db2-ec2-174-129-52- 161. conput e- 1. amazonaws. com
{ allow ~10\.194\.102\.70$:

® host_name : can be whatever you like, this name will be used by the server
® allow : this is the IP address of the server, enabling the server to poll the agent

Server configuration

Add an entry for each node that is being monitored as follows in

[dbl-ec2-174-129-52-161. conput e- 1. amazonaws. coni
address 10.202.210. 175
use_node_nane no

[db2-ec2-184-72-191-169. conput e- 1. amazonaws. conj
address 10.203. 22. 38
use_node_nane no

® the name in between the [] needs to match the name set in the agents munin-node.conf
® address : IP address of the node where the agent is running
® use_node_name : dtermine if the IP or the name between [] is used to contact the agent

MongoDB munin plugin
A plugin is available that provide metrics for

® B-Tree stats
® Current connections

http://github.com/erh/mongo-munin

® Memory usage
® Database operations (inserts, updates, queries etc.)

The plugin can be installed as follows on each node where MongoDB is running
shel | > wget http://github. com erh/ mongo- nuni n/tarbal |/ mast er

shel | > tar xvf erh-nongo-nunin-*tar.gz
i shell > cp erh-nongo- nmuni n-*/nongo_* /etc/ nunin/plugi ns/ i

Check your setup

After installing the plugin and making the configuration changes, force the server to update the information to check your setup is correct using the
following

i shell> sudo -u nunin /usr/share/ muni n/ nuni n- updat e

If everything is setup correctly, you will get a chart like this

MongoDB ops - by day

7ot
5.0
- 5.0
=
g 4.0
b b
0
- 3.0
[
o
e 20
1.0
0.0]
Thu 00:00 Thu 12:00
Cur: Min: Avg: Max:
0 getmore 99. 96m .08 17.84m 18@. G&m
B insert 9. 97m .08 9.5Tm 99.07m
O update 419. B2m 277.38m 412.18m 1.28
O command 379. 79m 145, 64m 298. 36m 1. .24
W query 1.04 497, 60m 923, 48m 4. 95
B delete 99, 98m 30. 16m B1. 23m 100. 23m
B total 2.05 958, 55m 1.72 5. 39

Last update: Thu Oct 7 28:408:083 2018

Advanced charting

If you are running a large MongoDB cluster, you may want to aggregate the values (e.g. inserts per second) across all the nodes in the cluster.
Munin provides a simple way to aggregate.

i /etc/ muni n/ muni n. conf :
{ [conput e- 1. amazonaws. conm CLUSTER] H
i update no H

* Defines a new segment called CLUSTER
® update no : munin can generate the chart based on existing data, this tell munin not to poll the agents for the data

Now lets define a chart to aggregate the inserts, updates and deletefor the cluster

i cluster_ops.graph_title Custer Ops !
¢ cluster_ops. graph_cat egory nobngodb !
cluster_ops.graph_total total
! cluster_ops.total.graph no
i cluster_ops. graph_order insert update delete 1
cluster_ops.insert.|abel insert
| cluster_ops.insert.sum\
: dbl-ec2-174-129-52-161. conput e- 1. amazonaws. com nongo_ops. i nsert \ :
db2- ec2- 184- 72-191- 169. conput e- 1. amazonaws. conm nongo_ops. i nsert
: cluster_ops. update.|abel update i
i cluster_ops. update. sum\ :
! dbl- ec2-174-129-52-161. conput e- 1. anazonaws. com nongo_ops. i nsert \ H
i db2- ec2-184-72-191- 169. conput e- 1. anazonaws. com nongo_ops. i nsert !
i cluster_ops.del ete. |l abel delete H
! cluster_ops. del ete. sum\
dbl-ec2-174-129-52-161. conput e- 1. amazonaws. com nongo_ops. i nsert \
db2- ec2-184-72-191- 169. conput e- 1. amazonaws. com nongo_ops. i nsert

* cluster_ops : name of this chart

cluster_ops.graph_category mongodb : puts this chart into the "mongodb" category. Allows you to collect similar charts on a single page
cluster_ops.graph_order insert update delete : indicates the order of the line son the key for the chart
cluster_ops.insert : represents a single line on the chart, in this case the "insert"
cluster_ops.insert.sum : indicates the values are summed
® dbl-ec2-174-129-52-161.compute-1.amazonaws.com : indicates the node to aggregate
® mongo_ops.insert : indicates the chart (mongo_ops) and the counter (insert) to aggregate

And this is what is looks like
Cluster Ops - by day

24k
22k
20k
18k
16 k
14k
12 k
1ok
gk
Gk
4k
2k

=]
v

Thu 00:00 Thu 12:00
Cur: Min: Avg: Max:
HE insert 7. 20k o] TES. 16 22. 54k
B update @. o a. e @. e a. 0
O delete 0. aa o] 12 52u 5. 58m
W total 7. 30k a. e 765, 15 22 54k
Last update: Thu Oct 7 20:40:03 2010

Http Interface

® REST Interfaces
® Sleepy Mongoose (Python)
® MongoDB Rest (Node.js)
® HTTP Console
® HTTP Console Security
® Simple REST Interface
® JSON in the simple REST interface
® See Also

REST Interfaces

Sleepy Mongoose (Python)

Sleepy Mongoose is a full featured REST interface for MongoDB which is available as a separate project.

MongoDB Rest (Node.js)

MongoDB Rest is an alpha REST interface to MongoDB, which uses the MongoDB Node Native driver.

HTTP Console

MongoDB provides a simple http interface listing information of interest to administrators. This interface may be accessed at the port with numeric
value 1000 more than the configured mongod port; the default port for the http interface is 28017. To access the http interface an administrator

may, for example, point a browser to http://localhost:28017 if mongod is running with the default port on the local machine.

€« & P htplocalhosts
mengod dm_hp:27009

List all commands | Repbca sef staly:

‘Commands: asseninlo buiklis cursodnlo features isMaster replSetCalSalus serverdlanes e

o Tarsi
git hash
sys

T

Fl. 5. G-pra-, pafile warssom 4.5
~so0ms
-500ms Win maover i lel
4% stoczds

bever leved requiras raad back

Time o ger resdiogio ms

1% bailvikey 4 3010 boosTrers 1043000

$ satakazzz) 1
--repliat 2z

mastar 4
slave

imitialSymotonplerads i

clients

Client Opld Active LockType Walting SecsRunning Op Mamespace Druary chent mEy progress
nfandiztan D | [w | | '2W4.hcal.whgrs '{ name: lacal lemp.' | nonan | |
FE_5\TC o L] L] lacal rapiset mimeabd IMOME)
snapshottreead |0 0 0 IMOKE)

wabsr o L] L] [HONE)
chanicursamon | i i IMOME)

onn 1 " 2004 | lacal systamreplsal | 12700115000

conn g0 q 20047 1 rapiSalHaaribaat “zr v 5, pv 1, checkEmaty falsa, from: “dm_hp 2 T005° 10,51 14715803

o 2460 L] a4 7 1 rapiSalbaartbaat "2z v § pv 1, checkEmaty: faksa, from: "dm_hp2 FOO7* } 10,21 14715011

rs Managar 0 i i IMOME)

o Aa0a q 20047 IrapiSaltaarttaat “2r v 5 pv 1, checkEmpty: falsa, frame “dmi_hpe 2 T006° 10,51 14715843

£onn 248 i 2004 | ¥ { rapiSalHaaribaat “zr’, v 5 pv 1, checkEmpty falsa, from “"dm_hp2 70087} 10.3.1 14715015

dbtop (occurancesiparcant of alapsad)

HE total

Reads Wilvites Querias GetMores Inserts Updates Removes

GLOBAL 0|0 0000% 1) 00000 0| 0.0000% B D000% 0| 0000 6| 00000% 0| D00 0 00000

‘wribe loek %5 lime inwrile ook, by 4 9ec periods
aoooo0oDODODODO0ODOD000000D00000D00000DO00D0000D
witita kycked nowe false

3 [FARlSetEealtEPoliTask] warmizng Sews

laFtIrrore=) wont CARSCLIVEISG LVRE for DSONElsmest |time| L 0= 12

Here is a description of the informational elements of the http interface:

element
db version
git hash
sys info
dblocked
uptime
assertions
replinfo
currentOp
databases
curclient

Cursors

description

database version information

database version developer tag

mongod compilation environment

indicates whether the primary mongod mutex is held

time since this mongod instance was started

any software assertions that have been raised by this mongod instance
information about replication configuration

most recent client request

number of databases that have been accessed by this mongod instance
last database accessed by this mongod instance

describes outstanding client cursors

http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/
http://github.com/tdegrunt/mongodb-rest
http://github.com/christkv/node-mongodb-native
http://localhost:28017

master whether this mongod instance has been designated a master
slave whether this mongod instance has been designated a slave
initialSyncCompleted = whether this slave or repl pair node has completed an initial clone of the mongod instance it is replicating

DBTOP Displays the total time the mongod instance has devoted to each listed collection, as well as the percentage of available
time devoted to each listed collection recently and the number of reads, writes, and total calls made recently

dt Timing information about the primary mongod mutex

HTTP Console Security

If security is configured for a mongod instance, authentication is required for a client to access the http interface from another machine.

Simple REST Interface

The mongod process includes a simple read-only REST interface for convenience. For full REST capabilities we recommend using an external
tool such as Sleepy.Mongoose.

Note: in v1.3.4+ of MongoDB, this interface is disabled by default. Use - - r est on the command line to enable.

To get the contents of a collection (note the trailing slash):

i http://1ocal host: 28017/ adni n/ $crd/ ?fi | ter | i stDat abases=1& imit=1

JSON in the simple REST interface

The simple ReST interface uses strict JSON (as opposed to the shell, which uses Dates, regular expressions, etc.). To display non-JSON types,
the web interface wraps them in objects and uses the key for the type. For example:

Cbjectlds just become strings
"_id" : "4aBacf 6e7f badc242de5b4f 3"

| # dates
| “date" : { "$date" : 1250609897802 }

regul ar expressions
"match" : { "$regex" : "foo", "$options"

http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/

The code type has not been implemented yet and causes the DB to crash if you try to display it in the browser.

See Mongo Extended JSON for details.

See Also

® Replica Set Admin Ul
® Diagnostic Tools

mongostat

Use the mongostat utility to quickly view statistics on a running mongod instance.

B.6.1

p(‘lat‘;e/s deletess getmore/s conmandss flushes/s mapped wvsize res locked % idx miss
a 1 60

CPEOEEeEEEEE®N

Run mongostat --help for help.

Fi el ds

inserts/s - # of inserts per second

query/s - # of queries per second

updat e/ s - # of updates per second

deletel/s - # of deletes per second

getnorel/s - # of get nobres (cursor batch) per second

command/ s - # of commands per second

flushes/s - # of fsync flushes per second

mapped - amount of data mmaped (total data size) negabytes

vsi ze - virtual size of process in negabytes

res - resident size of process in negabytes

faults/s - # of pages faults/sec (linux only)

| ocked - percent of time in global wite |ock

idx mss - percent of btree page m sses (sanpled)

qtjrlw - lock queue lengths (total|read|wite)

conn - nunber of open connections
mongosniff

Unix releases of MongoDB include a utility called mongosniff. This utility is to MongoDB what tcpdump is to TCP/IP; that is, fairly low level and for
complex situations. The tool is quite useful for authors of driver tools.

$./nongosniff --help
Usage: nongosniff [--help] [--forward host:port] [--source (NET <interface> | FILE <fil ename>)]
[<port0> <portl> ...]

--forward Forward all parsed request nessages to nongod instance at
speci fi ed host: port

--source Source of traffic to sniff, either a network interface or a
file containing perviously captured packets, in pcap format.
If no source is specified, nongosniff will attenpt to sniff
fromone of the machine's network interfaces.

<port0>... These paraneters are used to filter sniffing. By default,
only port 27017 is sniffed.

--help Print this hel p nessage.

Building

mongosniff is including in the binaries for Unix distributions. As mongosniff depends on libpcap, the MongoDB SConstruct only builds mongosniff
if libpcap is installed.

sudo yuminstall |ibpcap-devel
i scons nongosni f f !

Example

To monitor localhost:27017, runi f conf i g to find loopback's name (usually something like | o or | 00). Then run:

nongosni ff --source NET lo

If you get the error message "error opening device: socket: Operation not permitted" or “error finding device: no suitable device found", try running
it as root.

Backups

Fsync, Write Lock and Backup
Shutdown and Backup
Exports

Slave Backup

Community Stuff

Several strategies exist for backing up MongoDB databases. A word of warning: it's not safe to back up the mongod data files (by default in
/data/db/) while the database is running and writes are occurring; such a backup may turn out to be corrupt. See the fsync option below for a way
around that.

Fsync, Write Lock and Backup

MongoDB v1.3.1 and higher supports an fsync and lock command with which we can flush writes, lock the database to prevent writing, and then
backup the datafiles.

While in this locked mode, all writes will block. If this is a problem consider one of the other methods below.

For example, you could use LVM2 to create a snapshot after the fsync+lock, and then use that snapshot to do an offsite backup in the
background. This means that the server will only be locked while the snapshot is taken. Don't forget to unlock after the backup/snapshot is taken.

Shutdown and Backup

A simple approach is just to stop the database, back up the data files, and resume. This is safe but of course requires downtime.

Exports

The mongodump utility may be used to dump an entire database, even when the database is running and active. The dump can then be restored
later if needed.

Slave Backup

Another good technique for backups is replication to a slave database. The slave polls master continuously and thus always has a
nearly-up-to-date copy of master.

We then have several options for backing up the slave:
1. Fsync, write lock, and backup the slave.
2. Shut it down, backup, and restart.
3. Export from the slave.

For methods 1 and 2, after the backup the slave will resume replication, applying any changes made to master in the meantime.

Using a slave is advantageous because we then always have backup database machine ready in case master fails (failover). But a slave also
gives us the chance to back up the full data set without affecting the performance of the master database.

Community Stuff

® http://github.com/micahwedemeyer/automongobackup

http://github.com/micahwedemeyer/automongobackup

How to do Snapshotted Queries in the Mongo Database

! This document refers to query snapshots. For backup snapshots of the database's datafiles, see the fsync lock page.

i}

MongoDB does not support full point-in-time snapshotting. However, some functionality is available which is detailed below.

Cursors

A MongoDB query returns data as well as a cursor ID for additional lookups, should more data exist. Drivers lazily perform a "getMore" operation
as needed on the cursor to get more data. Cursors may have latent getMore accesses that occurs after an intervening write operation on the
database collection (i.e., an insert, update, or delete).

Conceptually, a cursor has a current position. If you delete the item at the current position, the cursor automatically skips its current position
forward to the next item.

Mongo DB cursors do not provide a snapshot: if other write operations occur during the life of your cursor, it is unspecified if your application will
see the results of those operations. In fact, it is even possible (although unlikely) to see the same object returned twice if the object were updated
and grew in size (and thus moved in the datafile). To assure no update duplications, use snapshot() mode (see below).

Snapshot Mode

snapshot() mode assures that objects which update during the lifetime of a query are returned once and only once. This is most important when
doing a find-and-update loop that changes the size of documents that are returned ($inc does not change size).

> // nmongo shell exanple
> var cursor = db.nyCollection.find({country:'uk'}).snapshot();

Even with snapshot mode, items inserted or deleted during the query may or may not be returned; that is, this mode is not a true point-in-time
snapshot.

Because snapshot mode traverses the _id index, it may not be used with sorting or explicit hints. It also cannot use any other index for the query.

You can get the same effect as snapshot by using any unique index on a field(s) that will not be modified (probably best to use explicit hint() too).
If you want to use a non-unique index (such as creation time), you can make it unique by appending _id to the index at creation time.

Import Export Tools

® mongoimport
® Example: Importing Interesting Types
® mongoexport
® mongodump
® Example: Dumping Everything
® Example: Dumping a Single Collection
¢ Example: Dumping a Single Collection to Stdout
® mongorestore
® bsondump

! If you just want to do Clone Database from one server to another you don't need these tools.

i}

1, These tool just work with the raw data (the documents in the collection); they do not save, or load, the metadata like the defined
indexes or (capped) collection properties. You will need to (re)create those yourself in a separate step, before loading that data.
Vote here to change this.

mongoimport

This utility takes a single file that contains 1 JSON/CSV/TSV string per line and inserts it. You have to specify a database and a collection.

http://jira.mongodb.org/browse/SERVER-808

options:

--help produce hel p nessage

-v [--verbose] be nmore verbose (include nultiple tines for nore
verbosity e.g. -vvvvv)

-h [--host] arg nongo host to connect to ("left,right" for pairs)

-d [--db] arg dat abase to use

-Cc [--collection] arg collection to use (sonme commands)

-u [--usernane] arg user nanme

-p [--password] arg passwor d

--dbpath arg directly access nongod data files in the given path,
instead of connecting to a nongod instance - needs to
lock the data directory, so cannot be used if a
nongod is currently accessing the same path

--directoryperdb if dbpath specified, each db is in a separate
directory

-f [--fields] arg conma seperated |ist of field nanes e.g. -f nanme, age

--fieldFile arg file with fields names - 1 per line

--ignoreBl anks if given, enpty fields in csv and tsv will be ignored

--type arg type of file to inport. default: json (json,csv,tsv)

--file arg file to inport from if not specified stdin is used

--drop drop collection first

--headerline CSV, TSV only - use first line as headers

Example: Importing Interesting Types

MongoDB supports more types that JSON does, so it has a special format for representing some of these types as valid JSON. For example,
JSON has no date type. Thus, to import data containing dates, you structure your JSON like:

{"sonefield" : 123456, "created_at" : {"$date" : 1285679232000}}

Then nongoi nport will turn the cr eat ed_at value into a Date.
Note: the $-prefixed types must be enclosed in double quotes to be parsed correctly.
mongoexport

This utility takes a collection and exports to either JSON or CSV. You can specify a filter for the query, or a list of fields to output.

. Neither JSON nor TSV/CSV can represent all data types. Please be careful not to lose or change data (types) when using this.
For full fidelity please use mongodump.

If you want to output CSV, you have to specify the fields in the order you want them.

Example

options:
--help
-v [--verbose]

-h [--host] arg

-d [--db] arg

-c [--collection] arg
-u [--usernane] arg
-p [--password] arg
--dbpath arg

--directoryperdb

-q [--query] arg
-f [--fields] arg
--Ccsv

-0 [--out] arg

produce hel p nessage

be nore verbose (include nultiple times for nore
verbosity e.g. -vvvvv)

nongo host to connect to ("left,right" for pairs)
dat abase to use

where "arg' is the collection to use

user nane

passwor d

directly access nongod data files in the given path
instead of connecting to a nongod instance - needs to
lock the data directory, so cannot be used if a
nongod is currently accessing the same path

if dbpath specified, each db is in a separate
directory

query filter, as a JSON string

conma seperated list of field names e.g. -f name, age
export to csv instead of json

output file; if not specified, stdout is used

mongodump

This takes a database and outputs it in a binary representation. This is mostly used for doing hot backups of a database.

1, Ifyou're using sharding and try to migrate data this way, this will dump shard configuration information and overwrite

configurations upon restore.

options
--help
-v [--verbose]

E -h [--host] arg

i -d[--db] arg

| -c [--collection] arg
: -u [--usernane] arg
i -p [--password] arg
; --dbpath arg

--directoryperdb

-0 [--out] arg (=dunp)
--query

produce hel p nessage

be nmore verbose (include nultiple tinmes for nore
verbosity e.g. -vvvvy)

nmongo host to connect to ("left,right" for pairs)
dat abase to use

collection to use (sonme commands)

user nane

password

directly access nongod data files in the given path
instead of connecting to a nongod instance - needs
to lock the data directory, so cannot be used if a
nmongod is currently accessing the same path

if dbpath specified, each db is in a separate
directory

out put directory

Example: Dumping Everything

To dump all of the collections in all of the databases, run mongodunp with just the - - host :

$./ nongodunp --host prod. exanpl e. com
connected to: prod. exanpl e.com
al | dbs
! DATABASE: |og to dunp/log :
log.errors to dunp/log/errors. bson
713 objects
: | og. anal ytics to dunp/log/anal ytics. bson :
i 234810 obj ect s :
i DATABASE: bl og to dunp/ bl og i
: bl og. posts to dunp/l og/ bl og. posts. bson :
! 59 objects H
;. DATABASE: adnin to dunp/ adm n !

You'll then have a folder called "dump" in your current directory.

If you're running nongod locally on the default port, you can just do:

Example: Dumping a Single Collection

If we just want to dump a single collection, we can specify it and get a single .bson file.

$./ nongodunp --db blog --collection posts
connected to: 127.0.0.1

DATABASE: bl og to dunp/ bl og
bl og. posts to dunp/ bl og/ posts. bson
59 objects

Example: Dumping a Single Collection to Stdout

In version 1.7.0+, you can use stdout instead of a file by specifying - - out st dout :

$./ nmongodunp --db blog --collection posts --out - > bl ogposts. bson

mongodump creates a file for each database collection, so we can only dump one collection at a time to stdout.

mongorestore

This takes the output from mongodump and restores it.

usage: ./nongorestore [options] [directory or filename to restore froni

options:
--help produce hel p nessage
-v [--verbose] be more verbose (include nultiple tines for nore
verbosity e.g. -vvvvv)
-h [--host] arg mongo host to connect to ("left,right" for pairs)
-d [--db] arg dat abase to use
-c [--collection] arg collection to use (sonme commands)
-u [--usernane] arg user nanme

-p [--password] arg passwor d

--dbpath arg directly access nongod data files in the given path,
instead of connecting to a nongod instance - needs to
lock the data directory, so cannot be used if a
nongod is currently accessing the same path

--directoryperdb if dbpath specified, each db is in a separate
directory
--drop drop each collection before inport
- - obj check val i date obj ect before inserting
bsondump

' Addedin 1.6

]

This takes a bson file and converts it to json/debug output.

usage: ./bsondunp [options] [fil enane]

options:
--type arg (=json) type of output: json,debug

--help produce hel p message

Durability and Repair

Single Server Durability

Repair Command

Validate Command

--syncdel ay Command Line Option
See Also

Single Server Durability
The v1.8 release of MongoDB will have single server durability. You can follow the Jira here : http://jira.mongodb.org/browse/SERVER-980.

We recommend using replication to keep copies of data for now — and likely forever — as a single server could fail catastrophically regardless.

Repair Command

. Thereis a bug with repair and replica sets in MongoDB v1.6.0. Please see this Jira for information:
http://jira.mongodb.org/browse/SERVER-1614. Do NOT run repair without reading this first. This bug applies to 1.6.0 only. Will
be fixed in 1.6.1. In the meantime there are workarounds.

After a machine crash or or ki | | -9 termination, consider running the repairDatabase command. This command will check all data for
corruption, remove any corruption found, and compact data files a bit.

In the event of a hard crash, we recommend running a repair — analogous to running fsck. If a slave crashes, another option is just to restart the
slave from scratch.

From the command line:

http://jira.mongodb.org/browse/SERVER-980
http://jira.mongodb.org/browse/SERVER-1614
http://en.wikipedia.org/wiki/Fsck

During a repair operation, mongod must store temporary files to disk. By default, mongod creates temporary directories under the dbpath for this
purpose. Alternatively, the - - r epai r pat h command line option can be used to specify a base directory for temporary repair files.

Note that repair is a slow operation which inspects the entire database.

If the databases exited uncleanly and you attempt to restart the database, mongod will print:

Khkkkhkhhkhkkkkkkx

old lock file: /data/db/nongod.|ock. probably means uncl ean shut down
recommend renoving file and running --repair

see: http://dochub. nongodb. org/core/repair for nmore information
kkkkkkkkkkkkk

Then it will exit. After running with - - r epai r, mongod will start up normally.

Validate Command

Alternatively one could restart and run the validate command on select tables. The validate command checks if the contents of a collection are
valid.

For example, here we validate the user s collection:

> db. users.validate()
{
"ns" : "test.users"
"result" : " validate
details: 0x1243dbbdc of s: 740bdc
firstExtent:0:178b00 ns:test.users
| ast Extent: 0: 178b00 ns:test.users
extents:1
dat asi ze?: 44 nrecords?: 1 | ast Extent Si ze: 8192
paddi ng: 1
first extent
I oc: 0: 178b00 xnext: null xprev:nul
nsdi ag: test. users
si ze: 8192 firstRecord: 0: 178bb0 | ast Record: 0: 178bb0
1 objects found, nobj:1
60 bytes data w headers
44 bytes data wout/headers
del et edLi st: 0000000010000000000
deleted: n: 1 size: 7956
nl ndexes: 2
test.users.$_id_ keys:1
test.users. $usernane_1 keys:1 ",
"ok" : 1,
"valid" : true,
"l ast Extent Si ze" : 8192

--syncdel ay Command Line Option

Since 1.1.4, the - - syncdel ay option controls how often changes are flushed to disk (the default is 60 seconds). If replication is not being used, it
may be desirable to reduce this default.

See Also

® What About Durability? (MongoDB Blog)
¢ fsync Command
® MongoDB (Single-Server) Data Durability Guide

Security and Authentication

Running Without Security (Trusted Environment)
@ This is the default option and is recommended.

One valid way to run the Mongo database is in a trusted environment, with no security and authentication (much like how one would use, say,
memcached). Of course, in such a configuration, one must be sure only trusted machines can access database TCP ports.

The current versions of sharding and replica sets requires trusted (nonsecure) mode.

Mongo Security

The current version of Mongo supports only very basic security. One authenticates a username and password in the context of a particular
database. Once authenticated, a normal user has full read and write access to the database in question while a read only user only has read
access.

The adni n database is special. In addition to several commands that are administrative being possible only on adm n, authentication on admi n
gives one read and write access to all databases on the server. Effectively, adm n access means root access to the server process.

Run the database (mongod process) with the - - aut h option to enable security. You must either have added a user to the adni n db before
starting the server with - - aut h, or add the first user from the localhost interface.

Configuring Authentication and Security

Authentication is stored in each database's syst em user s collection. For example, on a database projectx, pr 0j ect x. syst em user s will
contain user information.

We should first configure an administrator user for the entire db server process. This user is stored under the special adni n database.

If no users are configured in adm n. syst em user s, one may access the database from the localhost interface without authenticating. Thus,
from the server running the database (and thus on localhost), run the database shell and configure an administrative user:

! $./nongo i
{ > use admin
i > db. addUser ("t headm n", "anadm npassword") 1

We now have a user created for database admi n. Note that if we have not previously authenticated, we now must if we wish to perform further
operations, as there is a user in admi n. syst em users.

{ > db.auth("theadnin", "anadni npassword")

> use projectx
> db. addUser ("j oe", "passwordForJoe")

Finally, let's add a readonly user. (only supported in 1.3.2+)

http://blog.mongodb.org/post/381927266/what-about-durability
http://www.thebuzzmedia.com/mongodb-single-server-data-durability-guide/

> use projectx

> db. addUser ("guest", "passwordForCGuest", true)

Changing Passwords

The shell addUser command may also be used to update a password: if the user already exists, the password simply updates.

Many Mongo drivers provide a helper function equivalent to the db shell's addUser method.

Deleting Users

To delete a user:

Ports

You can also do ip level security. See Production Notes for what ports MongoDB uses.

db. system users. renmove({ user:

Admin Uls

Several administrative user interfaces, or GUIs, are available for MongoDB. Tim Gourley's blog has a good summary of the tools.

Comm

Fang of Mongo
Futon4Mongo
Mongo3
MongoHub
MongoVUE
Mongui

Myngo

Opricot
PHPMoAdmin
RockMongo

The built-in replica set admin Ul
ercial Offerings

DatabaseMaster

Details

Fang of Mongo

A web-based user interface for MongoDB build with django and jquery.

usernane })

http://blog.timgourley.com/post/453680012/tuesday-night-tech-mongodb-ui-edition
http://github.com/sbellity/futon4mongo
http://github.com/derailed/mongo3
http://poulh.github.com/
http://github.com/milancermak/myngo

B T
-

It will allow you to explore content of mongodb with simple but (hopefully) pleasant user interface.
Features:

* field name autocompletion in query builder

¢ data loading indicator

® human friendly collection stats

® disabling collection windows when there is no collection selected
® twitter stream plugin

® many more minor usability fixes

® works well on recent chrome and firefox

See it in action at: http://blueone.pl:8001/fangofmongo/

Get it from github: http://github.com/Fiedzia/Fang-of-Mongo
Or track progress on twitter: @fangofmongo

MongoHub
MongoHub is a native OS X GUI.

MsnNno MongoHub

.'-\-_ g ""lq_.__.-""'

mongohg-bububa localhost

E RN e O L

MongoVUE

MongoVUE is a .NET GUI for MongoDB.

http://blueone.pl:8001/fangofmongo/
http://github.com/Fiedzia/Fang-of-Mongo
http://www.twitter.com/fangofmongo
http://mongohub.todayclose.com/
http://blog.mongovue.com

-

o5l MongoVUE

safely
=4 localhost ; 27017 T ; —

2 oo e] 0] waee ([Bl me® E
I . i | " .
= SJIIE_:_tIons Fields: | v/ Sort Limit 50 [

cities
| =] binarydata .
E|] safely Tree View Json Text Explain .
T : Loz’
E‘—‘ I:de:l(:s 1 Document
[id_
[=] address Key Value Type

B[Iadmlm y E-(0) L3 Document

(-1 loca e id "4c35b095d342000000002604" Objectld

temp /0-8/i RegEx

Done

1 Document | Data: 00:00:00.016 | GUL 00:00:00.016 .:

Opricot

Opricot is a hybrid GUI/CLI/Scripting web frontend implemented in PHP to manage your MongoDB servers and databases. Use as a
point-and-click adventure for basic tasks, utilize scripting for automated processing or repetitive things.

Opricot combines the following components to create a fully featured administration tool:

® An interactive console that allows you to either work with the database through the Ul, or by using custom Javascript.

® A set of simple commands that wrap the Javascript driver, and provide an easy way to complete the most common tasks.
® Javascript driver for Mongo that works on the browser and talks with the AJAX interface.

® Simple server-side AJAX interface for communicating with the MongoDB server (currently available for PHP).

PHPMoAdmin

- g
CATAHAZE SINESSTEST SELECTEDR
e rol ek e repAT dron
., r
- .
CHLLECTINHS TH STHEXETES
melert AT
Selert mol
Select Ta.zhunizs
2 Wl
. v
v y
COLLECTINON FS_CHUHES IH ATERESSITEAXST SELECTED
=elect £ing SOLG raligase indexes drcp
\ A
- .
THODEXER TH FE. CHUHKE
Sahow d=l=teE (7 _id i TegpetiTabiect T, Yo let r "Honga I4Y, Mral s "00daC0000IaCa 0 aIana0a Iy
anaw G=1ETE | (MZiles 4%, Upnad}
:: deli indexanlc I Lt Ll 1
. [&
Uze |Macregscest, Mdaral| - .)
[pwm | acriows | earamazes :
Witk Guelw — [Fozm: Moawe o fuem®) - - c - ;
=.rhun ks

R | #eLe ' | erEam || wIszonE

axpladein;

Curizot wl.5

http://www.icmfinland.fi/oss/opricot/

PHPMoAdmin is a MongoDB administration tool for PHP built on a stripped-down version of the Vork high-performance framework.

Nothing to configure - place the moadmin.php file anywhere on your web site and it just works!

Fast AJAX-based XHTML 1.1 interface operates consistently in every browser!

Self-contained in a single 95kb file!

Works on any version of PHP5 with the MongoDB NoSQL database installed & running.

Super flexible - search for exact-text, text with * wildcards, regex or JSON (with Mongo-operators enabled)

Option to enable password-protection for one or more users; to activate protection, just add the username-password(s) to the array at the
top of the file.

E_STRICT PHP code is formatted to the Zend Framework coding standards + fully-documented in the phpDocumentor DocBlock
standard.

Textareas can be resized by dragging/stretching the lower-right corner.

Free & open-source! Release under the GPLv3 FOSS license!

Option to query MongoDB using JSON or PHP-array syntax

Multiple design themes to choose from

Instructional error messages - phpMoAdmin can be used as a PHP-Mongo connection debugging tool

PHPMoAdmin can help you discover the source of connection issues between PHP and Mongo. Download phpMoAdmin, place the moadmin.php
file in your web site document directory and navigate to it in a browser. One of two things will happen:

You will see an error message explaining why PHP and Mongo cannot connect and what you need to do to fix it

You will see a bunch of Mongo-related options, including a selection of databases (by default, the "admin" and "local" databases always
exist) - if this is the case your installation was successful and your problem is within the PHP code that you are using to access
MongoDB, troubleshoot that from the Mongo docs on php.net

[Show Database & Collection selection] [Compact] [Uniform] [Full]

pages -

hjects

[Insert New Object] [Show Indexes) Sort | [search] [query]

[X

Are you sure that you want to repair and
compact the local database?

Cancel

licITHOIT Sepiel ood coulreio-

nibh sed scelerisque.

o

Cancel Yes

RockMongo

RockMongo is a MongoDB management tool, written in PHP 5.

Main features:

easy to install, and open source

multiple hosts, and multiple administrators for one host

password protection

query dbs

advanced collection query tool

read, insert, update, duplicate and remove single row

query, create and drop indexes

clear collection

remove and change (only work in higher php_mongo version) criteria matched rows
view collection statistics

http://www.phpmoadmin.com/
http://www.phpMoAdmin.com
http://php.net/manual/en/book.mongo.php
http://code.google.com/p/rock-php/wiki/rock_mongo

margodb: FS192 . 168, 1. 241 170LT Lepout

& agmdn Lo
& loosl
-
“:l - Guacy | Inemct | Fafisah | Iocacer | Foatdatvice | Class | Faccrw
7 Eekb
T go_puoiage "7_“1' : .) DEZSE -
o Loge age’ = 39, AT 0w
o Her = !
& Taar A& -
RET 0w
Limdt: L findAll » | Subedr guary | [Claac Coadicicas | Cowt 9.00LE3EE
3 1dray
£0

fodbuSflablca

a3 2 latdcichilc’

Commercial Tools

Database Master

Database Master from Nucleon Software
Seems to be written in .net for windows (windows installer).
Features:

Tree view for dbs and collections
Create/Drop indexes
Server/DB stats

File View Export Import Tools Admin Help
Ei Databases [ElCuIIectl'uns Repurts $8 Users

|Database Explorer 2 | & Collections | € Data (Post)
L |
el i Qi ® Jog —

E..E'lr;oA;th@lET.O.O.l [MongeDB) T Key AT
agmin
2 | blog [#- Document Ok, fine. I'm writing a longer post so that
EE: Collections = Document Bob will leave me alone,

[Post _id _id
| B[Indexes Title Title
: id Body Body

[system.indexes CharCount CharCount
[El items
- [El system,js
[J deneme X X
lJ DenemeDB : TlmPTPosted
[J new_database Email
lJ ok Body
- @ test
[J local g id
Title
Body
CharCount CharCount
Comments Comments

Comments Comments

=S Document

£ Document
TimePosted
Email
Body

[#- Document
[#- Document
Document
[#- Document

43 Project Explorer "mDatabase Explorer |_ 4 lil 4

W, Connected:NoAuth®127.0.0.1 [Mongal8) [Databaseblog

Starting and Stopping Mongo

http://www.nucleonsoftware.com/

® Starting Mongo
® Default Data Directory, Default Port
¢ Alternate Data Directory, Default Port
® Alternate Port
® Running as a Daemon

® Stopping Mongo
¢ Control-C
® Sending shutdownServer() message from the mongo shell
® Sending a Unix INT or TERM signal

® Memory Usage

MongoDB is run as a standard program from the command line. Please see Command Line Parameters for more information on those options.

The following examples assume that you are in the directory where the Mongo executable is, and the Mongo executable is called mongod.
Starting Mongo

Default Data Directory, Default Port

To start Mongo in default mode, where data will be stored in the / dat a/ db directory (or c: \ dat a\ db on Windows), and listening on port 27017,
just type

Alternate Data Directory, Default Port

To specify a directory for Mongo to store files, use the - - dbpat h option:

Note that you must create the directory and set its permissions appropriately ahead of time -- Mongo will not create the directory if it doesn't exist.

Alternate Port

You can specify a different port for Mongo to listen on for connections from clients using the - - port option

©*
-~
=]

Q
o
a

:

°
o
=
-
[N
N
w
N
a1

This is useful if you want to run more than one instance of Mongo on a machine (e.g., for running a master-slave pair).

Running as a Daemon

Note: these options are only available in MongoDB version 1.1 and later.

This will fork the Mongo server and redirect its output to a logfile. As with - - dbpat h, you must create the log path yourself, Mongo will not create
parent directories for you.

©»
-~
=]
@
o
a
:
iR
o
S
=~
.
o
@
S
o
2
0
-
<
o
2
2
o
Q
Q
S
@
o
a
o
o
@
:
o
Q
o
o
S
@
=
a

Stopping Mongo

Control-C

If you have Mongo running in the foreground in a terminal, you can simply "Ctrl-C" the process. This will cause Mongo to do a clean exit, flushing
and closing it's data files. Note that it will wait until all ongoing operations are complete.

Sending shutdownServer() message from the mongo shell

The shell can request that the server terminate.

$./ nongo
> db. shut downSer ver ()

This command only works from localhost, or, if one is authenticated.

From a driver (where the helper function may not exist), one can run the command

{ { "shutdown" : 1}

Sending a Unix INT or TERM signal

You can cleanly stop nongod using a SIGINT or SIGTERM signal on Unix-like systems. Either AC, "ki || -2 PID"orkill -15 PI Dwill work.

@ Sending a KILL signal ki I I -9 will probably cause damage as nongod will not be able to cleanly exit. (In such a scenario, run
the repairDatabase command.)

After a unclean shutdown, MongoDB will say it was not shutdown cleanly, and ask you to do a repair. This is absolutely not the
same as corruption, this is MongoDB saying it can't 100% verify what's going on, and to be paranoid, run a repair.

Memory Usage

Mongo uses memory mapped files to access data, which results in large numbers being displayed in tools like top for the mongod process. This is
not a concern, and is normal when using memory-mapped files. Basically, the size of mapped data is shown in the virtual size parameter, and
resident bytes shows how much data is being cached in RAM.

You can get a feel for the "inherent” memory footprint of Mongo by starting it fresh, with no connections, with an empty /data/db directory and
looking at the resident bytes.

Logging

MongoDB outputs some important information to stdout while its running. There are a number of things you can do to control this

Command Line Options

® --quiet - less verbose output
® -v - more verbose output. use more v's (such as -vvvvwv) for higher levels of verbosity
® --logpath <file> output to file instead of stdout
® if you use logpath, you can rotate the logs by either running the logRotate command (1.3.4+) or sending SIGUSR1

> db. runCommand("l ogRot ate") ; :

shell > kill -SIGUSRL <npbngod process id>

Command Line Parameters

MongoDB can be configured via command line parameters in addition to File Based Configuration. You can see the currently supported set of
command line options by running the database with -h [--hel p] as a single parameter:

@
-~
=]

«Q
o
o

:

=0
13

©

Information on usage of these parameters can be found in Starting and Stopping Mongo.

The following list of options is not complete; for the complete list see the usage information as described above.

Basic Options

-h| --help Shows all options

-f | --config <file> Specify a configuration file to use

--port <portno> Specifies the port number on which Mongo will listen for client connections. Default is 27017

--dbpat h <pat h> Specifies the directory for datafiles. Default is / dat a/ db or c: \ dat a\ db

--fork Fork the server process

--bind_ip <ip> Specifies a single IP that the database server will listen for

--directoryperdb Specify use of an alternative directory structure, in which files for each database are kept in a unique
directory. (since 1.3.2)

--qui et Reduces amount of log output

--nohttpinterface Disable the HTTP interface (localhost:27018)

--rest Allow extended operations at the Http Interface

--logpath <file> File to write logs to (instead of stdout). You can rotate the logs by sending SIGUSRL to the server.

- -1 ogappend Append to existing log file, instead of overwritting

--repairpath <path> Root path for temporary files created during database repair. Default is dbpat h value.

--cpu Enables periodic logging of CPU utilization and 1/O wait

--noaut h Turns off security. This is currently the default

--auth Turn on security

-vlv[v[v[Vv]l]l]l] | Verbose logging output (- vvvvv is most verbose, -v == - -verbose)

--verbose

- - obj check Inspect all client data for validity on receipt (useful for developing drivers)

--quota Enable db quota management

--di agl og <n> Set oplogging level where n is 0=off (default) 1=W 2=R 3=both 7=W+some reads

--nocursors Diagnostic/debugging option

--nohints Ignore query hints

--noscripting Turns off server-side scripting. This will result in greatly limited functionality

--not abl escan Turns off table scans. Any query that would do a table scan fails

--nopreal |l oc Disable data file preallocation

--smal I files Use a smaller default file size

--nssi ze <MB> Specifies .ns file size for new databases

--sysinfo Print system info as detected by Mongo and exit

- -nouni xsocket disable listening on unix sockets (will not create socket files at /tmp/mongodb-<port>.sock)

- -upgr ade Upgrade database files to new format if necessary

(required when upgrading from <= 1.0 to 1.1+)

Master/Slave Replication Options

--master Designate this server as a master in a master-slave setup
--slave Designate this server as a slave in a master-slave setup
--source <server:port> | Specify the source (master) for a slave instance

--only <db> Slave only: specify a single database to replicate

--arbiter <server:port> Address of arbiter server

- -aut oresync Automatically resync if slave data is stale

--opl ogSi ze <MB> Custom size for replication operation log

Replica Set Options

--repl Set Use replica sets with the specified logical set name. Typically the optional seed host list need not be
<set nane>[/ <seedl| i st >] specified.
--opl ogSi ze <MB> Custom size for replication operation log

File Based Configuration

In addition to accepting Command Line Parameters, MongoDB can also be configured using a configuration file. A configuration file to use can be
specified using the - f or - - conf i g command line options. On some packaged installs of MongoDB (for example Ubuntu & Debian) the default
file can be found in /etc/mongodb.conf which is automatically used when starting and stopping MongoDB from the service.

The following example configuration file demonstrates the syntax to use:

This is an exanple config file for MyngoDB.

bind_ip = 127.0.0.1
noauth = true # use "true' for options that don't take an argument

dbpat h = /var/li b/ nongodb
verbose = true # to di sable, coment out.

Parameters

Basic database configuration

Parameter Meaning Example

dbpath Location of the database files dbpath=/var/lib/mongodb

port Port the mongod will listen on port=27017

logpath Full filename path to where log messages will be written logpath=/var/log/mongodb/mongodb.log

logappend = Whether the log file will be appended (TRUE) or over-written (FALSE) = logappend=true

Logging

Parameter Meaning Example
cpu Enable periodic logging (TRUE) of CPU utilization and 1/0 wait = cpu = true
verbose Verbose logging output verbose=true
Security

Parameter Meaning Example

noauth Turn authorization on/off. Off is currently the default = noauth = true

auth Turn authorization on/off. Off is currently the default = auth=false

Administration & Monitoring

Parameter Meaning Example
nohttpinterface Disable the HTTP interface. The default port is 1000 more than the dbport | nohttpinterface = true

noscripting Turns off server-side scripting. This will result in greatly limited functionality = noscripting = true

notablescan
noprealloc
nssize
mms-token
mms-name

mms-interval

Replication

Parameter
master
slave
source
only
pairwith
arbiter
autoresync
oplogSize

opldMem

Sharding

Parameter

shardsvr

Turns off table scans. Any query that would do a table scan fails.
Disable data file preallocation.

Specify .ns file size for new databases in MB

Account token for Mongo monitoring server.

Server name for Mongo monitoring server.

Ping interval for Mongo monitoring server in seconds.

Meaning

In replicated mongo databases, specify here whether this is a slave or master
In replicated mongo databases, specify here whether this is a slave or master
Specify the

Slave only: specify a single database to replicate

Address of a server to pair with.

Address of arbiter server

Automatically resync if slave data is stale

Custom size for replication operation log in MB.

Size limit for in-memory storage of op ids in Bytes

Meaning Example

Indicates that this mongod will participate in sharding = shardsvr=true

Lines starting with octothorpes (#) are comments

The syntax is assignment of a value to an option name

°
® Options are case sensitive
°
[]

All command line options are accepted

GridFS

File Tools

nmongofil es

Example:

Tools

is a tool for manipulating GridFS from the command line.

notablescan = true

noprealloc = true

nssize = 16

mms-token=mytoken
mms-name=monitor.example.com

mms-interval=15

Example

master = true

slave = true

source = master.example.com

only = master.example.com

pairwith = master.example.com:27017

arbiter = aribiter.example.com:27018
autoresync
oplogSize=100

opldMem=1000

$./nongofiles |ist
connected to: 127.0.0.1

$./nongofiles put |ibnongoclient.a

connected to: 127.0.0.1

done

$./nongofiles |ist

connected to: 127.0.0.1

i bnongoclient.a 12000964

$ cd /tnp/

$ ~/wor k/ mon/ nongofiles get |ibnobngoclient.a

$ ~/ wor k/ nongo/ nongofi |l es get |ibnongoclient.a
connected to: 127.0.0.1

done wite to: libnongoclient.a

$ nmd5 |ibrongoclient.a
MD5 (i bnongoclient.a) = 23a52d361cfa7bad98099c5bad50dc41l

$ nmd5 ~/ wor k/ mongo/ | i bnongoclient. a
MD5 (/ Users/erh/work/mongo/libnongoclient.a) = 23a52d361cfa7bad98099c5bad50dc41

DBA Operations from the Shell

This page lists common DBA-class operations that one might perform from the MongoDB shell.

Note one may also create .js scripts to run in the shell for administrative purposes.

hel p show hel p

show dbs show dat abase nanes

show col | ecti ons show col |l ections in current database

show users show users in current database

show profile show nmost recent systemprofile entries with time >= 1ns
use <db nane> set curent database to <db name>

db. addUser (usernane, password)
db. renoveUser (user nane)

db. cl oneDat abase(f ronmhost)
db. copyDat abase(frondb, todb, fromhost)
db. createCol l ection(nane, { size : ..., capped : ..., max : ... })

i db. get Name()
i db. dropDat abase()
i db.printCollectionStats()

db. current Op() displays the current operation in the db
db.killOp() kills the current operation in the db

db. get ProfilingLevel ()
db. set ProfilingLevel (I evel) O=off 1=slow 2=all

db. get Repl i cati onlnfo()

db. printReplicationlnfo()

db. print Sl aveRepl i cati onl nfo()
db. repai r Dat abase()

db. version() current version of the server

db. shut downSer ver ()

Commands for manipulating and inspecting a collection:

db. foo.drop() drop the collection

db. f 0o. dr opl ndex(nane)

db. f 0o. dropl ndexes()

db. f 00. get | ndexes()

db. f 00. ensur el ndex(keypattern, options) - options object has these possible
fields: name, unique, dropDups

db. foo.find([query] , [fields]) - first paraneter is an optional
query filter. second paraneter
is optional

set of fields to return.
e.g. db.foo.find(
{ x: 77},
{name : 1, x: 11})

db. foo.find(...).count()
db.foo.find(...).limt(n)
db. foo.find(...).skip(n)

db.foo.find(...).sort(...)
db. foo. findOne([query])

db. foo. getDB() get DB object associated with collection

db. f 00. count ()
db.foo.group({ key : ..., initial: ..., reduce : ...[, cond: ...] })

db. foo. renaneCol | ecti on(newNane) renanes the collection

db. foo. stats()

db. f 0o. dat aSi ze()

db. f 0o. storageSi ze() - includes free space allocated to this collection
db. foo.total Il ndexSi ze() - size in bytes of all the indexes

db.foo.total Size() - storage allocated for all data and indexes

db. foo.validate() (slow)

db. foo.insert(obj)

db. f 0o. updat e(query, object[, upsert_bool])

db. f 00. save(obj)

db. f 0o. renpve(query) - renove objects nmatching query
remove({}) will renove all

Architecture and Components

MongoDB has two primary components to the database server. The first is the mongod process which is the core database server. In many
cases, mongod may be used as a self-contained system similar to how one would use mysqld on a server. Separate mongod instances on
different machines (and data centers) can replicate from one to another.

Another MongoDB process, mongos, facilitates auto-sharding. mongos can be thought of as a "database router" to make a cluster of mongod
processes appear as a single database. See the sharding documentation for more information.

Database Caching

With relational databases, object caching is usually a separate facility (such as memcached), which makes sense as even a RAM page cache hit
is a fairly expensive operation with a relational database (joins may be required, and the data must be transformed into an object representation).
Further, memcached type solutions are more scaleable than a relational database.

Mongo eliminates the need (in some cases) for a separate object caching layer. Queries that result in file system RAM cache hits are very fast as
the object's representation in the database is very close to its representation in application memory. Also, the MongoDB can scale to any level
and provides an object cache and database integrated together, which is very helpful as there is no risk of retrieving stale data from the cache. In
addition, the complex queries a full DBMS provides are also possible.

Troubleshooting

® Excessive Disk Space
® Too Many Open Files

® mongod process "disappeared”
® See Also

mongod process "disappeared"

Scenario here is the log ending suddenly with no error or shutdown messages logged.
On Unix, check /var/log/messages:

$ grep nongod /var/| og/ messages
i $ grep score /var/log/ messages :

See Also

® Diagnostic Tools

Excessive Disk Space

You may notice that for a given set of data the MongoDB datafiles in /data/db are larger than the data set inserted into the database. There are
several reasons for this.

Preallocation

Each datafile is preallocated to a given size. (This is done to prevent file system fragmentation, among other reasons.) The first file for a
database is <dbname>.0, then <dbname>.1, etc. <dbname>.0 will be 64MB, <dbname>.1 128MB, etc., up to 2GB. Once the files reach 2GB in
size, each successive file is also 2GB.

Thus if the last datafile present is say, 1GB, that file might be 90% empty if it was recently reached.

Additionally, on Unix, mongod will preallocate an additional datafile in the background and do background initialization of this file. These files are
prefilled with zero bytes. This inititialization can take up to a minute (less on a fast disk subsystem) for larger datafiles; without prefilling in the

background this could result in significant delays when a new file must be prepopulated.

You can disable preallocation with the --noprealloc option to the server. This flag is nice for tests with small datasets where you drop the db after
each test. It shouldn't be used on production servers.

For large databases (hundreds of GB or more) this is of no signficant consequence as the unallocated space is small.
Deleted Space

MongoDB maintains deleted lists of space within the datafiles when objects or collections are deleted. This space is reused but never freed to the
operating system.

To compact this space, run db.repairDatabase() from the mongo shell (note this operation will block and is slow).
When testing and investigating the size of datafiles, if your data is just test data, use db.dropDatabase() to clear all datafiles and start fresh.
Checking Size of a Collection

Use the validate command to check the size of a collection -- that is from the shell run:

> db. <col | ecti onnane>. val i date();

/1 these are faster:
db. <col | ecti onnane>. dataSi ze(); // just data size for collection

db. <col | ecti onnane>. total Si ze(); // data + index

>
>
> db. <col | ecti onnane>. storageSi ze(); // allocation size including unused space
>
> db. <col | ecti onnane>. total | ndexSi ze(); // index data size

This command returns info on the collection data but note there is also data allocated for associated indexes. These can be checked with validate
too, if one looks up the index's namespace name in the system.namespaces collection. For example:

> db. syst em nanespaces. fi nd()
"nane" : "test.foo"}
{"name" : "test.systemindexes"}
{"nane" : "test.foo.$_id_"}
> > db.foo.$_id_.validate()
{"ns" : "test.foo0.$_id " , "result"
val i dat e
details: 0xb3590b68 of s: 83f b68
firstExtent:0:8100 ns:test.foo.$ id_
| ast Extent: 0: 8100 ns:test.foo.$_id_
extents:1
dat asi ze?: 8192 nrecords?: 1 | ast Extent Si ze: 131072
paddi ng: 1
first extent
I oc: 0: 8100 xnext: null xprev:nul
ns:test.foo.$_id_
si ze: 131072 firstRecord: 0: 81b0 | ast Record: 0: 81b0
1 objects found, nobj:1
8208 bytes data w headers
8192 bytes data wout/headers
del et edLi st: 0000000000001000000
deleted: n: 1 size: 122688
nl ndexes: 0
, "ok"™ : 1, "valid" : true , "lastExtentSize" : 131072}

Too Many Open Files

If you receive the error "too many open files" or "too many open connections" in the mongod log, there are a couple of possible reasons for this.

First, to check what file descriptors are in use, run Isof (some variations shown below):

| sof | grep nongod
i Isof | grep nmongod | grep TCP i
{ Isof | grep nongod | grep data | wec

If most lines include "TCP", there are many open connections from client sockets. If most lines include the name of your data directory, the open
files are mostly datafiles.

ulimit

If the numbers from Isof look reasonable, check your ulimit settings. The default for file handles (often 1024) might be too low for production
usage. Run ulimit -a (or limit -a depending on shell) to check.

Use ulimit -n X to change the max number of file handles to X. If your OS is configured to not allow modifications to that setting you might need to

reconfigure first. On ubuntu you'll need to edit /etc/security/limits.conf and add a line something like the following (where user is the username and
Xis the desired limit):

{ user hard nofile X

High TCP Connection Count

If Isof shows a large number of open TCP sockets, it could be that one or more clients is opening too many connections to the database. Check
that your client apps are using connection pooling.

http://upstart.ubuntu.com/wiki/Stanzas

Contributors

JS Benchmarking Harness

MongoDB kernel code development rules
Project Ideas

ul

Source Code

Building

Database Internals

Contributing to the Documentation

® 10gen Contributor Agreement

JS Benchmarking Harness

...

db. foo. drop();
db.foo.insert({ _id: 11})

ops = [
{ op: "findOne" , ns : "test.foo" , query : { _id: 11} }
.
for (x = 1; x<=128; x*=2){
: res = benchRun({ parallel : x ,
; seconds : 5 ,
; ops : ops
:)
; print("threads: " + x + "\t queries/sec: " + res.query)
P}
More info:

http://github.com/mongodb/mongo/commit/3db3cb13dc1c522db8b59745d6¢74b0967f1611c

MongoDB kernel code development rules

Coding conventions for the MongoDB C++ code...

Git Commit Rules

Kernel class rules

Kernel code style

Kernel concurrency rules
Kernel exception architecture
Kernel Logging

Kernel string manipulation
Writing Tests

Git Commit Rules

® commit messages should have the case in the message SERVER-XXX
® commit messages should be descriptive enough that a glance can tell the basics
® commits should only include 1 thought.

Kernel class rules

new classes

® By default, use expl i ci t constructors
® Inherit from boost::noncopyable unless you have implemented copy constructor and assignment.

non-publics

http://www.10gen.com/contributor
http://github.com/mongodb/mongo/commit/3db3cb13dc1c522db8b59745d6c74b0967f1611c

Put the public interface at the top and the private stuff at the bottom. Except when the compiler insists otherwise.
inheritance

No multiple inheritance.
® Be very careful about adding the FIRST virtual function to a class as you then have a vtable entry for every object.
® |f anything is virtual, make your destructor virtual.

® details on destructor guards? when and where?

Kernel code style

case

inlines

strings
brackets

class members
templates
namespaces
start of file
assertions

case
Use camelCase for
® most var Names

® --comuandLi neQpti ons
® {commandNames: 1}

inlines
® Put long inline functionsina -i nl . h file.

¢ If your inline function is a single line long, put it and its decl on the same line e.g.:

int length() const { return _length; }

® |f a function is not performance sensitive, and it isn't one (or 2) lines long, put it in the cpp file.
strings
See

® utils/mongoutils/str.h
® bson/stringdata.h

Usestr::startsWth(),str::endsWth(),notstrstr().
Use<< 'c' not<< "c".
Usestr[0] == '\0" notstrlen(str) == 0.

See Kernel string manipulation.

brackets

i class Foo { H
: int _bar; 1

templates

i set<int> s; ;
namespaces

nanmespace foo {

int foo;

namespace bar {

int bar;

o i

) |
start of file

/Il @ile <fil enanme>
license

assertions

See Kernel exception architecture.

Kernel concurrency rules

All concurrency code must be placed under uti | s/ concurrency. You will find several helper libraries there.

Several rules are listed below. Don't break them. If you think there is a real need let's have the group weigh in and get a concensus on the
exception.

® Do not use/add recursive locks.

® Do not use rwlocks.

® Always acquire locks in a consistent order. In fact, the MutexDebugger can assist with verification of this. MutexDebugger is on for
_DEBUG builds and will alert if locks are taken in opposing orders during the run.

Kernel exception architecture

There are several different types of assertions used in the MongoDB code. In brief:

assert should be used for internal assertions. However, massert is preferred.
massert is an internal assertion with a message.

uassert is used for a user error

wassert warn (log) and continue

Both massert and uassert take error codes, so that all errors have codes associated with them. These error codes are assigned randomly, so
there aren't segments that have meaning. scons checks for duplicates, but if you want the next available code you can run:

o
<
=
=3
o
5
o
<.
o
w
o
=
°
=
»
4
®
=
=
o
=
o
o
aQ
@
w
o
<

A failed assertion throws an Asser ti onExcepti on or a child of that. The inheritance hierarchy is something like:

® std::exception
® mongo::DBException
® mongo::AssertionException
® mongo::UserAssertionException
® mongo::MsgAssertionException

Seeutil/assert_util.h.

Generally, code in the server should be prepared to catch a DBException. UserAssertionException's are particularly common as errors and
should be expected. We use resource acquisition is initialization heavily.

http://en.wikipedia.org/wiki/Resource_Acquisition_Is_Initialization

Kernel Logging

® Basic Rules
® cout/cerr should never be used

* Normal Logging

clo
informational

cwaing)

Lo i
warnings

ceror)

Lo i
errors

® Debugging Helpers
® PRINT = prints variable name and (string)
® GEODEBUG, etc... = used for incredibly verbose logging for a section of code that has to be turned on at compile time

Kernel string manipulation
For string manipulation, use the uti | / mongout i | s/ str. h library.

nongoutils
MongoUltils has its own namespace. Its code has these basic properties:

. are not database specific, rather, true utilities

. are cross platform

may require boost headers, but not libs (header-only works with mongouitils)

. are clean and easy to use in any c++ project without pulling in lots of other stuff
. apache license

abwN R

str.h

nmongout i | s/ str. h provides string helper fucntions for each manipulation. Add new functions here rather than lines and lines of code to your
app that are not generic.

Typically these fucntions return a string and take two as paramters : string f(string,string). Thus we wrap them all in a namespace called st r .
StringData

See also bson/ stri ngdat a. h.

Writing Tests
We have three general flavors of tests currently.

Lightweight startup test.

You can inherit from class Uni t Test and make a test that runs at program startup. These tests run EVERY TIME the program starts. Thus, they
should be minimal: the test should ideally take 1ms or less to run. Why run the tests in the general program? This gives some validation at
program run time that the build is reasonable. For example, we test that pcre supports UTF8 regex in one of these tests at startup. If someone
had built the server with other settings, this would be flagged upon execution, even if the test suite has not been invoked.

dbtests
jstests

See Also

® Smoke Tests

Project Ideas

If you're interested in getting involved in the MongoDB community (or the open source community in general) a great way to do so is by starting or
contributing to a MongoDB related project. Here we've listed some project ideas for you to get started on. For some of these ideas projects are
already underway, and for others nothing (that we know of) has been started yet.

A GUI

One feature that is often requested for MongoDB is a GUI, much like CouchDB's futon or phpMyAdmin. There are a couple of projects working on
this sort of thing that are worth checking out:

http://github.com/sbellity/futon4mongo
http://www.mongodb.org/display/DOCS/Http+Interface
http://www.mongohg.com

We've also started to spec out the features that a tool like this should provide.
Try Mongo!

It would be neat to have a web version of the MongoDB Shell that allowed users to interact with a real MongoDB instance (for doing the tutorial,
etc). A project that does something similar (using a basic MongoDB emulator) is here:

http://github.com/banker/mongulator

Real-time Full Text Search Integration

It would be interesting to try to nicely integrate a search backend like Xapian, Lucene or Sphinx with MongoDB. One idea would be to use
MongoDB's oplog (which is used for master-slave replication) to keep the search engine up to date.

GridFS FUSE

There is a project working towards creating a FUSE filesystem on top of GridFS - something like this would create a bunch of interesting potential
uses for MongoDB and GridFS:

http://github.com/mikejs/gridfs-fuse

GridFS Web Server Modules

There are a couple of modules for different web servers designed to allow serving content directly from GridFS:

Nginx: http://github.com/mdirolf/nginx-gridfs
Lighttpd: http://bitbucket.org/bwmcadams/lighttpd-gridfs

Framework Adaptors

Working towards adding MongoDB support to major web frameworks is a great project, and work has been started on this for a variety of different
frameworks (please use google to find out if work has already been started for your favorite framework).

Logging and Session Adaptors
MongoDB works great for storing logs and session information. There are a couple of projects working on supporting this use case directly.

Logging:

Zend: http://raphaelstolt.blogspot.com/2009/09/logging-to-mongodb-and-accessing-log.html
Python: http://github.com/andreisavu/mongodb-log

Rails: http://github.com/peburrows/mongo_db_logger

Sessions:
web.py: http://github.com/whilefalse/webpy-mongodb-sessions
Beaker: http://pypi.python.org/pypi/mongodb_beaker

http://github.com/sbellity/futon4mongo
http://www.mongohq.com
http://github.com/banker/mongulator
http://github.com/mikejs/gridfs-fuse
http://github.com/mdirolf/nginx-gridfs
http://bitbucket.org/bwmcadams/lighttpd-gridfs
http://raphaelstolt.blogspot.com/2009/09/logging-to-mongodb-and-accessing-log.html
http://github.com/andreisavu/mongodb-log
http://github.com/peburrows/mongo_db_logger
http://github.com/whilefalse/webpy-mongodb-sessions
http://pypi.python.org/pypi/mongodb_beaker

Package Managers

Add support for installing MongoDB with your favorite package manager and let us know!

Locale-aware collation / sorting

MongoDB doesn't yet know how to sort query results in a locale-sensitive way. If you can think up a good way to do it and implement it, we'd like
to know!

Drivers

If you use an esoteric/new/awesome programming language write a driver to support MongoDB! Again, check google to see what people have
started for various languages.

Some that might be nice:

Scheme (probably starting with PLT)
GNUR

Visual Basic

Lisp (e.g, Common Lisp)

Delphi

Falcon

Write a killer app that uses MongoDB as the persistance layer!

Ul

Spec/requirements for a future MongoDB admin Ul.

® list databases

® repair, drop, clone?
® collections

® validate(), datasize, indexsize, clone/copy

indexes
queries - explain() output
security: view users, adjust
see replication status of slave and master
sharding
system.profile viewer ; enable disable profiling
curop / killop support

Source Code

All source for MongoDB, it's drivers, and tools is open source and hosted at Github .

Mongo Database (includes C++ driver)
Python Driver

PHP Driver

Ruby Driver

Java Driver

Perl Driver

(Additionally, community drivers and tools also exist and will be found in other places.)

See Also

® Building
® License

Building

This section provides instructions on setting up your environment to write Mongo drivers or other infrastructure code. For specific instructions, go
to the document that corresponds to your setup.

Note: see the Downloads page for prebuilt binaries!

Sub-sections of this section:

http://github.com/mongodb
http://github.com/mongodb/mongo/tree/master
http://github.com/mongodb/mongo-python-driver/tree/master
http://github.com/mongodb/mongo-php-driver/tree/master
http://github.com/mongodb/mongo-ruby-driver/tree/master
http://github.com/mongodb/mongo-java-driver/tree/master
http://github.com/mongodb/mongo-perl-driver/tree/master

Building Boost

Building for FreeBSD
Building for Linux
Building for OS X
Building for Solaris
Building for Windows
Building Spider Monkey
scons

See Also

® The main Database Internals page
® Building with V8

Building Boost

® Windows

MongoDB uses the [www.boost.org] C++ libraries.

Windows

See also the prebuilt libraries page.

By default c:\boost\ is checked for the boost files. Include files should be under \boost\boost, and libraries in \boost\lib.
First download the boost source. Then use the 7 Zip utility to extra the files. Place the extracted files in C:\boost.
Then we will compile the required libraries.

See buildscripts/buildboost.bat and buildscripts/buildboost64.bat for some helpers.

> rem set PATH for conpiler:

> "C:\Program Files (x86)\Mcrosoft Visual Studio 10.0\VC vcvarsall.bat"
>

> rem build the bj am nake tool:

> cd \ boost\tool s\jam src\

> bui | d. bat

>

> cd \ boost

> tool s\jam src\bin. ntx86\bjam --help

> rem see al so nongo/ bui | dscri pt s/ bui | dboost *. bat

> rembuild DEBUG libraries:

> tool s\jam src\bi n. nt x86\ bj am vari ant =debug t hreadi ng=nulti --w th-programoptions --with-filesystem
--with-date_tine --wth-thread

> nkdir lib

> nove stage\lib* [ib\

Building for FreeBSD

On FreeBSD 8.0 and later, there is a mongodb port you can use.
For FreeBSD <= 7.2:

1. Get the database source: http://www.github.com/mongodb/mongo.
2. Update your ports tree:

The packages that come by default on 7.2 and older are too old, you'll get weird errors when you try to run the database)
3. Install SpiderMonkey:

4. Install scons:

http://www.howsthe.com/blog/2010/feb/22/mongodb-and-v8/
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://sourceforge.net/projects/boost/files/boost/1.42.0/boost_1_42_0.7z/download
http://www.7-zip.org/
http://www.github.com/mongodb/mongo

i $ cd /usr/ports/devel /boost-all && make && make install
6. Install libexecinfo:
i $ cd /usr/ports/devel/libexecinfo & nmake && nmake install !
7. Change to the database source directory
8. scons .
See Also
® Building for Linux - many of the details there including how to clone from git apply here too.
Building for Linux
® General Instructions
® Special Notes about Spider Monkey
® Package Requirements
® Fedora
® Fedora 8 or 10
® Ubuntu
® Ubuntu 8.04
® Ubuntu 9.04 and 9.10
¢ Ubuntu 10.04
® See Also
General Instructions
1. Install Dependencies - see platform specific below
2. get source
{ git clone git://github.conf nongodb/ mongo. git
{ # pick a stable version unless doing true dev
gt tag -1 i
{ # Switch to a stable branch (unless doing devel opment) --
! # an even second nunber indicates "stable". (Al though with i
. # stharding you will want the latest if the latest is less :
{ # than 1.6.0.) For exanple:
i git checkout ri.4.1 H
3. build
i scons all !
4. install
i scons --prefix=/opt/nmongo install H

Special Notes about Spider Monkey

Most pre-built spider monkey binaries don't have UTF8 compiled in. Additionally, ubuntu has a weird version of spider monkey that doesn't
support everything we use. If you get any warnings during compile time or runtime, we highly recommend building spider monkey from source.
See Building Spider Monkey for more information.

We currently support spider monkey 1.6 and 1.7, although there is some degredation with 1.6, so we recommend using 1.7. We have not yet
tested 1.8, but will once it is officially released.

Package Requirements
Fedora

Fedora 8 or 10

sudo yum -y install git tcsh scons gcc-c++ glibc-devel

sudo yum -y install boost-devel pcre-devel js-devel readline-devel
#for rel ease builds:

sudo yum -y install boost-devel-static readline-static ncurses-static

Ubuntu
See spider monkey note above.

Ubuntu 8.04

apt-get -y install tcsh git-core scons g++

apt-get -y install |ibpcre++-dev |ibboost-dev |ibreadline-dev xul runner-1.9-dev

apt-get -y install |ibboost-programoptions-dev |ibboost-thread-dev |ibboost-filesystemdev
| i bboost - dat e-ti ne- dev

apt-get -y install tcsh git-core scons g++

apt-get -y install Iibpcre++-dev |ibboost-dev |ibreadline-dev xulrunner-1.9.1-dev

apt-get -y install |ibboost-programoptions-dev |ibboost-thread-dev |ibboost-filesystemdev
i bboost - dat e-ti ne-dev

apt-get -y install tcsh git-core scons g++

apt-get -y install |ibpcre++-dev |ibboost-dev |ibreadline-dev xulrunner-dev

apt-get -y install |ibboost-programoptions-dev |ibboost-thread-dev |ibboost-filesystemdev
i bboost - dat e-ti ne-dev

See Also

® The Building page for setup information for other operating systems
® The main Database Internals page

Building for OS X

® Upgrading to Snow Leopard
Setup
® Package Manager Setup (32bit)
® Manual Setup
¢ |Install Apple developer tools
® |Install libraries (32bit option)
® |[nstall libraries (64bit option)

® Compiling
¢ XCode
® Troubleshooting

To set up your OS X computer for MongoDB development:

Upgrading to Snow Leopard

If you have installed Snow Leopard, the builds will be 64 bit -- so if moving from a previous OS release, a bit more setup may be required than
one might first expect.

1. Install XCode tools for Snow Leopard.

http://developer.apple.com/technology/xcode.html

2. Install MacPorts (snow leopard version). If you have MacPorts installed previously, we've had the most success by running rm -r f
/opt /| ocal first.

3. Update/install packages: sudo port install boost pcre.

4. Update/install SpiderMonkey with sudo port install spidernonkey. (If this fails, see the note on #2 above.)

Setup

1. Install glt If not already installed, download the source and run . / confi gure; make; sudo nmake install
Then: git clone git://github.com/mongodb/mongo.git (more info)
® Then: git tag -l to see tagged version numbers
® Switch to a stable branch (unless doing development) -- an even second number indicates "stable". (Although with stharding you
will want the latest if the latest is less than 1.6.0.) For example:
® git checkout r1.4.1
® |f you do not wish to install git you can instead get the source code from the Downloads page.

1. Install gcc.
gcc version 4.0.1 (from XCode Tools install) works, but you will receive compiler warnings. The easiest way to upgrade gcc is to install
the iPhone SDK.

Package Manager Setup (32bit)

1. Install libraries (using macports)

! port install boost pcre++ spidernonkey

Manual Setup
Install Apple developer tools

Install libraries (32bit option)

1. Download boost {{boost 1.37.0 http://downloads.sourceforge.net/boost/boost_1_37_0.tar.gz}}Apply the following patch:

diff -u -r alconfigure b/configure

--- alconfigure 2009-01-26 14:10: 42. 000000000 - 0500
+++ b/ configure 2009-01-26 10:21:29. 000000000 - 0500
@-9,9 +9,9 @

BIAME=""

TOOLSET=""
- BJAM_CONFI G="*
+BJAM CONFI G="- - | ayout =syst enf'

BUI LD=""

PREFI X=/ usr/ | ocal

EPREF| X=
diff -u -r al/tools/build/v2/tools/darwi n.jam b/tools/build/v2/tools/darw n.jam
--- altools/build/v2/tools/darwin.jam 2009-01-26 14:22:08. 000000000 - 0500
+++ b/ tool s/build/v2/tools/darwin.jam 2009-01-26 10:22: 08. 000000000 - 0500
@ -367,5 +367,5 @@

actions link.dll bind LI BRARI ES

{
- "$(CONFI G_ COMWAND) " -dynamiclib -W,-single_nodule -install_name "$(<:B)$(<:9" -L
"$(LINKPATH) " -0 "$(<)" "$(>)" "$(LI BRARI ES)" -1$(FI NDLI BS-SA) -1 $(FI NDLI BS- ST)
$(FRAVEWORK_PATH) - f r amewor k$(_) $(FRAVEWORK: D=: S=) $(OPTI ONS) $(USER_OPTI ONS)
+ "$(CONFI G_COWAND) " -dynamiclib -W, -single_nodul e -install_name
"/usr/local /1ib/$(<:B)$(<:S)" -L"$(LINKPATH)" -0 "$(<)" "$(>)" "$(LI BRARIES)" -1 $(FI NDLI BS- SA)
-1 $(FI NDLI BS- ST) $(FRAVEWORK_PATH) -framewor k$(_) $(FRAVEWORK: D=: S=) $(OPTI ONS) $(USER_OPTI ONS)

e ——

./configure; nmake; sudo meke install

2. Install pcre http://ww. pcre. org/ (mustenable UTF8)

http://www.macports.org/install.php
http://github.com/mongodb/mongo
http://downloads.sourceforge.net/boost/boost_1_37_0.tar.gz
http://www.pcre.org/

--wWith-match-1imt-recursi on=4000; neke; sudo nmake install

./ configure; nake; sudo make install

Install libraries (64bit option)

(The

64bit libraries will be installed in /usr/64/{include,lib}.)

1. Download SpiderMonkey: ftp://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz

Apply the following patch:

diff -u -r js/src/config/Darwin.nk js-1.7.0/src/config/Darw n.nk

--- js/src/config/Darw n.nk 2007-02-05 11: 24: 49. 000000000 - 0500

+++ js-1.7.0/src/config/ Darwi n. mk 2009- 05-11 10: 18: 37. 000000000 - 0400
@-43,7 +43,7 @O

Just ripped from Linux config

#

-CC = cc

+CC = cc -nb4

CCC = g++

CFLAGS += -Wall -Wo-fornat

OS_CFLAGS = -DXP_UNI X -DSVR4 -DSYSV -D BSD_SOURCE - DPCSI X_SOURCE - DDARW N
@ -56,9 +56,9 @@

#.c.o0:

$(CO -c -MD $*.d $(CFLAGS) $<

-CPU_ARCH = $(shell uname -m
+CPU_ARCH = " X86_64"

ifeq (86,%(findstring 86, $(CPU_ARCH)))
- CPU_ARCH = x86
+CPU_ARCH = x86_64

OS_CFLAGS+= - DX86_LI NUX

endi f

GFX_ARCH = x

@-81,3 +81,14 @@

Don't allow Makefile.ref to use libmath
NO LIBM =1

+i feq ($(CPU_ARCH), x86_64)

+# Use VA _COPY() standard nmacro on x86-64

+# FI XVE: better use it everywhere

+0OS_CFLAGS += - DHAVE_VA_COPY - DVA_COPY=va_copy
+endi f

+

+i feq ($(CPU_ARCH), x86_64)

+# We need PIC code for shared libraries

+# FI XVE: better patch rules.nk & fdlibnm Makefil e*
+0S_CFLAGS += -DPIC -fPIC

+endi f

.lconfigure --enabl e-utf8 --enabl e-uni code-properties --with-natch-Iinit=200000

cd src
make -f Makefile.ref
sudo JS DI ST=/usr/ 64 neke -f Makefile.ref export

remove the dynamic library

http://unittest.red-bean.com/
ftp://ftp.mozilla.org/pub/mozilla.org/js/js-1.7.0.tar.gz

diff -u -r alconfigure b/configure

--- alconfigure 2009-01-26 14:10:42. 000000000 - 0500
+++ b/ configure 2009-01-26 10:21:29. 000000000 - 0500
@-9,9 +9,9 @@

BJAME""

TOOLSET=""
- BJAM_CONFI G=""
+BJAM CONFI G="ar chi t ect ur e=x86 addr ess-nodel =64 - -1 ayout =syst enf

BUI LD=""
- PREFI X=/ usr/1 ocal
+PREFI X=/ usr/ 64

EPREFI X=

LI BDI R=

| NCLUDEDI R=
diff -u -r al/tools/build/v2/tools/darwi n.jam b/tools/build/v2/tools/darw n.jam
--- altools/build/v2/tools/darwin.jam 2009-01-26 14:22:08. 000000000 - 0500
+++ b/ tool s/ buil d/v2/tools/darwin.jam 2009-01-26 10:22: 08. 000000000 -0500
@-367,5 +367,5 @@

actions link.dll bind LI BRARI ES

{
- "$(CONFI G_ COMVAND) * -dynamiclib -W,-single_nodule -install_name "$(<:B)$(<:S)" -L"$(LI NKPATH)"
-0 "$(<)" "$(>)" "$(LIBRAR ES)" -1$(FINDLI BS-SA) -1 $(FI NDLI BS- ST) $(FRAVEVWORK_PATH)
- framewor k$(_) $(FRAVEWORK: D=: S=) $(OPTI ONS) $(USER_OPTI ONS)
+ "$(CONFI G_COMVAND) " -dynamiclib -W,-single_nodule -install_name "/usr/64/1ib/$(<:B)$(<:9" -L
"$(LINKPATH) " -0 "$(<)" "$(>)" "$(LI BRARIES)" -1$(FI NDLI BS-SA) -1 $(FI NDLI BS- ST) $(FRAVEWORK_PATH)
-framewor k$(_) $(FRAMEWORK: D=: S=) $(OPTI ONS) $(USER_CPTI ONS)

./ configure; nake; sudo make install

CFLAGS="- n64" CXXFLAGS="-n64" LDFLAGS="-n64" ./configure --enable-utf8 --with-natch-Iimt=200000
--with-match-1imt-recursi on=4000 --enabl e-uni code-properties --prefix /usr/64; make; sudo nake
install

CFLAGS="- n64" CXXFLAGS="-n64" LDFLAGS="-n64" ./configure --prefix /usr/64; make; sudo neke install

Compiling

To compile 32bit, just run

http://downloads.sourceforge.net/boost/boost_1_37_0.tar.gz
http://www.pcre.org/
http://unittest.red-bean.com/

XCode

You can open the project with:

You need to add an executable target.:

In the mongo project window, go to the Executables, right click and choose Add->NewCustomExecutable.
. Name it db. Path is ./db/db.
It will appear under Executables".
. Double-click on it.
. Under general, set the working directory to the project directory.
. Under arguments, add r un.
. Go to general prefs (cmd ,), go to debugging and turn off | azy | oad.
(Seems to be an issue that prevents breakpoints from working in debugger?)

[

[o2 IS B SN OV]

Troubleshooting
® Undefined symbols: "_PR_NewLock", referenced from: _JS_Init in libjs.a.

® Try not using the scons - - r el ease option (if you are using it). That option attempts to use static libraries.

Building for Solaris

MongoDB server currently supports little endian Solaris operation. (Although most drivers — not the database server — work on both.)

Community: Help us make this rough page better please! (And help us add support for big endian please...)

Prerequisites:

g++ 4.x (SUNWgcc)

scons (need to install from source)
spider monkey Building Spider Monkey
pcre (SUNWpcre)

boost (need to install from source)

See Also

® Joyent
® Building for Linux - many of the details there including how to clone from git apply here too

Building for Windows

MongoDB can be compiled for Windows (32 and 64 bit) using Visual C++. SCons is the make mechanism, although a .vcproj/.sin is also included
in the project for convenience when using the Visual Studio IDE.

There are several dependencies exist which are listed below; you may find it easier to simply download a pre-built binary.

® Building with Visual Studio 2008
® Building with Visual Studio 2010
® Building the Shell

See Also

Prebuilt Boost Libraries

Prebuilt SpiderMonkey for VS2010
Building Boost

Building SpiderMonkey

Windows Quick Links

scons

Boost 1.41.0 Visual Studio 2010 Binary

g This is OLD and was for the VS2010 BETA. See the new Boost and Windows page instead.

i}

http://www.scons.org/
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://github.com/dwight/vc2010_js

The following is a prebuilt boost binary (libraries) for Visual Studio 2010 beta 2.

The MongoDB vcxproj files assume this package is unzipped under c:\Program Files\boost\boost_1_41 0\
® http://downloads.mongodb.org/misc/boost_1 41 0 binary_vsl0beta2.zipx

Note: we're not boost build gurus please let us know if there are things wrong with the build.

See also the prebuilt boost binaries at http://www.boostpro.com/download.

Boost and Windows

® Visual Studio 2010
® Prebuilt from mongodb.org
® Building Yourself

® Visual Studio 2008
® Prebuilt from mongodb.org
® Prebuilt from boostpro.com
® Building Yourself

® Additional Notes

Visual Studio 2010

Prebuilt from mongodb.org

Click here for a prebuilt boost library for Visual Studio 2010. 7zip format.

Building Yourself

Download the boost source from boost.org. Move it to C:\boost\.

Run C:\ Program Fil es (x86)\M crosoft Visual Studio 10.0\vc\vcvarsall.bat.

From the MongoDB source project, run buildscripts\buildboost.bat. Or, buildboost64.bat for the 64 bit version.

We have successfully compiled version 1.42 — you might want to try that version or higher. See additional notes section at end of this
page too.

Visual Studio 2008

Prebuilt from mongodb.org

Click here for a prebuilt boost library for Visual Studio 2008. 7zip format. This file has what you need to build MongoDB, but not some other boost
libs, so it's partial.

Prebuilt from boostpro.com

Or, you can download a complete prebuilt boost library for 32 bit VS2008 at http://www.boostpro.com/products/free. Install the prebuilt libraries for
Boost version 1.35.0 (or higher - generally newer is better). During installation, for release builds choose static nultithread libraries
for installation. The Debug version of the project uses the DLL libraries; choose all multithread libraries if you plan to do development.
From the BoostPro installer, be sure to select all relevant libraries that mongodb uses -- for example, you need Filesystem, Regex, Threads, and
ProgramOptions (and perhaps others).

Building Yourself

® Download the boost source from boost.org. Move it to C:\boost\.

® From the Visual Studio 2008 IDE, choose Tools.Visual Studio Command Prompt to get a command prompt with all PATH variables set
nicely for the C++ compiler.

® From the MongoDB source project, run buildscripts\buildboost.bat. Or, buildboost64.bat for the 64 bit version.

Additional Notes

When using bjam, MongoDB expects

var i ant =debug for debug builds, and vari ant =r el ease for release builds
t hr eadi ng=nul ti

link=static runtine-link=stati c forrelease builds

addr ess- nodel =64 for 64 bit

Building the Mongo Shell on Windows

You can build the mongo shell with either scons or a Visual Studio 2010 project file.

http://www.boost.org/
http://downloads.mongodb.org/misc/boost_1_41_0_binary_vs10beta2.zipx
http://www.boostpro.com/download
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://www.boostpro.com/products/free

Visual Studio 2010 Project File
A VS2010 vexproj file is availabe for building the shell. From the mongo directory open shell/msvc/mongo.vexproj.

The project file assumes that GNU readline is installed in ../readline/ relative to the mongo project. If you would prefer to build without having to
install readline, remove the definition of USE_READLINE in the preprocessor definitions section of the project file, and exclude readline.lib from
the project.

The project file currently only supports 32 bit builds of the shell (scons can do 32 and 64 bit). However this seems sufficient given there is no real
need for a 64 bit version of the shell.

Readline Library

The shell uses the GNU readline library to facilitate command line editing and history. You can build the shell without readline but would then lose
that functionality. USE_READLINE is defined when building with readline. SCons will look for readline and if not found build without it.

See Also

® Prebuilt readline for Windows 32 bit at SourceForge (DLL version)

Building with Visual Studio 2008

® Get the MongoDB Source Code
® Get Boost Libraries

® Get SpiderMonkey

® Building MongoDB from the IDE
® Install SCons

® Building MongoDB with SCons
® Troubleshooting

MongoDB can be compiled for Windows (32 and 64 bit) using Visual C++. SCons is the make mechanism, although a solution file is also included
in the project for convenience when using the Visual Studio IDE.

There are several dependencies exist which are listed below; you may find it easier to simply download a pre-built binary.

Get the MongoDB Source Code

Download the source code from Downloads.
Or install Git. Then:

® git clone git://github.con nmongodb/ nongo. git (more info)
® git tag - tosee tagged version numbers
® Switch to a stable branch (unless doing development) -- an even second number indicates "stable". (Although with sharding you will want
the latest if the latest is less than 1.6.0.) For example:
® git checkout ri1.4.1

Get Boost Libraries

® Click here for a prebuilt boost library for Visual Studio. 7zip format. This file has what you need to build MongoDB, but not some other
boost libs, so it's partial.
® See the Boost and Windows page for other options.

The Visual Studio project files are setup to look for boost in the following locations:

® c:\program files\boost\latest
® c:\boost
® \boost

You can unzip boost to c:\boost, or use an NTFS junction point to create a junction point to one of the above locations. Some versions of windows
come with linkd.exe, but others require you to download Sysinternal's junction.exe to accomplish this task. For example, if you installed boost 1.42
via the installer to the default location of c:\Program Files\boost\boost_1_42, You can create a junction point with the following command:

http://tiswww.case.edu/php/chet/readline/rltop.html
http://gnuwin32.sourceforge.net/packages/readline.htm
http://www.scons.org/
http://github.com/guides/using-git-and-github-for-the-windows-for-newbies
http://github.com/mongodb/mongo
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://en.wikipedia.org/wiki/NTFS_junction_point
http://technet.microsoft.com/en-us/sysinternals/bb896768.aspx

Junction v1.05 - Wndows junction creator and reparse point viewer
Copyright (C) 2000-2007 Mark Russinovich
Systens Internals - http://ww.sysinternals.com

Created: c:\Program Fil es\boost\| at est
Targetted at: c:\Program Fil es\boost\boost_1 42

...

Get SpiderMonkey

Build a SpiderMonkey js engine library (js.lib) — details here.

Building MongoDB from the IDE

Open the db/db.sln solution file.

Note: currently the nongo shell and C++ client libraries must be built from scons. Also, for the VS2008 project files, 64 bit must be built from
scons (although you can do 64 bit with db_10.sIn in vs2010).

Install SCons

If building with scons, install SCons:
® First install Python: http://www.python.org/download/releases/2.6.4/.

® Then SCons itself: http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download.
® Add the python scripts directory (e.g., C:\Python26\Scripts) to your PATH.

Building MongoDB with SCons

The SConstruct file from the MongoDB project is the preferred way to perform production builds. Run scons in the mongo project directory to
build.

If scons does not automatically find Visual Studio, preset your path for it by running the VS2010 vcvars*.bat file.

To build:
scons /1 build nmongod
scons nongoclient.lib // build C++ client driver library
scons al | // build all end user conponents
scons . /1 build all including unit test

...

Troubleshooting
@ If you are using scons, check the file conf i g. | og which is generated.

® Can't find jstypes.h when compiling. This file is generated when building SpiderMonkey. See the Building SpiderMonkey page for
more info.

® Can'tfind / run cl.exe when building with scons. See troubleshooting note on the Building SpiderMonkey page.

® Error building program database. (VS2008.) Try installing the Visual Studio 2008 Service Pack 1.

Building with Visual Studio 2010

Get the MongoDB Source Code
Get Boost Libraries

Get SpiderMonkey

Building MongoDB from the IDE
Install SCons

http://www.scons.org/
http://www.python.org/download/releases/2.6.4/
http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download

® Building MongoDB with SCons
® Troubleshooting

MongoDB can be compiled for Windows (32 and 64 bit) using Visual C++. SCons is the make mechanism, although a solution file is also included
in the project for convenience when using the Visual Studio IDE.

There are several dependencies exist which are listed below; you may find it easier to simply download a pre-built binary.

Get the MongoDB Source Code
Download the source code from Downloads.
Or install Git. Then:
® git clone git://github. conl nongodb/ nbngo. gi t (more info)
® git tag -| toseetagged version numbers
® Switch to a stable branch (unless doing development) -- an even second number indicates "stable". (Although with sharding you will want

the latest if the latest is less than 1.6.0.) For example:
® git checkout r1.4.1

Get Boost Libraries
® Click here for a prebuilt boost library for Visual Studio. 7zip format. This file has what you need to build MongoDB, but not some other

boost libs, so it's partial.
® See the Boost and Windows page for other options. Use v1.42 or higher with VS2010.

Get SpiderMonkey

® Download prebuilt libraries and headers here for VS2010. Place these files in ../js/ relative to your mongo project directory.
® Or (more work) build SpiderMonkey js.lib yourself — details here.

Building MongoDB from the IDE

Open the db/db_10.sIn solution file.

Note: a separate project file exists for the nongo shell. Currently the C++ client libraries must be built from scons (this obviously needs to be
fixed...)

Install SCons

If building with scons, install SCons:
® First install Python: http://www.python.org/download/releases/2.6.4/.

® Then SCons itself: http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download.
® Add the python scripts directory (e.g., C:\Python26\Scripts) to your PATH.

Building MongoDB with SCons

The SConstruct file from the MongoDB project is the preferred way to perform production builds. Run scons in the mongo project directory to
build.

If scons does not automatically find Visual Studio, preset your path for it by running the VS2010 vcvars*.bat file.

To build:
i scons /1 build nmongod
i scons nmongoclient.lib /1 build C++ client driver library
i scons all // build all end user conponents
scons . /1 build all including unit test

Troubleshooting
@ If you are using scons, check the file conf i g. | og which is generated.

® Can't find jstypes.h when compiling.
® This file is generated when building SpiderMonkey. See the Building SpiderMonkey page for more info.

http://www.scons.org/
http://github.com/guides/using-git-and-github-for-the-windows-for-newbies
http://github.com/mongodb/mongo
http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.7-zip.org/
http://github.com/dwight/vc2010_js
http://www.scons.org/
http://www.python.org/download/releases/2.6.4/
http://sourceforge.net/projects/scons/files/scons/1.2.0/scons-1.2.0.win32.exe/download

® Can'tfind / run cl.exe when building with scons.
® See troubleshooting note on the Building SpiderMonkey page.
® LINK : fatal error LNK1104: cannot open file js64d.lib js64r.lib js32d.lib js32r.lib
® Get the prebuilt spidermonkey libraries -- or copy your self-built js.lib to the above name.

Building Spider Monkey

® Building js.lib - Unix

® Download

® Build

® |nstall
® Building js.lib - Windows

® Prebuilt

® Download

® Build

® Troubleshooting scons
® See Also

MongoDB uses SpiderMonkey for server-side Javascript execution. The mongod project requires a file js.lib when linking. This page details how
to build js.lib.

Note: V8 Javascript support is under development.
Building js.lib - Unix

Download

curl -Oftp://ftp.mozilla.org/pub/nozilla.org/js/js-1.7.0.tar.gz
tar zxvf js-1.7.0.tar.gz

...
v

cd js/src
export CFLAGS="-DJS C STRI NGS_ARE_UTF8"
make -f Makefile.ref

SpiderMonkey does not use UTF-8 by default, so we enable before building.

An experimental SConstruct build file is available here.

By default, the mongo scons project expects spidermonkey to be located at ../js/.
Building js.lib - Windows
Prebuilt

® VS2008: a prebuilt SpiderMonkey library and headers for Win32 is attached to this document (this file may or may not work depending on
your compile settings and compiler version).

® \/S2010 prebuilt libraries

Alternatively, follow the steps below to build yourself.
Download

From an msysgit or cygwin shell, run:

curl -Oftp://ftp.mozilla.org/pub/nozilla.org/js/js-1.7.0.tar.gz
tar zxvf js-1.7.0.tar.gz

http://www.mongodb.org/pages/viewpageattachments.action?pageId=12157032
http://www.mozilla.org/js/spidermonkey/
http://code.google.com/p/v8/
http://github.com/mongodb/mongo-snippets/blob/master/jslib-sconstruct
http://www.mongodb.org/pages/viewpageattachments.action?pageId=1474760&metadataLink=true
http://github.com/dwight/vc2010_js
http://code.google.com/p/msysgit/

Build

cd js/src

export

CFLAGS="-DJS_C STRI NGS_ARE_UTF8"

make -f Makefile.ref

If cl.exe is not found, launch Tools...Visual Studio Command Prompt from inside Visual Studio -- your path should then be correct for make.

If you do not have a suitable make utility installed, you may prefer to build using scons. An experimental SConstruct file to build the js.lib is

available in the mongodb/snippets project. For example:

cd

git clone git://github. con nongodb/ nongo- sni ppets. git

cd js/src

scons

cp nongo-sni ppets/jslib-sconstruct js/src/SConstruct

Troubleshooting scons

Note that scons does not use your PATH to find Visual Studio. If you get an error running cl.exe, try changing the following line in the msvc.py

scons source file from:

= os.getenv('ProgranfFiles') + r'\Mcrosoft Visual Studio 8

= os.getenv('ProgranfFiles') + r'\Mcrosoft Visual Studio ' + version

® Building MongoDB

- wsdir
to

- wsdir
See Also
scons

Use scons to build MongoDB, and related utilities and libraries. See the SConstruct file for details.

Run scons - - hel p to see all options.

Targets

Run scons <target>.

scons
scons
scons
scons
scons
scons

Options

al |

nmongod build mongod

nmongo build the shell

shel | build just the generated shell . cpp files
nmongocl i ent build just the client lib

- - d debug build

- - dd debug build with _DEBUG defined (extra asserts etc.)
--rel ease

- - 32 force 32 bit

- - 64 force 64 bit

--clean

Troubleshooting

scons generates a conf i g. | og file. See this file when there are problems building.

http://msdn.microsoft.com/en-us/library/ms235639.aspx
http://github.com/mongodb/mongo-snippets/blob/master/jslib-sconstruct
http://github.com/mongodb/mongo-snippets

See Also

Smoke Tests

Database Internals

This section provides information for developers who want to write drivers or tools for MongoDB, \ contribute code to the MongoDB codebase
itself, and for those who are just curious how it works internally.

Sub-sections of this section:

® Caching

® Cursors

® Error Codes

® Internal Commands
® Replication Internals
® Smoke Tests

® Pairing Internals

Caching

Memory Mapped Storage Engine

This is the current storage engine for MongoDB, and it uses memory-mapped files for all disk /0. Using this strategy, the operating system's
virtual memory manager is in charge of caching. This has several implications:

® There is no redundancy between file system cache and database cache: they are one and the same.

* MongoDB can use all free memory on the server for cache space automatically without any configuration of a cache size.

® Virtual memory size and resident size will appear to be very large for the mongod process. This is benign: virtual memory space will be
just larger than the size of the datafiles open and mapped; resident size will vary depending on the amount of memory not used by other
processes on the machine.

® Caching behavior (such as LRU'ing out of pages, and laziness of page writes) is controlled by the operating system: quality of the VMM
implementation will vary by OS.

Cursors

r. Redirection Notice
This page should redirect to Internals.

Error Codes

Error Code Description Comments

10003 objects in a capped ns cannot grow

11000 duplicate key error _id values must be unique in a collection

11001 duplicate key on update

12000 idxNo fails an internal error

12001 can't sort with $snapshot the $snapshot feature does not support sorting yet

12010, 12011, 12012 can't $inc/$set an indexed field

13440 bad offset accessing a datafile Run a database --repair

Internal Commands

Most commands have helper functions and do not require the $cnd. f i ndOne() syntax. These are primarily internal and administrative.

> db. $cnd. fi ndOne({assertinfo: 1})

> admi ndb. $cnd. fi ndOne({repl acepeer: 1})
{

"info" : "adjust local.sources hostnane; db restart now required" ,
"ok" : 1.0
}

Il close all databases. a subsequent request will reopen a db.
> admi ndb. $cnd. fi ndOne({cl oseAl | Dat abases: 1});

o :
"dbasserted" : false , // boolean: db asserted
"asserted" : false , // boolean: db asserted or a user assert have happend
i "assert" : "" , [/ regular assert :
"assertw' : "" , [/ "warning" assert
| "assertmsg" : "" , // assert with a message in the db |og
i "assertuser" " /'l user assert - benign, generally a request that was not meani ngful :
Lokt 1 1.0 g
) g
i > db. $cmd. fi ndOne({serverStatus: 1})
A i
: “uptinme" : 6, 5
"gl obal Lock" : {
“total Tine" : 6765166 ,
: "l ockTime" : 2131 , :
| "ratio” : 0.00031499596610046226 §
| b i
: " ment { :
: "resident" : 3,
: “virtual " : 111 , i
: "mapped" : 32
A I i
i "ok" 1
o ;

Replication Internals

On the master mongod instance, the | ocal database will contain a collection, opl og. $nai n, which stores a high-level transaction log. The
transaction log essentially describes all actions performed by the user, such as "insert this object into this collection." Note that the oplog is not
low-level redo log, so it does not record operations on the byte/disk level.

The slave mongod instance polls the opl og. $mai n collection from master. The actual query looks like this:

I ocal .oplog. $main.find({ ts: { $gte: ''last_op_processed_tine'' } }).sort({$natural:1});

where ‘local' is the master instance's | ocal database. opl og. $mai n collection is a capped collection, allowing the oldest data to be aged out
automatically.

See the Replication section of the Mongo Developers' Guide for more information.
OpTi e

An OpTi ne is a 64-bit timestamp that we use to timestamp operations. These are stored as Javascript Dat e datatypes but are not JavaScript
Date objects. Implementation details can be found in the OpTi e class in repl.h.

Applying OpTime Operations
Operations from the oplog are applied on the slave by reexecuting the operation. Naturally, the log includes write operations only.

Note that inserts are transformed into upserts to ensure consistency on repeated operations. For example, if the slave crashes, we won't know

Q

exactly which operations have been applied. So if we're left with operations 1, 2, 3, 4, and 5, and if we then apply 1, 2, 3, 2, 3, 4, 5, we should
achieve the same results. This repeatability property is also used for the initial cloning of the replica.

Tailing

After applying operations, we want to wait a moment and then poll again for new data with our $gt eoperation. We want this operation to be fast,
quickly skipping past old data we have already processed. However, we do not want to build an index on t s, as indexing can be somewhat
expensive, and the oplog is write-heavy. Instead, we use a table scan in [natural] order, but use a tailable cursor to "remember" our position.
Thus, we only scan once, and then when we poll again, we know where to begin.

Initiation

To create a new replica, we do the following:

t = now();

cl oneDat abase() ;

end = now();

appl yOperations(t..end);

cl oneDat abaseeffectively exports/imports all the data in the database. Note the actual "image" we will get may or may not include data
modifications in the time range (t ..end). Thus, we apply all logged operations from that range when the cloning is complete. Because of our
repeatability property, this is safe.

See class T oner for more information.

Smoke Tests

smoke.py lets you run a subsets of the tests in jstests. When it is running tests, it starts up an instance of mongod, runs the tests, and then shuts
it down again. For the moment, smoke.py must be run from the top-level directory of a mongo source repository. To use smoke.py you'll need a
recent version of PyMongo.

To see the possible options, run:

$ python buil dscri pts/snoke. py --help
Usage: snoke.py [OPTI ONS] ARGS*

Opti ons:
-h, --help show this hel p message and exit
- - nnde=MODE If "files", ARGS are filenanes; if "suite", ARGS are
sets of tests (suite)
--test-pat h=TEST_PATH
Path to the test executables to run, currently only
used for 'client' (none)
- - rongod=MONGOD_EXECUTABLE
Path to nongod to run (/Users/ m ke/ 10gen/ nongo/ nongod)
- - por t =MONGOD_PORT Port the nongod will bind to (32000)
- - nongo=SHELL_EXECUTABLE
Path to nmongo, for .js test files
(/ User s/ m ke/ 10gen/ nongo/ nongo)
--continue-on-failure
If supplied, continue testing even after a test fails
--fromfil e=FILE Run tests/suites naned in FILE, one test per line, '-
means stdin
- - snoke- db- pr ef i x=SMOKE_DB_PREFI X
Prefix to use for the nongods' dbpaths ('")
--smal | - opl og Run tests with naster/slave replication & use a small

opl og

o
<
=~
=3
o
=}
o
<.
o
w
o
=
o
-
n
<8
»
x~
®
l
<

,

,
o
@

It
LR
™
n
n
-
™
0
-
w
<
iy
>
o
=
)

You can specify as many files as you want.

You can also run a suite of tests. Suites are predefined and include:

http://api.mongodb.org/python

test

all

perf

is

quota

jsPerf

disk
jsSlowNightly
jsSlowWeekly
parallel

clone

repl

auth

sharding

tool

client
mongosTest

To run a suite, specify the suite's name:

...

Pairing Internals

Policy for reconciling divergent oplogs

In a paired environment, a situation may arise in which each member of a pair has logged operations as master that have not been applied to the
other server. In such a situation, the following procedure will be used to ensure consistency between the two servers:

1. The new master will scan through its own oplog from the point at which it last applied an operation from it's peer's oplog to the end. It will
create a set C of object ids for which changes were made. It will create a set M of object ids for which only modifier changes were made.
The values of C and M will be updated as client operations are applied to the new master.

2. The new master will iterate through its peer's oplog, applying only operations that will not affect an object having an id in C.

3. For any operation in the peer's oplog that may not be applied due to the constraint in the previous step, if the id of the of the object in
question is in M, the value of the whole object on the new master is logged to the new master's oplog.

4. The new slave applies all operations from the new master's oplog.

Contributing to the Documentation

Qualified volunteers are welcome to assist in editing the wiki documentation. Contact us for more information.

Emacs tips for MongoDB work

You can edit confluence directly from emacs:
First, follow the basic instructions on http://code.google.com/p/confluence-el/
Change the confluence-url in their sample setup to http://mongodb.onconfluence.com/rpc/xmirpc

Might also want to change the default space to DOCS or DOCS-ES or whatever space you edit the most.
etags setup (suggested by mstearn)
First, install "exuberant ctags", which has nicer features than GNU etags.

http://ctags.sourceforge.net/
Then, run something like this in the top-level mongo directory to make an emacs-style TAGS file:
ctags -e --extra=+qf --fields=+i asnfSKtm --c++ kinds=+p --recurse .

Then you can use M-x visit-tags-table, M-., M-* as normal.

Mongo Documentation Style Guide

http://code.google.com/p/confluence-el/
http://mongodb.onconfluence.com/rpc/xmlrpc
http://ctags.sourceforge.net/

This page provides information for everyone adding to the Mongo documentation on Confluence. It covers:

® General Notes on Writing Style
® Guide to Confluence markup for specific situations
® Some general notes about doc production

General Notes on Writing Style

Voice

Active voice is almost always preferred to passive voice.

To make this work, however, you may find yourself anthropromorphizing components of the system - that is, treating the driver or the database as
an agent that actually does something. ("The dbms writes the new record to the collection” is better than "the new record is written to the
database", but some purists may argue that the dbms doesn't do anything - it's just code that directs the actions of the processor - but then
someone else says "yes, but does the processor really do anything?" and so on and on.) It is simpler and more economical to write as if these
components are actually doing things, although you as the infrastructure developers might have to stop and think about which component is

actually performing the action you are describing.

Tense

Technical writers in general prefer to keep descriptions of processes in the present tense: "The dbms writes the new collection to disk” rather than

"the dbms will write the new collection to disk." You save a few words that way.

MongoDB Terminology

It would be good to spell out precise definitions of technical words and phrases you are likely to use often, like the following:

operations that are logged and can be rolled back - is this right?)

®* Mongo

® database (do you want "a Mongo database"? Or a Mongo database instance?)

® dbms (I have't seen this term often - is it correct to talk about "the Mongo DBMS"?)
®* Document

® Record

L]

Transaction (I stopped myself from using this term because my understanding is the Mongo doesn't support "transactions" in the sense of

These are just a few | noted while | was editing. More should be added. It would be good to define these terms clearly among yourselves, and

then post the definitions for outsiders.

Markup for terms

It's important to be consistent in the way you treat words that refer to certain types of objects. The following table lists the types you will deal with
most often, describes how they should look, and (to cut to the chase) gives you the Confluence markup that will achieve that appearance.

Type

Object name (the type of "object" that "object-oriented programming" deals with)
short code fragment inline

file path/name, extension

programming command, statement or expression

variable or "replaceable item"

Placeholders in paths, directories, or other text that would be italic anyway

GUI element (menus menu items, buttons

First instance of a technical term

tag (in HTML or XML, for example)

Extended code sample

In specifying these, | have relied on the O'Reilly Style Guide, which is at:

http://oreilly.com/oreilly/author/stylesheet.html

Appearance

monospace

monospace

italic

monospace

monospace italic

angle brackets around <item>
bold

italic

monospace

code block

Markup
{{term}y
{{term}}
term
{{term}}
_term
<item>
“term®
term
{{term}}

{code}
program code

{code}

http://oreilly.com/oreilly/author/stylesheet.html

This guide is a good reference for situations not covered here.

| should mention that for the names of GUI objects | followed the specification in the Microsoft Guide to Technical Publications.

Other Confluence markup

If you are editing a page using Confluence's RTF editor, you don't have to worry about markup. Even if you are editing markup directly,
Confluence displays a guide on the right that shows you most of the markup you will need.

References and Links

Confluence also provides you with a nice little utility that allows you to insert a link to another Confluence page by searching for the page by title
or by text and choosing it from a list. Confluence handles the linking markup. You can even use it for external URLS.

The one thing this mechanism does NOT handle is links to specific locations within a wiki page. Here is what you have to know if you want to
insert these kinds of links:

® Every heading you put in a Confluence page ("h2.Title", "h3.OtherTitle", etc.) becomes an accessible "anchor" for linking.

® You can also insert an anchor anywhere else in the page by inserting "{anchor\:anchorname}" where _anchorname is the uniqgue name
you will use in the link.

® Toinsert a link to one of these anchors, you must go into wiki markup and add the anchor name preceded by a "#". Example: if the page
My Page contains a heading or an ad-hoc anchor named GoHer e, the link to that anchor from within the same page would look like
[#GoHer €] , and a link to that anchor from a different page would look like [MyPage#GoHer €] . (See the sidebar for information about
adding other text to the body of the link.)

Special Characters

® You will often need to insert code samples that contain curly braces. As Dwight has pointed out, Confluence gets confused by this unless
you "escape" them by preceding them with a backslash, thusly:

V)

You must do the same for "[*, "]", "_" and some others.
Within a {code} block you don't have to worry about this. If you are inserting code fragments inline using {{ and }}, however, you still need
to escape these characters. Further notes about this:

® |f you are enclosing a complex code expression with {{ and }}, do NOT leave a space between the last character of the
expression and the }}. This confuses Confluence.

® Confluence also gets confused (at least sometimes) if you use {{ and }}, to enclose a code sample that includes escaped curly
brackets.

About MongoDB's Confluence wiki

Confluence has this idea of "spaces". Each person has a private space, and there are also group spaces as well.
The MongoDB Confluence wiki has three group spaces defined currently:

® Mongo Documentation - The publicly accessible area for most Mongo documentation

® Contributor - Looks like, the publicly accessible space for information for "Contributors"

® Private - a space open to MongoDB developers, but not to the public at large.
As | said in my email on Friday, all of the (relevant) info from the old wiki now lives in the "Mongo Documentation"

Standard elements of Wiki pages

You shouldn't have to spend a lot of time worrying about this kind of thing, but | do have just a few suggestions:

® Since these wiki pages are (or can be) arranged hierarchically, you may have "landing pages" that do little more than list their child
pages. | think Confluence actually adds a list of children automatically, but it only goes down to the next hierarchical level. To insert a
hierarchical list of a page's children, all you have to do is insert the following Confluence "macro":

{children:all=true}

See the Confluence documentation for more options and switches for this macro.

® For pages with actual text, | tried to follow these guidelines:
® For top-level headings, | used "h2" not "h1"
® | never began a page with a heading. | figured the title of the page served as one.
® | always tried to include a "See Also" section that listed links to other Mongo docs.

® | usually tried to include a link to the "Talk to us about Mongo" page.

Community

General Community Resources

* User Mailing List

The user list is for general questions about using, configuring, and running MongoDB and the associated tools and drivers. The list is
open to everyone

* |IRC chat
irc:/lirc.freenode.net/#mongodb
* Blog
http://blog.mongodb.org/
* Bugtracker
File, track, and vote on bugs and feature requests. There is issue tracking for MongoDB and all supported drivers
* Announcement Mailing List
http://groups.google.com/group/mongodb-announce - for release announcement and important bug fixes.
* Store

Visit our Cafepress store for Mongo-related swag.

Resources for Driver and Database Developers

* Developer List
This mongodb-dev mailing list is for people developing drivers and tools, or who are contributing to the MongoDB codebase itself.
* Source

The source code for the database and drivers is available at the http://github.com/mongodb.

Job Board

® Click Here to access the Job Board. The Board is a community resource for all employers to post MongoDB-related jobs. Please feel free
to post/investigate positions!

MongoDB Commercial Services Providers

Note: if you provide consultative or support services for MongoDB and wish to be listed here, just let us know.

® Support

® 10gen
® Training
® Hosting
® Consulting

® 10gen
Hashrocket
LightCube Solutions
Squeejee
ZOPYX
Mijix

http://groups.google.com/group/mongodb-user
irc://irc.freenode.net/#mongodb
http://blog.mongodb.org/
http://jira.mongodb.org
http://groups.google.com/group/mongodb-announce
http://www.cafepress.com/MongoDB
http://groups.google.com/group/mongodb-dev
http://github.com/mongodb/

Support

10gen

10gen began the MongoDB project, and offers commercial MongoDB support services.
Training

10gen offers MongoDB training.

Hosting

See the MongoDB Hosting Center.

Consulting

10gen

10gen offers consulting services for MongoDB application design, development, and production operation. These services are typically advisory in
nature with the goal of building higher in-house expertise on MongoDB for the client.

Hashrocket

Hashrocket is a full-service design and development firm that builds successful web businesses. Hashrocket continually creates and follows best
practices and surround themselves with passionate and talented craftsmen to ensure the best results for you and your business.

LightCube Solutions

LightCube Solutions provides PHP development and consulting services, as well as a lightweight PHP framework designed for MongoDB called
'‘photon’

Squeejee
Squeejee builds web applications on top of MongoDB with multiple sites already in production.

ZOPYX

ZOPYX Ltd is a German-based consulting and development company in the field of Python, Zope & Plone. Lately we added MongoDB to our
consulting and development portofolio. As one of the first projects we were involved in the launch of the BRAINREPUBLIC social platform.

Mijix

MijiX, a software development studio based on Indonesia, provides consulting for MongoDB in Asia-Pacific area.

User Feedback

"| just have to get my head around that mongodb is really _this_ good"
-muckster, #mongodb

"Guys at Redmond should get a long course from you about what is the software development and support @ "
-kunthar@gmail.com, mongodb-user list

"#mongoDB keep me up all night. | think | have found the 'perfect' storage for my app @ "
-elpargo, Twitter

"Maybe we can relax with couchdb but with mongodb we are completely in dreams"
-namlook, #mongodb

"Dude, you guys are legends!"
-Stii, mongodb-user list

"Times I've been wowed using MongoDB this week: 7."
-tpitale, Twitter

Community Blog Posts

http://www.10gen.com/
http://www.10gen.com/training
http://10gen.com
http://www.hashrocket.com
http://hashrocket.com/work/
http://hashrocket.com/services/process/
http://hashrocket.com/services/process/
http://hashrocket.com/people/
http://www.lightcubesolutions.com
http://squeejee.com/
http://www.zopyx.com
http://www.brainrepublic.com
http://www.mijix.com/

B is for Billion
-Wordnik (July 9, 2010)

[Reflections on MongoDB]
-Brandon Keepers, Collective Idea (June 15, 2010)

Building a Better Submission Form
-New York Times Open Blog (May 25, 2010)

Notes from a Production MongoDB Deployment
-Boxed Ice (February 28, 2010)

NoSQL in the Real World
-CNET (February 10, 2010)

Why | Think Mongo is to Databases what Rails was to Frameworks
-John Nunemaker, Ordered List (December 18, 2009)

MongoDB a Light in the Darkness...
-EngineYard (September 24, 2009)

Introducing MongoDB
-Linux Magazine (September 21, 2009)

Choosing a non-relational database; why we migrated from MySQL to MongoDB
-Boxed Ice (July 7, 2010)

The Other Blog - The Holy Grail of the Funky Data Model
-Tom Smith (June 6, 2009)

GIS Solved - Populating a MongoDb with POls
-Samuel

Community Presentations

Scalable Event Analytics with MongoDb and Ruby on Rails
Jared Rosoff at RubyConfChina (June 2010)

How Python, TurboGears, and MongoDB are Transforming SourceForge.net
Rick Copeland at PyCon 2010

MongoDB
Adrian Madrid at Mountain West Ruby Conference 2009, video

MongoDB - Ruby friendly document storage that doesn't rhyme with ouch
Wynn Netherland at Dallas.rb Ruby Group, slides

MongoDB
jnunemaker at Grand Rapids RUG, slides

Developing Joomla! 1.5 Extensions, Explained (slide 37)
Mitch Pirtle at Joomla!Day New England 2009, slides

Drop Acid (slide 31) (video)
Bob Ippolito at Pycon 2009

Python and Non-SQL Databases (in French, slide 21)
Benoit Chesneau at Pycon France 2009, slides

Massimiliano Dessi at the Spring Framework Italian User Group

® MongoDB (in Italian)
® MongoDB and Scala (in Italian)

Presentations and Screencasts at Learnivore
Frequently-updated set of presentations and screencasts on MongoDB.

Benchmarking

We keep track of user benchmarks on the Benchmarks page.

http://blog.wordnik.com/b-is-for-billion
http://open.blogs.nytimes.com/2010/05/25/building-a-better-submission-form/
http://blog.boxedice.com/2010/02/28/notes-from-a-production-mongodb-deployment/
http://news.cnet.com/8301-13846_3-10451248-62.html
http://railstips.org/blog/archives/2009/12/18/why-i-think-mongo-is-to-databases-what-rails-was-to-frameworks/
http://www.engineyard.com/blog/2009/mongodb-a-light-in-the-darkness-key-value-stores-part-5/
http://www.linux-mag.com/cache/7530/1.html
http://blog.boxedice.com/2009/07/25/choosing-a-non-relational-database-why-we-migrated-from-mysql-to-mongodb/
http://www.theotherblog.com/Articles/2009/06/02/the-holy-grail-of-the-funky-data-model/
http://gissolved.blogspot.com/2009/05/populating-mongodb-with-pois.html
http://www.slideshare.net/jrosoff/scalable-event-analytics-with-mongodb-ruby-on-rails
http://us.pycon.org/2010/conference/schedule/event/110/
http://mwrc2009.confreaks.com/14-mar-2009-19-36-mongodb-adrian-madrid.html
http://www.slideshare.net/pengwynn/mongodb-ruby-document-store-that-doesnt-rhyme-with-ouch
http://www.slideshare.net/jnunemaker/mongodb-grand-rapids-rug
http://www.slideshare.net/spacemonkeylabs/developing-joomla-15-extensions-explained
http://www.slideshare.net/rawwell/dropacidpycon2009
http://amix.dk/blog/viewEntry/19443
http://www.benoitc.org/b/7cb06e5de28327c7fc81c7028bece5a3/pyconfr2009_1.pdf
http://www.jugsardegna.org/vqwiki/jsp/Wiki?12settembre2009
http://www.slideshare.net/desmax74/mongodb-scala-roma-springframework-meeting2009
http://www.learnivore.com/search/mongodb

Job

Board

Redirecting...

Redirection Notice

This page should redirect to http://jobs.mongodb.org/ in about 2 seconds.

About

Philosophy

Use Cases

Production Deployments
Mongo-Based Applications
Events

Slide Gallery

Articles

Benchmarks

FAQ

Product Comparisons
Licensing

Philosophy

Design Philosophy

Databases are specializing - the "one size fits all* approach no
longer applies.

By reducing transactional semantics the db provides, one can
still solve an interesting set of problems where performance is
very important, and horizontal scaling then becomes easier.
The (JSON) document data model is easy to code to, easy to
manage (schemaless), and yields excellent performance by
grouping relevant data together internally.

A non-relational approach is the best path to database
solutions which scale horizontally to many machines.

While there is an opportunity to relax certain capabilities for
better performance, there is also a need for deeper
functionality than that provided by pure key/value stores.
Database technology should run anywhere, being available
both for running on your own servers or VMs, and also as a
cloud pay-for-what-you-use service.

Use Cases

>

Scalability & Performance

memcached

key/value MongoDB

stores

RDBMS

Depth of Functionality

See also the Production Deployments page for a discussion of how companies like Shutterfly, foursquare, bit.ly, Etsy, SourceForge, etc. use
MongoDB.

Use Case Articles

Using MongoDB for Real-time Analytics
Using MongoDB for Logging

Full Text Search in Mongo

MongoDB and E-Commerce

Archiving

Well Suited

® QOperational data store of a web site. MongoDB is very good at real-time inserts, updates, and queries. Scalability and replication are
provided which are necessary functions for large web sites' real-time data stores. Specific web use case examples:

¢ content management
® comment storage, management, voting

'

http://jobs.mongodb.org/
http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics
http://blog.mongodb.org/post/172254834/mongodb-is-fantastic-for-logging
http://kylebanker.com/blog/2010/04/30/mongodb-and-ecommerce/
http://blog.mongodb.org/post/1200539426/archiving-a-good-mongodb-use-case

® real time page view counters
® user registration, profile, session data
® Caching. With its potential for high performance, MongoDB works well as a caching tier in an information infrastructure. The persistent
backing of Mongo's cache assures that on a system restart the downstream data tier is not overwhelmed with cache population activity.
® High volume problems. Problems where a traditional DBMS might be too expensive for the data in question. In many cases developers
would traditionally write custom code to a filesystem instead using flat files or other methodologies.
® Storage of program objects and JSON data (and equivalent). Mongo's BSON data format makes it very easy to store and retrieve data in
a document-style / "schemaless" format. Addition of new properties to existing objects is easy and does not require blocking "ALTER
TABLE" style operations.
* Document and Content Management Systems - as a document-oriented (JSON) database, MongoDB's flexible schemas are a good fit
for this.
® Electronic record keeping - similar to document management.

Less Well Suited

® Systems with a heavy emphasis on complex transations such as banking systems and accounting. These systems typically require
multi-object transactions, which MongoDB doesn't support. It's worth noting that, unlike many "NoSQL" solutions, MongoDB does support
atomic operations on single documents. As documents can be rich entities; for many use cases, this is sufficient.

® Traditional Business Intelligence. Data warehouses are more suited to new, problem-specific Bl databases. However note that
MongoDB can work very well for several reporting and analytics problems where data is predistilled or aggregated in runtime -- but
classic, nightly batch load business intelligence, while possible, is not necessarily a sweet spot.

® Problems requiring SQL.

Use Case - Session Objects

MongoDB is a good tool for storing HTTP session objects.
One implementation model is to have a sessions collection, and store the session object's _id value in a browser cookie.

With its update-in-place design and general optimization to make updates fast, the database is efficient at receiving an update to the session
object on every single app server page view.

Aging Out Old Sessions

The best way to age out old sessions is to use the auto-LRU facility of capped collections. The one complication is that objects in capped
collections may not grow beyond their initial allocation size. To handle this, we can "pre-pad" the objects to some maximum size on initial
addition, and then on further updates we are fine if we do not go above the limit. The following mongo shell javascript example demonstrates
padding.

(Note: a clean padding mechanism should be added to the db so the steps below are not necessary.)

db. createCol | ection(' sessions', { capped: true, size : 1000000 })

>

{"ok" : 1}

>p=""

> for(x = 0; x < 100; x++) p += 'Xx';

> sl ={ info: '"exanple', _padding : p }

{"info" : "exanple" , "_padding"

TXXXXXXXXXXXXXXXXXXXXX XXX XXX XX XXX XXXXXXKXXKKXKKKXKKKKKKKKKKKKKKKXKXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXKXKXKXKXXXK"
}

> db. sessi ons. save(sl)

> sl

{"info" : "exanple" , "_padding"
"XXXXXXXXXXXXXXXXXXXXXXXXKXKXX XXX XXX KK XXX XXX XXX KKK XK KXKXKXKXKXKKXXXXXXXXXXXXXXXXXX XXX XX XXXX XXX XXX XXX XXX XXX
, "_id" : Objectld("4aafb74a5761d147677233b0") }

> [/ when updating |ater
> sl = db.sessions.find({ _id: Objectld("4aafb74a5761d147677233b0") })

{"_id" : ojectld("4aafb74a5761d147677233b0") , "info" : "exanple" , "_padding"

XXX XX XXX XX XXX XXX XXX XXX XX XX XXX XXX XXX KX XK XXX XXX KXXKXXKXXXKXXXXKXXXKXXKXXXKXXXKXKXX XX XXX XXX XXX XX KX XXX XXX XKXXX"
}

> del ete s._padding;

true

> s.x =3; // add a new field

3

> db. sessi ons. save(s);

>'s

{"_id" : ojectld("4aafb5a25761d147677233af") , "info" : "exanple" , "x" : 3}

http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics

Production Deployments

If you're using MongoDB in production, we'd love to list you here! Please complete this web form or email meghan@210gen.com and we will add
you.

Company Use Case

Shutterfly is an Internet-based social expression and personal publishing service.
MongoDB is used for various persistent data storage requirements within Shutterfly.
MongoDB helps Shutterfly build an unrivaled service that enables deeper, more
personal relationships between customers and those who matter most in their lives. For
more information, view Kenny Gorman's presentation Implementing MongoDB at
Shutterfly from MongoSF (April 2010): Slides and Video.

Foursquare is a location based social network that incorporates gaming elements.

fbwsware * MongoDB at foursquare presentation: Slides and Video (May 2010)

bit.ly allows users to shorten, share, and track links. bit.ly uses MongoDB to store user
history. For more information:
k.l J

® bit.ly user history, auto-sharded presentation at MongoNYC (May 2010)

Intuit is one of the world's largest providers of software and services for small
businesses and individuals. Intuit uses MongoDB to track user engagement and activity

® L h :)) :
I n T u I T in real-time across its network of websites for small businesses

suur:z m MongoDB is used for back-end storage on the SourceForge front pages, project pages,

and download pages for all projects.

® Scaling SourceForge with MongoDB - OSCON Presentation (July 2010)

® MongoDB at SourceForge - QCon London Presentation (March 2010)

® How Python, TurboGears, and MongoDB are Transforming SourceForge.net -
PyCon (February 2010)

® SourceForge.net releases Ming - SourceForge blog (December 2009)

® TurboGears on Sourceforge - Compound Thinking (July 2009)

Etsy is a website that allows users to buy and sell handmade items. Read the
MongoDB at Etsy blog series:

Etsy e Part1-May 19, 2010

® Part2-July 3, 2010

o " s The New York Times is using MongoDB in a form-building application for photo
ﬂ"hf ‘?'\tw uﬂl’k Cimes submissions. Mongo's lack of schema gives producers the ability to define any
combination of custom form fields. For more information:

¢ Building a Better Submission Form - NYTimes Open Blog (May 25, 2010)
® A Behind the Scenes Look at the New York Times Moment in Time Project -
Hacks/Hackers Blog (July 28, 2010)

& Examiner.com is the fastest-growing local content network in the U.S., powered by the
eXG m I ne r CO m largest pool of knowledgeable and passionate contributors in the world. Launched in
o April 2008 with 60 cities, Examiner.com now serves hundreds of markets across the
the insider source for local U.S. and Canada.

Examiner.com migrated their site from Cold Fusion and SQL Server to Drupal 7 and
MongoDB. Details of the deployment are outlined in an Acquia case study

https://10gen.wufoo.com/forms/production-deployment-details/
http://www.shutterfly.com/
http://www.slideshare.net/mongosf/implementing-mongodb-at-shutterfly-kenny-gorman
http://blip.tv/file/3593780
http://foursquare.com/
http://docs.google.com/present/view?id=dhkkqm6q_13gm6jq5fv
http://blip.tv/file/3704098
http://bit.ly/
http://blip.tv/file/3704043
http://intuit.com/
http://sourceforge.net/
http://www.oscon.com/oscon2010/public/schedule/detail/13669
http://www.infoq.com/presentations/MongoDB-at-SourceForge
http://us.pycon.org/2010/conference/schedule/event/110/
http://sourceforge.net/blog/sourceforge-releases-ming/
http://compoundthinking.com/blog/index.php/2009/07/16/turbogears-on-sourceforge/
http://www.etsy.com/
http://codeascraft.etsy.com/2010/05/19/mongodb-at-etsy/
http://codeascraft.etsy.com/2010/07/03/mongodb-at-etsy-part-2/
http://www.nytimes.com
http://open.blogs.nytimes.com/2010/05/25/building-a-better-submission-form/
http://hackshackers.com/2010/07/28/a-behind-the-scenes-look-at-the-new-york-times-moment-in-time-project/
http://www.examiner.com
http://acquia.com/resources/library/case-study-examinercom

\

werdnik

ShareThis*
BUSINESS

INSIDER

g

Boxned

ithub

SOC1AL CODING

Boxedlce's server monitoring solution - Server Density - stores 600 million+ documents
in MongoDB.

® Boxedlce blog posts:
Automating partitioning, sharding and failover with MongoDB
Why we migrated from mysql to mongodb
Notes from a production deployment
Humongous Data at Server Density: Approaching 1 Billion Documents
in MongoDB
® Presentations:
® Humongous Data at Server Density - MongoUK Presentation (June
2010)
® MongoDB in Production at Boxed Ice - Webinar (May 2010)

Wordnik stores its entire text corpus in MongoDB - 1.2TB of data in over 5 billion
records. The speed to query the corpus was cut to 1/4 the time it took prior to migrating
to MongoDB. More about MongoDB at Wordnik:

® B is for Billion - Wordnik Blog (July 2010)

® MongoDB: Migration from Mysql at Wordnik - Scalable Web Architectures
(May 2010)

® Tony Tam's Presentation at MongoSF (April 2010)

® What has technology done for words lately? - Wordnik blog (February 2010)

ShareThis makes it easy to share ideas and get to the good stuff online. ShareThis is
the world’s largest sharing network reaching over 400 million users across 150,000
sites and 785,000 domains across the web

Business Insider has been using MongoDB since the beginning of 2008. All of the site's
data, including posts, comments, and even the images, are stored on MongoDB. For
more information:

® How This Web Site Uses MongoDB (November 2009 Article)
® How Business Insider Uses MongoDB (May 2010 Presentation)

GitHub, the social coding site, is using MongoDB for an internal reporting application.

Gilt Groupe is an invitation only luxury shopping site. Gilt uses MongoDB for real time
ecommerce analytics.

® Gilt CTO Mike Bryzek's presentation at MongoSF in April 2010.
®* Hummingbird - a real-time web traffic visualization tool developed by Gilt and
powered by MongoDB

IGN Entertainment, a unit of News Corporation, is a leading Internet media and
services provider focused on the videogame and entertainment enthusiast markets.
IGN’s properties reached more than 37.3 million unique users worldwide February
2010, according to Internet audience measurement firm comScore Media Metrix.
MongoDB powers IGN's real-time traffic analytics and RESTful Content APIs.

OpensSky is a free online platform that helps people discover amazing products; share
them with their friends, family and followers; and earn money. OpenSky uses
MongoDB, Symfony 2, Doctrine 2, PHP 5.3, PHPUnit 3.5, jQuery, node.js, Git (with
gitflow) and a touch of Java and Python. OpenSky uses MongoDB for just about
everything (not just analytics). Along the way they've developed MongoODM (PHP) and
MongoDB drivers for Mule and CAS.

CollegeHumor is a comedy website. MongoDB is used in CollegeHumor for internal
analytics and link exchange application.
Evite uses MongoDB for analytics and quick reporting.

® Tracking and visualizing mail logs with MongoDB and gviz_api - Grig
Gheorghiu's blog (July 2010)

http://www.serverdensity.com/
http://blog.boxedice.com/2010/08/03/automating-partitioning-sharding-and-failover-with-mongodb/
http://blog.boxedice.com/2009/07/25/choosing-a-non-relational-database-why-we-migrated-from-mysql-to-mongodb/
http://blog.boxedice.com/2010/02/28/notes-from-a-production-mongodb-deployment/
http://www.10gen.com/webinars/event_boxedice_10may5
http://www.10gen.com/webinars/event_boxedice_10may5
http://skillsmatter.com/podcast/cloud-grid/mongodb-humongous-data-at-server-density
http://www.10gen.com/webinars/event_boxedice_10may5
http://www.wordnik.com
http://blog.wordnik.com/b-is-for-billion
http://www.royans.net/arch/mongodb-migration-from-mysql-at-wordnik/
http://www.10gen.com/event_mongosf_10apr30#wordnik
http://blog.wordnik.com/what-has-technology-done-for-words-lately
http://sharethis.com
http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://www.businessinsider.com/how-we-use-mongodb-2009-11
http://www.slideshare.net/ibwhite/how-business-insider-uses-mongodb
http://github.com/
http://www.gilt.com
http://www.10gen.com/event_mongosf_10apr30#gilt
http://mnutt.github.com/hummingbird/
http://www.ign.com/
http://shopopensky.com/
http://www.doctrine-project.org/blog/mongodb-for-ecommerce
http://www.collegehumor.com/
http://www.evite.com/
http://agiletesting.blogspot.com/2010/07/tracking-and-visualizing-mail-logs-with.html

DISQUJ

MONQOH@

justin.tv
beat..

e
-

LA

.)

Hot Potato

Eventbrite

_EVENTs Made cadsy |

ry

Flowdock

Chicaao Tribune

| sucARCRHRM.

THE CLOUD I'F OPEM

2/Phone

Ohere

Disqus is an innovative blog-commenting system.

MongoHQ provides a hosting platform for MongoDB and also uses MongoDB as the
back-end for its service. Our hosting centers page provides more information about
MongoHQ and other MongoDB hosting options.

Justin.tv is the easy, fun, and fast way to share live video online. MongoDB powers
Justin.tv's internal analytics tools for virality, user retention, and general usage stats
that out-of-the-box solutions can't provide. Read more about Justin.tv's broadcasting
architecture.

Chartbeat is a revolutionary real-time analytics service that enables people to
understand emergent behaviour in real-time and exploit or mitigate it. Chartbeat stores
all historical analytics data in MongoDB.

®* The Secret Weapons Behind Chartbeat - Kushal's coding blog (April 2010)
® Kushal Dave's Presentation at MongoNYC (May 2010)

Hot Potato is a social tool that organizes conversations around events. For more
information:

® Hot Potato's presentation about using Scala and MongoDB at the New York
Tech Talks Meetup (March 2010)

® Hot Potato presentation at MongoSF (April 2010)

® Hot Potato Infrastructure from Hot Potato blog (May 2010)

® Hot Potato presentation at MongoNYC (May 2010)

Eventbrite gives you all the online tools you need to bring people together for an event
and sell tickets. EventBrite uses MongoDB to track page views.

® Why you should track page views with MongoDB - EventBrite Blog (June
2010)

Flowdock is a modern web-based team messenger, that helps your team to become
more organized simply by chatting. Flowdock backend uses MongoDB to store all
messages.

® Why Flowdock migrated from Cassandra to MongoDB - Flowdock Blog (July
2010)

The Chicago Tribune uses MongoDB in its lllinois School Report Cards application,
which is generated from a nearly 9,000 column denormalized database dump produced
annually by the State Board of Education. The application allows readers to search by
school name, city, county, or district and to view demographic, economic, and
performance data for both schools and districts.

Sugar CRM uses MongoDB to power the backend of its preview feedback mechanism.
It captures users' comments and whether they like or dislike portions of the application
all from within beta versions of Sugar.

WHERE® is a local search and recommendation service that helps people discover
places, events and mobile coupons in their area. Using WHERE, people can find
everything from the weather, news, and restaurant reviews, to the closest coffee shop,
cheapest gas, traffic updates, movie showtimes and offers from local merchants.
WHERE is available as a mobile application and as a web service at Where.com. here,
Inc. uses MongoDB to store geographic content for the WHERE application and for
WHERE Ads™ - a hyper-local ad network.

PhoneTag is a service that automatically transcribes voicemail to text and delivers it in
real-time via e-mail and SMS. PhoneTag stores the metadata and transcriptions for
every voicemail it process in MongoDB.

http://www.disqus.com
http://www.mongohq.com/
http://justin.tv
http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html
http://highscalability.com/blog/2010/3/16/justintvs-live-video-broadcasting-architecture.html
http://chartbeat.com/
http://codeshal.tumblr.com/post/499713180/the-secret-weapons-behind-the-chartbeat-beta
http://blip.tv/file/3701052
http://www.hotpotato.com
http://www.livestream.com/nytechtalks
http://www.livestream.com/nytechtalks
http://www.10gen.com/event_mongosf_10apr30#hotpotato
http://blog.hotpotato.com/post/574255351/hot-potato-infrastructure-mongodb
http://www.slideshare.net/mongodb/building-a-mongo-dsl-in-scala-at-hot-potato
http://www.eventbrite.com/
http://blog.eventbrite.com/guest-post-why-you-should-track-page-views-with-mongodb
http://www.flowdock.com/
http://blog.nodeta.fi/2010/07/26/flowdock-migrated-from-cassandra-to-mongodb/
http://schools.chicagotribune.com/
http://www.sugarcrm.com/crm/
http://www.where.com/
http://phonetag.com/

HASHROCKET

EXPERTLY CRAFTED WE

yottaa™

BuzzFeeD

& mypunchbowl

@ sunlight s

Harmony is a powerful web-based platform for creating and managing websites. It
helps developers with content editors work together with unprecedented flexibility and
simplicity. From stylesheets, images and templates, to pages, blogs, and comments,
every piece of Harmony data is stored in MongoDB. Switching to MongoDB from
MySQL drastically simplified Harmony's data model and increased the speed at which
we can deliver features.

® Steve Smith's presentation about Harmony at MongoSF (April 2010)

Hashrocket is an expert web design and development group. Hashrocket built
PharmMD, a fully-featured Medication Management application in Ruby on Rails. The
system contains functionality for identifying and resolving drug-related problems for
millions of patients.

Yottaa offers Performance Analytics, a cloud service that monitors, ranks and analyzes
the performance of millions of web sites, providing an open database to answer
guestions such as “why performance matters” and “how fast is my site”. Yottaa is using
Ruby on Rails and MongoDB to build their scalable analytics engine.

® How Yottaa Uses MongoDB - Jared Rosoff's presentation at MongoBoston
(September 2010)

® Scalable Event Analytics with MongoDB and Ruby - Jared Rosoff's
presentation at RubyConfChina (June 2010)

BuzzFeed is a trends aggregator that uses a web crawler and human editors to find
and link to popular stories around the web. BuzzFeed moved an analytics system
tracking over 400 million monthly events from MySQL to MongoDB.

The Mozilla open-source Ubiquity Herd project uses MongoDB for back-end storage.
Source code is available on bitbucket.

Codaset is an open system where you can browse and search through open source
projects, and check out what your friends are coding.

® The awesomeness that is MongoDB and NoSQL, is taking over Codaset -
Codaset Blog (May 2010)
¢ Handling Dates in MongoDB - Codaset Blog (July 2010)

Shopwiki uses Mongo as a data store for its shopping search engine, where they
commit all the data generated, such as custom analytics. Mongo's performance is such
that ShopWiki uses it in cases where MySQL would just not be practical. ShopWiki is
also using it as a storage engine for all R&D and data-mining efforts where MongoDB's
document oriented architecture offers maximum flexibility.

® Avery's Talk at MongoNYC - ShopWiki Dev Blog (June 2010)

MyPunchbowl.com is a start to finish party planning site that uses MongoDB for
tracking user behavior and datamining.

® Ryan Angilly on Replacing MySQL with MongoDB (Zero to Mongo) on The
Bitsource

® MongoDB for Dummies: How MyPunchbowl! went from O to production in under
3 days - Presentation at MongoNYC (May 2010)

Sunlight Labs is a community of open source developers and designers dedicated to
opening up our government to make it more transparent, accountable and responsible.
MongoDB powers the National Data Catalog, and the Drumbone API, which is an
aggregator of data about members of Congress.

® Civic Hacking - Video from Luigi Montanez's presentation at MongoNYC (May
2010)
® How We Use MongoDB at Sunlight blog post (May 2010)

http://get.harmonyapp.com/
http://www.10gen.com/event_mongosf_10apr30#harmonyapp
http://hashrocket.com/
http://hashrocket.com/work/view/pharmmd/
http://www.yottaa.com
http://blog.yottaa.com/2010/09/how-yottaa-uses-mongodb/
http://www.slideshare.net/jrosoff/scalable-event-analytics-with-mongodb-ruby-on-rails
http://www.buzzfeed.com/
https://ubiquity.mozilla.com/herd/
http://bitbucket.org/fernandotakai/herd/src/
http://codaset.com/codaset/codaset/blog/the-awesomeness-that-is-mongodb-and-nosql-is-taking-over-codaset
http://developingwithstyle.com/articles/2010/07/09/handling-dates-in-mongodb.html
http://www.shopwiki.com/
http://devblog.shopwiki.com/post/660499806/averys-talk-at-mongonyc
http://www.mypunchbowl.com/
http://www.thebitsource.com/featured-posts/mongosf-zero-to-mongodb/
http://www.thebitsource.com/featured-posts/mongosf-zero-to-mongodb/
http://blip.tv/file/3704046
http://blip.tv/file/3704046
http://sunlightlabs.com/
http://nationaldatacatalog.com
http://services.sunlightlabs.com/docs/Drumbone_API/
http://blip.tv/file/3680481
http://sunlightlabs.com/blog/2010/how-we-use-mongodb-sunlight/

foto Jcom

The first collaborative phote encydapedia

Q@ Grooveshark

stickybits

Sty
@Pitchfork:
P floxee

Sileniale

t_eacb{.,?%t.f:e.?t

E ARMN

-
e lueetSave
a i i

photostre.am streams image data from flickr and uses MongoDB as it's only database.

® MongoDB in Production at photostre.am - photostre.am blog (June 2010)

Fotopedia uses MongoDB as storage backend for its copy of wikipedia data, storage for
users and albums timelines, a feature that is currently under heavy refactoring, and as
the "metacache", an index of every tiny html fragment in its varnish cache for proactive
invalidation of stale content.

® MongoDB: Our Swiss Army Datastore - Presentation at MongoFR in June
2010: Slides and Video

Grooveshark currently uses Mongo to manage over one million unigue user sessions
per day.

Stickybits is a fun and social way to attach digital content to real world objects.

MongoDB is being used for the game feeds component. It caches game data from
different sources which gets served to ea.com, rupture.com and the EA download
manager.

Struqg develops technology that personalises the contents and design of online display
advertising in real time.

Pitchfork is using MongoDB for their year-end readers survey and internal analytics.

Floxee, a web toolkit for creating Twitter directories, leverages MongoDB for back-end
storage. The award-winning TweetCongress is powered by Floxee.

Sailthru is an email service provider that uses MongoDB for click-stream analysis and
reporting.

Silentale keeps track of your contacts and conversations from multiple platforms and
allows you to search and access them from anywhere. Silentale is using MongoDB as
the back-end for indexing and searching on millions of stored messages of different
types. More details on Silentale can be found in this TechCrunch article.

® One Year with MongoDB presentation from MongoUK (June 2010): Slides and
Video

TeachStreet helps people find local and online classes by empowering teachers with
robust tools to manage their teaching businesses. MongoDB powers our real-time
analytics system which provide teachers with insight into the performance and
effectiveness of their listings on TeachStreet.

¢ Slides from Mongo Seattle - TeachStreet blog (July 2010)

Defensio is a comment-spam blocker that uses MongoDB for back-end storage.

TweetSaver is a web service for backing up, searching, and tagging your tweets.
TweetSaver uses MongoDB for back-end storage.

Bloom Digital's AdGear platform is a next-generation ad platform. MongoDB is used for
back-end reporting storage for AdGear.

http://photostre.am
http://ananasblau.com/2010/6/11/mongodb-in-my-photostre-am
http://www.fotopedia.com
http://www.scribd.com/doc/33558074/MongoDB-our-Swiss-Army-Knife-database
http://lacantine.ubicast.eu/videos/21-06-2010-104603-partie-1/
http://listen.grooveshark.com/
http://www.stickybits.com/
http://www.ea.com
http://www.rupture.com
http://www.struq.com/
http://www.pitchfork.com
http://floxee.com/
http://twitter.com
http://tweetcongress.org/
http://www.sailthru.com/
https://silentale.com/
http://uk.techcrunch.com/2009/09/08/silentale-lets-you-archive-and-search-your-every-conversation/
http://www.slideshare.net/silentale/one-year-with-mongodb-at-silentale-mongofr-mongouk
http://skillsmatter.com/podcast/cloud-grid/one-year-with-mongodb-at-silentale
http://www.teachstreet.com/
http://blog.teachstreet.com/uncategorized/slides-mongo-seattle/?utm_source=twitterfeed&utm_medium=twitter&utm_campaign=Feed:+teachstreet+(TeachStreet+-+Find+Great+Classes.++Learn+Something+New.)
http://defensio.com/
http://tweetsaver.com
http://www.bloomdigital.com/

klatu

Detexify?2

r

v ﬂyﬁﬁr :
Hapad!:

Sifino

GAMECHINGER =

oo -

4 MyBankTracker
bill

monitor”

KLATU Networks designs, develops and markets asset monitoring solutions which
helps companies manage risk, reduce operating costs and streamline operations
through proactive management of the status, condition, and location of cold storage
assets and other mission critical equipment. KLATU uses MongoDB to store
temperature, location, and other measurement data for large wireless sensor networks.
KLATU chose MongoDB over competitors for scalability and query capabilities.

songkick lets you track your favorite artists so you never miss a gig again.
® Speeding up your Rails app with MongoDB - Presentation at MongoUK (June
2010)

Detexify is a cool application to find LaTeX symbols easily. It uses MongoDB for
back-end storage. Check out the blog post for more on why Detexfy is using MongoDB.

http://sluggy.com/ is built on MongoDB, mongodb_beaker, and MongoKit.

® From MySQL to MongoDB at Sluggy.com - Brendan McAdams' presentation at
MongoNYC (May 2010)

Stylesignal is using MongoDB to store opinions from social media, blogs, forums and
other sources to use in their sentiment analysis system, Zeitgeist.

@trackmeet helps you take notes with twitter, and is built on MongoDB

eFlyoverleverages the Google Earth Browser Plugin and MongoDB to provide
interactive flyover tours of over two thousand golf courses worldwide.

Shapado is a multi-topic question and answer site in the style of Stack Overflow.
Shapado is written in Rails and uses MongoDB for back-end storage.

Sifino enables students to help each other with their studies. Students can share
notes, course summaries, and old exams, and can also ask and respond to questions
about particular courses.

GameChanger provides mobile apps that replace pencil-and-paper scorekeeping and
online tools that distribute real-time game updates for amateur sports.

® Tornado, MongoDB, and the Realtime Web - Kiril Savino's presentation at
MongoNYC (May 2010)

® GameChanger and MongoDB: a case study in MySQL conversion - Kiril
Savino's blog (September 2010)

soliMAP is a map-based ad listings site that uses MongoDB for storage.

MyBankTracker iPhone App uses MongoDB for the iPhone app's back-end server.

BillMonitor uses MongoDB to store all user data, including large amounts of billing
information. This is used by the live site and also by BillMonitor's internal data analysis
tools.

Tubricator allows you to create easy to remember links to YouTube videos. It's built on
MongoDB and Django.

Mu.ly uses MongoDB for user registration and as a backend server for its iPhone Push
notification service. MongoDB is mu.ly's Main backend database and absolute mission
critical for mu.ly.

http://www.klatunetworks.com/
http://www.songkick.com/
http://skillsmatter.com/podcast/cloud-grid/speeding-up-your-rails-application-with-mongodb
http://detexify.kirelabs.org/
http://detexifyblog.kirelabs.org/past/2009/8/12/new_backend_new_server_android_app/
http://sluggy.com/
http://bitbucket.org/namlook/mongokit/wiki/Home
http://blip.tv/file/3704023
http://stylesignal.com
http://eflyover.com
http://shapado.com/
http://sifino.se/
http://www.gamechanger.io/
http://prezi.com/owkppjicpers/mongonyc/
http://aurum.tumblr.com/post/1045864983/gamechanger-and-mongodb-a-case-study-in-mysql
http://solimap.com/
http://http://www.mybanktracker.com/iphone/
http://www.billmonitor.com/
http://www.tubricator.com/
http://mu.ly/

Avinu is a Content Management System (CMS) built on the Vork enterprise framework

]
N AVi n U and powered by MongoDB.

edelight is a social shopping portal for product recommendations.

(®* MongoDB: Wieso Edelight statt MySQL auf MongoDB setzt - Exciting
Ecommerce blog (September 2010)

Topsy is a search engine powered by Tweets that uses Mongo for realtime log
To p SY processing and analysis.

Codepeek is using MongoDB and GridFS for storing pastes.

Similaria.pl is an online platform, created to connect users with people and products
that match them.

%‘S{muaﬂa

ToTuTam uses Mongo to store information about events in its portal and also to store

t I 'I' and organise information about users preferences.

themoviedb.org is a free, user driven movie database that uses MongoDB as its
primary database.

themoviedb.org

‘C OCW SEH ch OCW Search is a search engine for OpenCourseWare. It stores all the course materials
f . i in MongoDB and uses Sphinx to index these courses.

® Full Text Search with Sphinx - Presentation from MongoUK (June 2010)

Mixero is the new generation Twitter client for people who value their time and are tired

L]
M Ix e r o of information noise. Mixero uses Mongo to store users' preferences and data.

Reducing the noise

Biggo is an advanced site constructor with e-commerce modules. Biggo uses
MongoDB for stats collection.

(’ Kabisa is a web development firm specializing in Ruby on Rails and Java / J2EE.
Kabisa uses MongoDB for many of its client projects, including a mobile news

s
“ HOb.I‘Q application for iPhone and Android.

agile solutions

DokDok makes it easy and automatic for users to find, work on and share the latest
version of any document - right from their inbox. DokDok migrated to a Mongo backend

D 0 K D D K&J in August 2009. See Bruno Morency's presentation Migrating to MongoDB for more
information.

http://www.avinu.org/
http://www.edelight.de
http://www.excitingcommerce.de/2010/09/edelight-mongodb.html
http://topsy.com/
http://codepeek.com/paste
http://www.similaria.pl/index.php
http://totutam.pl/
http://www.themoviedb.org/
http://www.ocwsearch.com/
http://skillsmatter.com/podcast/cloud-grid/mongodb-full-text-search-with-sphinx
http://www.mixero.com/
http://cms.biggo.ru/
http://www.kabisa.nl/
http://dokdok.com/
http://www.slideshare.net/dokdok/confoo-migrating-to-mongo-db

enbil.nu

W) Websko

markitfor.me

backrage pf'cs

®Ads

Music. Realtime.

é Elwa SystemManagement

web people

morang

pong

ibib

I Buwald =0 Bbond

—

I
MediaMath

Enbil is a swedish website for finding, and comparing, rental cars. MongoDB is used for
storing and querying data about geographical locations and car rental stations.

Websko is a content management system designed for individual Web developers and
cooperative teams. MongoDB's lack of schema gives unlimited possibilities for defining
manageable document oriented architecture and is used for back-end storage for all
manageable structure and data content. Websko is written in Rails, uses MongoMapper
gem and in-house crafted libraries for dealing with Mongo internals.

markitfor.me is a bookmarking service that makes your bookmarks available via full-text
search so you don't have to remember tags or folders. You can just search for what
you're looking for and the complete text of all of your bookmarked pages will be
searched. MongoDB is used as the datastore for the marked pages.

Backpage Pics is a website that displays backpage.com adult classified listings as an
image gallery. MongoDB is used to store listing data. Please note that this website is
NSFW.

Joomla Ads uses MongoDB for its back-end reporting services.

musweet keeps track of what artists and bands publish on the social web.

Eiwa System Management, Inc. is a software development firm that has been using
MongoDB for various projects since January 2010.

Morango is an internet strategy consultancy based in London, which uses MongoDB in
production on several client projects.

¢ Building a Content Management System with MongoDB - Presentation from
MongoUK (June 2010)

PeerPong discovers everyone's expertise and connects you to the best person to
answer any question. We index users across the entire web, looking at public profiles,
real-time streams, and other publicly available information to discover expertise and to
find the best person to answer any question.

ibibo ("I build, I bond") is a social network using MongoDB for its dashboard feeds.
Each feed is represented as a single document containing an average of 1000 entries;
the site currently stores over two million of these documents in MongoDB.

MediaMath is the leader in the new and rapidly growing world of digital media trading.

Zoofs is a new way to discover YouTube videos that people are talking about on
Twitter. Zoofs camps in Twitter searching for tweets with YouTube video links, and then
ranks them based on popularity.

Oodle is an online classifieds marketplace that serves up more than 15 million visits a
month and is the company behind the popular Facebook Marketplace. Oodle is using

Mongo for storing user profile data for our millions of users and has also open sourced
its Mongo ORM layer.

http://enbil.nu/
http://websko.pl/
http://markitfor.me/
http://www.backpagepics.com/
http://www.joomlaads.com/
http://musweet.com/
http://www.esm.co.jp/
http://morango.co.uk/
http://skillsmatter.com/podcast/cloud-grid/building-a-content-management-system-with-mongodb
http://peerpong.com/
http://www.ibibo.com/
http://www.mediamath.com/
http://zoofs.com/
http://www.oodle.com/
http://apps.facebook.com/marketplace
http://github.com/lunaru/MongoRecord

FunAdvice
Vi Sabe

hablemas

L OTERIA
FUTBOL

<%,

Kehalim

Contexteal Alliluate Platform

¢p SQUARESPACE

€ Sivemenenrs....
jjCheméo

) planetaki

WD E

www.ChinaVisual.com

'i'*h Row Feeoer

Funadvice relaunched using the MongoDB and MongoMapper. Read the Funadvice
CTO's post to MongoDB User Forum from May 2010 for more details.

Ya Sabe is using MongoDB for the backend storage of business listings. Yasabe.com
is the first local search engine built for Hispanics in the US with advanced search
functionality. You can find and discover more than 14 million businesses via the web or
your mobile phone. All the information is in both Spanish and in English.

LoteriaFutbol.com is a Fantasy Soccer Portal recently launched for the World Soccer
Cup: South Africa 2010. Mongo has been used entirely to store data about users,
groups, news, tournaments and picks. It uses the PHP driver with a Mongo module for
Kohana v3 (Mango).

Kehalim switched over to MongoDB 1 year ago after exhausting other cloud and
relational options. As a contextual affiliate network, Kehalim stores all of its advertisers,
ads and even impressions on top of MongoDB. MongoDB has outed both MySQL and
memcached completely and also provides great hadoop-like alternative with its own
map-reduce.

Squarespace is an innovative web publishing platform that consists of a fully hosted
and managed GUI environment for creating and maintaining websites. Squarespace's
new social modules utilize Mongo to store large amounts of social data that is pulled in
from around the Internet and displayed in native widgets that are fully integrated with
the platform.

Givemebeats.net is an e-commerce music site that allows people to buy beats (music
instrumentals) produced by some of the best producers in the world. Now we entirely
use MongoDB to store users profile, beats information, and transaction statistics.

Cheméo, a search engine for chemical properties, is built on top of MongoDB. For a
fairly extensive explanation of the tools and software used and some MongoDB tips,
please go to chemeo.com/doc/technology.

Planetaki is place were you can read all your favourite websites in one place. MongoDB
has replaced MySQL for the storage backend that does all the heavy lifting and caching
of each website's news feed.

® Planetaki Powered by MongoDB - SamLown.com (June 2010)

[ChinaVisual.com] is the leading and largest vertical portal and community for creative
people in China. ChinaVisual.com moved from mysql to mongoDB in early 2009.
Currently MongoDB powers its most major production and service, like file storage,
session server, and user tracking.

RowFeeder is an easy social media monitoring solution that allows people to track
tweets and Facebook posts in a spreadsheet. RowFeeder uses MongoDB to keep up
with the high volume of status updates across multiple social networks as well as
generate basic stats.

® MongoDB for Real Time Data Collection and Stats Generation - Presentation
at Mongo Seattle (July 2010)

Mini Medical Record is designed to facilitate medical care for all members of the public.
While useful for everyone, it is especially useful for travelers, professional road
warriors, homeless, substance dependent, and other members of the public who
receive care through multiple medical systems.

http://www.funadvice.com
http://groups.google.com/group/mongodb-user/browse_thread/thread/e2b4a5d198b398cf/547e3f3206c5dd37?lnk=gst&q=funadvice#547e3f3206c5dd37
http://www.yasabe.com/
http://en.loteriafutbol.com/
http://www.kehalim.com/
http://www.squarespace.com/
http://www.givemebeats.net
http://www.chemeo.com
http://chemeo.com/doc/technology
http://www.planetaki.com/
http://www.samlown.com/en/planetaki_powered_by_mongodb
https://rowfeeder.com
http://www.slideshare.net/dacort/mongodb-realtime-data-colleciton-and-stats-generation
http://www.minimedrec.com/

OPEN DINING

NETVWORK

=urlist
Dinterest

LEARNBOOST

L kidiso.com

turning the web
inte & playground

&R Doctor:

BlueSpark»

(“>Ahgora
MAN: . HOUSE

Open Dining Network is a restaurant data and food ordering platform that provides a
RESTful API to take web and mobile orders. MongoDB is used to manage all
restaurant, customer, and order information.

URLi.st is a small web application to create and share list of links. The web application
is coded in Python (using the pylons framework) and uses MongoDB (with pymongo
1.6) in production to power its data layer.

Pinterest is a community to share collections of things you love. Pinterest is built in
Python and uses MongoDB for its internal analytics tools and huge data sets like
contacts imported from gmail and yahoo.

LearnBoost is a free and amazing gradebook web app that leverages MongoDB for its
data storage needs. LearnBoost is the creator of Mongoose, a JavaScript async ORM
for MongoDB that is flexible, extensible and simple to use.

® Mongoose - LearnBoost blog (May 2010)

Kidiso is a safe online playground for children up to 13, with advanced parental
controls. In the current setup, we are using MongoDB for logging, analysis tasks, and
background jobs that aggregate data for performance (ie search results and allowed
content).

Carbon Calculated provides an open platform that aggregates carbon and green house
gas emissions for everything in the world, from passenger transport, raw materials,
through to consumer goods. Built on top of this platform, Carbon Calculated offers a
suite of products that make carbon calculation accessible and intuitive.

Vowch is a simple platform for telling the world about all the people, places and things
that matter most to you. It is a platform for making positive, public endorsements for
anyone or anything from a Twitter account.

® View a vowch for MongoDB: http://vow.ch/2ij

HolaDoctor.com is the most comprehensive health and wellness portal available in
Spanish for the global online Hispanic community. MongoDB is being used to store all
the content for the site, including GridFS to store article images. Session data is also
being persisted on our MongoDB cluster using a custom PHP save handler.

Ros Spending is the first Russian public spending monitoring project. It includes
information about 1,400,000 federal government and 210,000 regional government
contracts, as well as information about more than 260,000 suppliers and 26,000
customers. MongoDB stores all reports, customer and supplier information, stats and
pre-cached queries. The project was initiated by the Institute of Contemporary
Development and launched publicly in July 2010 during the Tver economic forum.

BlueSpark designs and develops iPhone and iPad applications and specializes in
Adobe Flash development, we have a passion for creating great user experiences and
products that feel simple to use.

[Aghora] is a time attendance application specially designed for the requirements of the
Brasilian governmental requirements. Our whole application is based on PHP and
MongoDB. Click here for more information.

Man of the House is the real man's magazine, a guide for the jack of all trades trying to
be better — at work and at home, as a father and as a husband. The entire backend of
the site depends on MongoDB.

http://www.opendining.net/
http://urli.st/
http://pinterest.com/
http://www.learnboost.com/
http://github.com/learnboost
http://www.learnboost.com/mongoose/
http://www.kidiso.com/
http://www.carboncalculated.com/
http://vow.ch/
http://vow.ch/2ij
http://holadoctor.com/es/
http://www.rosspending.ru
http://www.insor-russia.ru/en/_about_us
http://www.insor-russia.ru/en/_about_us
http://bluespark.co.nz/
http://bit.ly/cajdYS
http://manofthehouse.com/

¢ Peerlndex

p b
sahibinden.com

The address for classifieds and online shopping

JRemembersaurué

Shiadelight

s Ulastic

dealmachine

B ArrivalGuides.com

the worlds Yavgest nefwork of free travel -.J:u-]r'.

Peerindex is an algorithmic authority ranking web service that uses MongoDB to scale
processing of the firehose of social media, as a distributed data store and middle cache
for fast site performance.

sahibinden.com is an online classifieds marketplace that serves more than 14.5 million
unique visitors and over 1.5 billion pageviews a month. sahibinden.com is using
MongoDB for storing classifieds data and caching.

Remembersaurus is a flashcard website targeted at language learners which helps the
learners focus on the cards that they are having the hardest time remembering.We're
using MongoDB for all of our backend storage, but it's been particularly useful for
helping log how well each user knows each of the cards they are studying.

Shadelight is a unique fantasy roleplaying game where you play one of the legendary
Guardians of Elumir. Set out on magical quests, battle mysterious creatures and
explore a truly unique fantasy world.

Ylastic is using MongoDB extensively in production. For example, MongoDB powers
Ylastic's monitors capability.

BRAINREPUBLIC is a social network for anyone to wants to talk face-to-face - or just
audio or chat - with like-minded people from anywhere at anytime.

Friendmaps is a tool that allows users to view all of their social networks on a single
map.

The affiliate marketing platform Jounce has gone live using MongoDB as the main
storage solution for its search data. As of August 2010, ~10 million offers are stored in
the database.

Virb Looking for a place to park your portfolio, your band, your website? Build an
elegantly simple website with Virb. You provide the content, we'll help with the rest —
for only $10/month.

Deal Machine is a streamlined CRM that makes sales fun and effective. We use
MongoDB as our main storage. It has helped us a lot to make the web app better and
more scalable.

arrivalguides.com is the largest network of free online (and pdf) travel guides.
arrivalguides.com recently launched a new site where they rewrote the whole
application switching from SQL server to MongoDB using the NoRM Driver for C#. The
website is purely driven by MongoDB as the database backend.

The Hype Machine keeps track of emerging music on the web. We use MongoDB to
accelerate storage and retrieval of user preferences, and other core site data.
MongoDB's web-native design and high performance in our workloads was what got
our attention. It's from the future!

http://www.peerindex.net/
http://www.sahibinden.com/
http://remembersaurus.com/
http://playshadelight.com/
http://ylastic.com/
http://www.brainrepublic.com/
http://www.friendmaps.com/
http://www.jounce.com/
http://virb.com/
http://dealmachine.net/
http://beta.arrivalguides.com/en
http://hypem.com/

Scrabb.ly

massivaly multiplayer
online serabife crossword

ChatPast

stock
gpedia

TravelPost
“17 soulgoal

A Eeeriienss

gi_Create your
.mobi™ FREE mobi site

M4 CoStore

Vuzz

bakodo

See also

®* MongoDB Apps
® Use Cases
® User Feedback

Scrabbly is a massively multiplayer online serabble crossword. Uses MongoDB
geospatial indexing.

® Building a Scrabble MMO in 48 Hours - Startup Monkeys Blog (September
2010)

ChatPast synchronizes your chat history from multiple chat clients (Live, Skype, etc.),
across multiple computers. Search them, slice them, and get just the data you want.
Find everything you've ever talked about. Business users can push important IM
conversations into SalesForce and 37 Signals products (Highrise, BaseCamp, etc)
seamlessly.

Stockopedia initially began using MongoDB for its internal analytics system - tracking
all activity around 20000+ stocks, sectors and investment topics. Stockopedia is now
confidently using the same foundation for building real time analytics, recommendation,
categorization and discovery features for both publishers and investors conducting and
publishing investment research on the Stockopedia platform.

TravelPost is a community built by travel enthusiasts for travel enthusiasts. Today, the
site has millions of reviews, photos and blogs. TravelPost uses MongoDB for backend
storage and analytics applications.

SoulGoal stores or caches all user data and facebook information in MongoDB.

Top Twitter Trends is an experimental and on-going project built with today's trending
and cutting-edge technologies such as node.js, nginx, and MongoDB.

bongi.mobi is a place for you to build your own mobi free site from your mobile device!
Technologies include: fast document orientated database (MongoDB), full handset
detection, image/font resizing (based on handset capabilities), mobile ad serving,
geolocation, multimedia (images, video, music), analytics and tracking, click-2-call,
SMS, email modules, 3rd party API integration.

CosStore is an online platform for data exchange, collaboration and data entry. CoStore
helps you with importing, transforming and collaborating on all sorts of data files.
CoStore also provides reporting tools, such as charts, graphs and network
visualizations. CoStore runs in the browser, so you can access it wherever you need it.
MongoDB is used as the backend,; it stores the data and also runs query steps, which
are MapReduce operations.

Vuzz answers questions like "What are everyone else's opinions?" through showing
people's ranking charts. At Vuzz, people can vote, talk about, create and share
rankings, and communicate with people that share the same interests as you. By
adding up people's votes and showing ranking charts, Vuzz wants to be your time
machine that shows people's interests and changes in trend from the past to current.
Vuzz has been listed on Killerstartups and jp.Techcrunch. Vuzz uses MongoDB as the
main applicatin database.

Bakodo is a barcode search engine with a social component that helps users make
informed decisions while they are shopping. Users can scan barcodes using the
camera in their mobile phone and get information about the products they are looking
at: where to buy it, lower prices, local stores, and most importantly, what their friends
think about it. Bakodo uses MongoDB to store their massive index of million of
products.

http://scrabb.ly/
http://www.startupmonkeys.com/2010/09/building-a-scrabble-mmo-in-48-hours/
http://chatpast.com/
http://www.stockopedia.co.uk/
http://www.travelpost.com
http://soulgoal.com/
http://www.toptwittertrends.com/
http://bongi.mobi/
http://costore.net/
http://vuzz.com
http://www.killerstartups.com/Web20/vuzz-com-share-what-you-like-with-everybody
http://jp.techcrunch.com/archives/jp-20100922-vuzz-is-a-social-ranking-site-that-can-vote-what-do-you-want-to-eat-today/
http://bako.do

Mongo-Based Applications

Please list applications that leverage MongoDB here. If you're using MongoDB for your application, we'd love to list you here! Email
meghan@210gen.com.

See Also

® Production Deployments - Companies and Sites using MongoDB
® Hosting Center

Applications Using MongoDB
CMS

HarmonyApp

Harmony is a powerful web-based platform for creating and managing websites. It helps connect developers with content editors, for
unprecedented flexibility and simplicity. For more information, view Steve Smith's presentation on Harmony at MongoSF (April 2010).

c5t

Content-management using TurboGears and Mongo

Websko

Websko is a content management system designed for individual Web developers and cooperative teams.
Graylog2

Graylog2 is an open source syslog server implementation that stores logs in MongoDB and provides a Rails frontend.
Analytics

Hummingbird

Hummingbird is a real-time web traffic visualization tool developed by Gilt Groupe

Events

Follow us on Facebook and Twitter to get all of the latest updates!

Mongo Conferences 10gen Weekly "Office

Hours"

Submit a proposal to present at an upcoming MongoDB conference! New York: Wednesdays 4 - 6:30pm ET

* Mongo Berlin October 4

One day, bilingual conference in Berlin, Germany. Talks in both
English and German.
Click here for conference agenda and registration.

* Mongo Chicago October 20

One day conference in Chicago, IL.
Click here for conference agenda and registration.

* Mongo DC November 18

One day conference in Washington, DC.
Click here for conference agenda and registration.

10gen holds weekly open "office hours" with whiteboarding, hack
sessions, etc., in NYC. Come over to 10gen headquarters to
meet the MongoDB team.

17 West 18th Street - 8th Floor
Between 5th & 6th Ave
* Please note that the doorbell says "ShopWiki"

San Francisco: Mondays 5 - 7pm PT

On the west coast? Stop by the Epicenter Cafe in San Francisco
on Mondays to meet 10gen Software Engineer Aaron Staple.
Look for a laptop with a "Powered by MongoDB" sticker.

Epicenter Cafe
764 Harrison St
Between 4th St & Lapu St

http://get.harmonyapp.com/
http://www.10gen.com/event_mongosf_10apr30#harmonyapp
http://bitbucket.org/percious/c5t/wiki/Home
http://websko.pl/
http://www.graylog2.org/
http://mnutt.github.com/hummingbird/
http://www.facebook.com/#!/pages/MongoDB/397955415556
http://www.twitter.com/mongodb
http://www.10gen.com/talkproposal
http://www.10gen.com/conferences/mongoberlin2010
http://www.10gen.com/conferences/mongochicago2010
http://www.10gen.com/conferences/mongodc2010
https://www.10gen.com/
http://www.epicentercafe.com/Epicenter_Cafe/Home.html

* Mongo SV December 3

One day conference in Mountain View, CA
Click here for conference agenda and registration.

MongoDB Webinars Training

* Deployment Best Practices ® San Francisco

October 12 at 12:30pm ET / 9:30am PT

Register

* Keeping your data safe: replication,
backup/restore, mongodump

November 1 at 12:30pm ET / 9:30am PT

Register

Check out the MongoDB Meetup groups:

New York MongoDB User Group

Conferences and

Meetups
United States

Northeast

Databases and Data Driven
Applications Series 1, Class 1:
Intro to OOP

girldevelopit

October 6 - October 27

New York, NY

Mongo and Ecommerce: A
Perfect Combination

Steve Francia, VP Engineering,
OpenSky

New York MongoDB User Group
October 19

Midwest

Mongo Chicago October 20

One day conference in Chicago,
IL.

Click here for conference agenda
and registration.

Inside MongoDB: The Internals
of an Open Source Database
Eliot Horowitz, CTO, 10gen
ChicagoDB

October 18

Europe Asia

West Coast

Silicon Valley NoSQL Meetup
A NoSQL Evening in Palo Alto
Palo Alto, CA

October 26

ZendCon 2010

Converting your MySQL app to
NoSQL with MongoDB
MongoDB for Mobile
Applications

Alvin Richards, 10gen

Santa Clara, CA

November 2

QCon 2010

Consistency Models in New
Generation Databases
Dwight Merriman, 10gen
San Francisco, CA
November 4

Southwest

South

Introduction to MongoDB
Mohammad Azam, Sogeti
Houston Tech Fest

MongoDB Training for Administrators
September 28 & 29
More Info and Registration

San Francisco MongoDB User Group

Mongo - one year later

Marcin Szajek (Programa.pl) and
Mciej Dziardziel (Adwertajzing)
PyCon Ukraine

October 23-24

MongoDB - The NoSQL
madness continues

Jan Krutisch

Codebits

Lisbon

November 11-13

Building Web Applications with
MongoDB

Roger Bodamer, SVP Products
and Engineering, 10gen
Devoxx

Metropolis Antwerp, Belgium
November 15

http://www.10gen.com/conferences/mongosv2010
http://www.10gen.com/webinars/deployment
http://www.10gen.com/webinars/migration
http://www.10gen.com/training
http://www.meetup.com/r/inbound/0/0/shareimg/http://www.meetup.com/New-York-MongoDB-User-Group/?a=shareimg
http://www.meetup.com/r/inbound/0/0/shareimg/http://www.meetup.com/an-Francisco-MongoDB-User-Group/?a=shareimg
http://www.meetup.com/New-York-MongoDB-User-Group/
http://www.meetup.com/San-Francisco-MongoDB-User-Group
http://www.meetup.com/girldevelopit/calendar/14842420/
http://www.meetup.com/girldevelopit/calendar/14842420/
http://www.meetup.com/girldevelopit/calendar/14842420/
http://www.meetup.com/New-York-MongoDB-User-Group/calendar/14481853/
http://www.meetup.com/New-York-MongoDB-User-Group/calendar/14481853/
http://www.10gen.com/conferences/mongochicago2010
http://www.10gen.com/conferences/mongochicago2010
http://gathers.us/events/chicagodb-october-meeting
http://www.meetup.com/Silicon-Valley-NoSQL/calendar/14727419/
http://zendcon.com/
http://qconsf.com/sf2010/presentation/Consistency+Models+in+New+Generation+Databases
http://www.houstontechfest.com/dotnetnuke/HoustonTechFest/Sessions/tabid/56/CodecampId/3/SessionId/205/Default.aspx
http://ua.pycon.org/
http://codebits.eu/intra/s/proposal/54
http://codebits.eu/intra/s/proposal/54
http://www.devoxx.com/display/Devoxx2K10/Building+Web+Applications+with+MongoDB
http://www.devoxx.com/display/Devoxx2K10/Building+Web+Applications+with+MongoDB

October 9

Media from Recent Events and Conferences

Slide Gallery | More Presentations and Video

If you're interested in having someone present MongoDB at your conference or meetup, or if you would like to list your MongoDB event on this
page, contact meghan at 10gen dot com. Want some MongoDB stickers to give out at your talk? Complete the Swag Request Form.

Video & Slides from Recent Events and Presentations

Table of Contents:

[MongoDB Conferences] [Ruby/Rails] [Python] [Alt.NET] [User Experiences] [More about MongoDB]

MongoDB Conferences

One-day conferences hosted by 10gen. 10gen develops and supports MongoDB.

MongoUK Video (June 2010)

MongoFR Video (June 2010)

MongoNYC (May 2010) and MongoSF (April 2010) Video
MongoSF (April 2010) Slides & Video

Ruby/Rails

Practical Ruby Projects with MongoDB
Alex Sharp, OptimisCorp
Ruby Midwest - June 2010

Scalable Event Analytics with MongoDB and Ruby
Jared Rosoff, Yottaa
RubyConfChina - June 26, 2010

The MongoDB Metamorphosis (Kyle Banker, 10gen)

Million Dollar Mongo (Obie Fernandez & Durran Jordan, Hashrocket)
Analyze This! (Blythe Dunham)

RailsConf

Baltimore, MD

June 7-10

MongoDB

Seth Edwards

London Ruby Users Group
London, UK

Wednesday April 14

Video & Slides

MongoDB: The Way and its Power
Kyle Banker, Software Engineer, 10gen
RubyNation

Friday April 9 & Saturday April 10
Reston, VA

Slides | Video

MongoDB Rules

Kyle Banker, Software Engineer, 10gen
Mountain West Ruby Conference

Salt Lake City, UT

Thursday March 11 & Friday March 12
Slides

MongoDB & Mongoid
Durran Jordan, Hashrocket
RubyJax

February 23, 2010

Video

http://www.10gen.com/swag
http://www.10gen.com/
http://skillsmatter.com/event/cloud-grid/mongouk
http://lacantine.ubicast.eu/categories/mongofr/
http://mongodb.blip.tv/
http://www.10gen.com/event_mongosf_10apr30
http://www.slideshare.net/drumwurzel/practical-ruby-projects-with-mongo-db-ruby-midwest-4777566
http://www.slideshare.net/jrosoff/scalable-event-analytics-with-mongodb-ruby-on-rails
http://en.oreilly.com/rails2010/public/schedule/detail/12005
http://en.oreilly.com/rails2010/public/schedule/detail/11265
http://en.oreilly.com/rails2010/public/schedule/detail/14166
http://en.oreilly.com/rails2010
http://lrug.org/meetings/2010/03/19/april-2010-meeting/
http://skillsmatter.com/podcast/ajax-ria/seth-edwards-mongodb/zx-486
http://rubynation.org/speakers#kyle_banker
http://www.slideshare.net/kbanker/mongodb-the-way-and-its-power
http://rubynation.blip.tv/file/3664683/
http://mtnwestrubyconf.org/2010/
http://www.slideshare.net/kbanker/mongodb-rules-mwrc-2010
http://vimeo.com/9864311

MongoDB Isn't Water

Kyle Banker, Software Engineer, 10gen
Chicago Ruby

February 2, 2010

Video | Slides | Photos

Introduction to Mongo DB
Joon Yu, RubyHead
teachmetocode.com
Nov-Dec, 2009
Screencasts

Python

How Python, TurboGears, and MongoDB are Transforming SourceForge.net
Rick Copeland, SourceForge.net

PyCon - Atlanta, GA

February 21, 2010

Slides

AIt.NET

.NET and MongoDB - Building Applications with NoRM and MongoDB
Alex Hung
July 28, 2010

User Experiences

The Future of Content Technologies

Scaling Web Applications with NonSQL Databases: Business Insider Case Study
lan White, Lead Developer, Business Insider

Gilbane Conference

San Francisco, CA

Thursday, May 20

Slides

Chartbeat and MongoDb - a perfect marriage

Kushal Dave, CTO, Chartbeat & Mike Dirolf, Software Engineer, 10gen
New York City Cloud Computing Meetup

New York, NY

May 18

Slides

Why MongoDB is Awesome

John Nunemaker, CTO, Ordered List
DevNation Chicago

May 15

Slides

Humongous Data at Server Density: Approaching 1 Billion Documents in MongoDB
David Mytton, Founder, Boxed Ice

Webinar

Wednesday May 5

Recording & Slides

Humongous Drupal
DrupalCon San Francisco
Karoly Negyesi, Examiner.com
Saturday April 17

Slides | Video

MongoDB: huMONGOus Data at SourceForge
Mark Ramm, Web Developer, SourceForge
QCon London

Thursday March 11

Slides

Migrating to MongoDB
Bruno Morency, DokDok
Confoo.ca

March 10 - 12

Slides

http://vimeo.com/9173770
http://www.slideshare.net/kbanker/mongodb-isnt-water-3072252
http://picasaweb.google.com/jangdiafoto/ChicagoRuby20100202#
http://blog.rubyhead.com/
http://www.teachmetocode.com/screencasts/tag/mongoDB
http://us.pycon.org/2010/conference/schedule/event/110/
http://vimeo.com/13804625
http://gilbanesf.com/conference_program.html#t8
http://www.slideshare.net/ibwhite/how-business-insider-uses-mongodb
http://www.meetup.com/nyccloudcomputing/calendar/13253018/
http://docs.google.com/present/view?id=0AbjNQDixwHSzZGhrOG5yMnJfNDZncmd2c3dnNg&hl=en
http://www.slideshare.net/jnunemaker/why-mongodb-is-awesome
http://www.10gen.com/webinars/event_boxedice_10may5
http://sf2010.drupal.org/conference/core-developer-summit
http://www.examiner.com/
http://www.slideshare.net/chx1975/mongodb-san-francisco-drupalcon-2010
http://www.archive.org/details/Mongodb-HumongousDrupal
http://qconlondon.com/london-2010/presentation/MongoDB:+huMONGOus+Data+at+SourceForge
http://qconlondon.com/london-2010/file?path=/qcon-london-2010/slides/MarkRamm_MongoDBHuMONGOusDataAtSourceForge.pdf
http://www.confoo.ca/en/2010/session/migrating-to-mongodb
http://www.slideshare.net/dokdok/confoo-migrating-to-mongo-db

More about MongoDB

Recording of Michael Dirolf on MongoDB @ E-VAN 07 June 2010

NoSQL-Channeling the Data Explosion

Dwight Merriman, CEO, 10gen

Inside MongoDB: the Internals of an Open-Source
Mike Dirolf, Software Engineer, 10gen

Gluecon

Denver, CO

Wednesday May 26 & Thursday May 27

Schema Design with MongoDB

Kyle Banker, Software Engineer, 10gen
Webinar

Tuesday April 27

Recording and Slides

Dropping ACID with MongoDB

Kristina Chodorow, Software Engineer, 10gen
San Francisco MySQL Meetup

San Francisco, CA

Monday, April 12

Video

Introduction to MongoDB

Mike Dirolf, Software Engineer, 10gen

Emerging Technologies for the Enterprise Conference
Philadelphia, PA

Friday, April 9

Slides

Indexing with MongoDB

Aaron Staple, Software Engineer, 10gen
Webinar

Tuesday April 6, 2010

Video | Slides

TechZing Interview with Mike Dirolf, Software Engineer, 10gen
Monday, April 5
Podcast

Hot Potato and MongoDB

New York Tech Talks Meetup

Justin Shaffer and Lincoln Hochberg
New York, NY

Tuesday March 30

Video

MongoDB Day

Geek Austin Data Series
Austin, TX

Saturday March 27
Photo

Mongo Scale!

Kristina Chodorow, Software Engineer, 10gen
Webcast

Friday March 26

Webcast

NoSQL Live Boston
Boston, MA

Thursday March 11

Recap with slides and MP3

MongoDB: How it Works

Mike Dirolf, Software Engineer, 10gen
Monday March 8, 12:30 PM Eastern Time
Slides

Intro to MongoDB
Alex Sharp, Founder / Lead Software Architect, FrothLogic

http://europevan.blogspot.com/2010/06/recording-of-michael-dirolf-on-mongodb.html
http://www.slideshare.net/mongodb/nosql-session-gluecon-may-2010
http://dirolf.com/2010/05/27/inside-mongodb.html
http://www.10gen.com/event_schemadesign_10apr27
http://www.sfmysql.org/calendar/12622481/?eventId=12622481&action=detail
http://www.ustream.tv/recorded/6146875
http://phillyemergingtech.com/sessions/intro-to-mongodb
http://www.chariotsolutions.com/downloads/presentations/show/309
http://www.10gen.com/event_indexing_10apr6
http://vivu.tv/portal/archive.jsp?flow=783-586-4282&id=1270584002677
http://www.slideshare.net/mongodb/indexing-with-mongodb
http://techzinglive.com/?p=192
http://www.meetup.com/NYC-Tech-Talks/calendar/12754545/
http://www.livestream.com/nytechtalks
http://geekaustin.org/2010/01/31/mongodb-day-geek-austin-data-series
http://www.flickr.com/photos/patramsey/4482017141/
http://www.phparch.com/tek�x-webcast-series/
http://www.phparch.com/2010/04/27/webcast-mongo-scale/
http://nosqlboston.eventbrite.com/
http://blog.10gen.com/post/452801966/nosql-live-boston-recap
http://www.slideshare.net/mdirolf/mongodb-how-it-works

LA WebDev Meetup
February 23, 2010
Slides

Introduction to MongoDB

Kristina Chodorow, Software Engineer, 10gen
FOSDEM - Brussels, Belgium

February 7, 2010

Video | Slides | Photos

If you're interested in having someone present MongoDB at your conference or meetup, or if you would like to list your MongoDB event on this

page, contact meghan at 10gen dot com.

Slide Gallery

Click here to visit our full listing of videos & slides from recent events and presentations.

Introduction to MongoDB

. I ~d

o Ehar&|GetyourSIideSharePIayIist
Ruby/Rails

eel clir

w Slideshare .., .\ gideshare Playlist
Java

L3 Y s

v Ehare|GetyourSIideSharePIayIist

MongoDB & Cloud Services

., 'S
w Slideshare .. . qideshare Playlist

Articles

User Experience

=] . i~

w Slideshare o, o ¢ Sideshare Playlist
Python

s N s

W Share|GetyourSlideSharePIatyIist
PHP

PN s

e Ehare|GetyourSIideSharePIalyIist

More About MongoDB

i I 'S
w Slideshare o, o ¢ Sideshare Playlist

See also the User Feedback page for community presentations, blog posts, and more.

Best of the MongoDB Blog

What is the Right Data Model? - (for non-relational databases)

Why Schemaless is Good

L]
L]
® The Importance of Predictability of Performance

® Capped Collections - one of MongoDB's coolest features
L]

°

L]

Using MongoDB for Real-time Analytics
Using MongoDB for Logging
http://blog.mongodb.org/tagged/best+of

Articles / Key Doc Pages
On Atomic Operations
Schema Design

Full Text Search in Mongo
MongoDB Production Deployments

Videos

® MongoDB Blip.tv Channel

Reaching into Objects - how to do sophisticated query operations on nested JSON-style objects

http://www.slideshare.net/drumwurzel/intro-to-mongodb
http://www.parleys.com/#sl=1&st=5&id=1864
http://www.scribd.com/doc/26506063/Introduction-To-MongoDB
http://www.snailinaturtleneck.com/blog/2010/02/08/fosdem-some-pictures/
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://www.slideshare.net/?src=multiwidget
http://www.slideshare.net/widgets/playlist
http://blog.mongodb.org/post/142940558/what-is-the-right-data-model
http://blog.mongodb.org/post/119945109/why-schemaless
http://blog.mongodb.org/post/133678552/databases-and-predictability-of-performance
http://blog.mongodb.org/post/116405435/capped-collections
http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics
http://blog.mongodb.org/post/172254834/mongodb-is-fantastic-for-logging
http://blog.mongodb.org/tagged/best+of
http://mongodb.blip.tv/

MongoDB for Rubyists (February 2010 Chicago Ruby Meetup)
Introduction to MongoDB (FOSDEM February 2010)

NY MySgl Meetup - NoSQL, Scaling, MongoDB

Teach Me To Code - Introduction to MongoDB

DCVIE

Benchmarks

If you've done a benchmark, we'd love to hear about it! Let us know at kristina at 10gen dot com.

March 9, 2010 - Speed test between django_mongokit and postgresql_psycopg2 benchmarks creating, editing, and deleting.

February 15, 2010 - Benchmarking Tornado's Sessions flatfile, Memcached, MySQL, Redis, and MongoDB compared.

January 23, 2010 - Inserts and queries against MySQL, CouchDB, and Memcached.

May 10, 2009 - MongoDB vs. CouchDB vs. Tokyo Cabinet

July 2, 2009 - MongoDB vs. MySQL

September 25, 2009 - MongoDB inserts using Java.

August 11, 2009 - MySQL vs. MongoDB vs. Tokyo Tyrant vs. CouchDB inserts and queries using PHP.

August 23, 2009 - MySQL vs. MongoDB in PHP: Part 1 (inserts), Part 2 (queries), aginst InnoDB with and without the query log and MyISAM.
November 9, 2009 - MySQL vs. MongoDB in PHP and Ruby inserts (original Russian, English translation)

Disclaimer: these benchmarks were created by third parties not affiliated with MongoDB. MongoDB does not guarantee in any way the
correctness, thoroughness, or repeatability of these benchmarks.

See Also

® http://blog.mongodb.org/post/472834501/mongodb-1-4-performance

FAQ

This FAQ answers basic questions for new evaluators of MongoDB. See also:

® Developer FAQ
® Sharding FAQ

MongoDB Intro FAQ

® MongoDB Intro FAQ
* What kind of database is the Mongo database?
What languages can | use to work with the Mongo database?
Does it support SQL?
Is caching handled by the database?
What language is MongoDB written in?
What are the 32-bit limitations?

What kind of database is the Mongo database?
MongoDB is an document-oriented DBMS. Think of it as MySQL but JSON (actually, BSON) as the data model, not relational. There are no

joins. If you have used object-relational mapping layers before in your programs, you will find the Mongo interface similar to use, but faster, more
powerful, and less work to set up.

What languages can | use to work with the Mongo database?
Lots! See the drivers page.

Does it support SQL?

No, but MongoDB does support ad hoc queries via a JSON-style query language. See the Tour and Advanced Queries pages for more
information on how one performs operations.

Is caching handled by the database?

http://vimeo.com/9173770
http://www.parleys.com/#id=1864&st=5&sl=2
http://www.leadit.us/hands-on-tech/MongoDB-High-Performance-SQL-Free-Database
http://www.teachmetocode.com/screencasts/21
http://ia301535.us.archive.org/2/items/dc_vie_09/dcvie09_mungo_db.ogg
http://www.peterbe.com/plog/speed-test-between-django_mongokit-and-postgresql_psycopg2
http://milancermak.posterous.com/benchmarking-tornados-sessions-0
http://www.idiotsabound.com/howd-that-mongo-get-so-fast
http://www.idiotsabound.com/did-i-mention-mongodb-is-fast-way-to-go-mongo
http://bcbio.wordpress.com/2009/05/10/evaluating-key-value-and-document-stores-for-short-read-data/
http://obvioushints.blogspot.com/2009/07/benchmarking-mongodb-vs-mysql.html
http://thinkberg.com/space/start/2009-09-25/1
http://jayant7k.blogspot.com/2009/08/document-oriented-data-stores.html
http://blog.jasonmooberry.com/2009/08/mongodb-and-symfony-yes-part-1-inserts/
http://blog.jasonmooberry.com/2009/08/mongodb-and-symfony-yes-part-2-simple-queries/
http://habrahabr.ru/blogs/webdev/74683/
http://translate.google.com/translate?js=y&prev=_t&hl=en&ie=UTF-8&u=http%3A%2F%2Fbit.ly%2F4D4Cd3&sl=auto&tl=en&history_state0=
http://blog.mongodb.org/post/472834501/mongodb-1-4-performance

For simple queries (with an index) Mongo should be fast enough that you can query the database directly without needing the equivalent of
memcached. The goal is for Mongo to be an alternative to an ORM nentached/ mysql stack. Some MongoDB users do like to mix it with
memcached though.

What language is MongoDB written in?

The database is written in C++. Drivers are usually written in their respective languages, although some use C extensions for speed.

What are the 32-bit limitations?

MongoDB uses memory-mapped files. When running on a 32-bit operating system, the total storage size for the server (data, indexes,
everything) is 2gb. If you are running on a 64-bit os, there is virtually no limit to storage size. See the blog post for more information.

Product Comparisons

Interop Demo (Product Comparisons)

Interop 2009 MongoDB Demo

Code: http://github.com/mdirolf/simple-messaging-service/tree/master

MongoDB, CouchDB, MySQL Compare Grid

pending...

CouchDB MongoDB MySQL

Data Model Document-Oriented (JSON) Document-Oriented (BSON) Relational

Data Types string,number,boolean,array,object string, int, double, boolean, date, link

bytearray, object, array, others

Large Objects Yes (attachments) Yes (GridFS) blobs?

(Files)

Horizontal CouchDB Lounge Auto-sharding (v1.6) ?

partitioning

scheme

Replication Master-master (with developer supplied Master-slave (and "replica sets") Master-slave
conflict resolution)

Object(row) One large repository Collection based Table based

Storage

Query Method Map/reduce of javascript functions to lazily = Dynamic; object-based query Dynamic; SQL
build an index per query language

Secondary Yes Yes Yes

Indexes

Atomicity Single document Single document Yes - advanced

Interface REST Native drivers ; REST add-on Native drivers

Server-side ? Map/Reduce, server-side javascript Yes (SQL)

batch data

manipulation

Written in Erlang C++ C++

Concurrency MVCC Update in Place

Control

Geospatial GeoCouch Yes. (As of June 2010, coordinate ?

Indexes system is cartesian. Spherical coming

soon.)

http://blog.mongodb.org/post/137788967/32-bit-limitations
http://github.com/mdirolf/simple-messaging-service/tree/master
http://www.json.org/
http://blog.mongodb.org/post/114440717/bson
http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://www.snailinaturtleneck.com/blog/2010/02/22/sleepy-mongoose-a-mongodb-rest-interface/
http://vmx.cx/cgi-bin/blog/index.cgi/geocouch-the-future-is-now:2010-05-03:en,CouchDB,Python,Erlang,geo

Distributed Eventually consistent (master-master Strong consistency. Eventually Strong consistency. Eventually

Consistency replication with versioning and version consistent reads from secondaries are = consistent reads from secondaries are
Model reconciliation) available. available.
See Also

® Comparing Mongo DB and Couch DB

Comparing Mongo DB and Couch DB

We are getting a lot of questions "how are mongo db and couch different?" It's a good question: both are document-oriented databases with
schemaless JSON-style object data storage. Both products have their place -- we are big believers that databases are specializing and "one size
fits all* no longer applies.

We are not CouchDB gurus so please let us know in the forums if we have something wrong.

MvCC

One big difference is that CouchDB is MVCC based, and MongoDB is more of a traditional update-in-place store. MVCC is very good for certain
classes of problems: problems which need intense versioning; problems with offline databases that resync later; problems where you want a large
amount of master-master replication happening. Along with MVCC comes some work too: first, the database must be compacted periodically, if
there are many updates. Second, when conflicts occur on transactions, they must be handled by the programmer manually (unless the db also
does conventional locking -- although then master-master replication is likely lost).

MongoDB updates an object in-place when possible. Problems require high update rates of objects are a great fit; compaction is not necessary.

Mongo's replication works great but, without the MVCC model, it is more oriented towards master/slave and auto failover configurations than to
complex master-master setups. With MongoDB you should see high write performance, especially for updates.

Horizontal Scalability

One fundamental difference is that a number of Couch users use replication as a way to scale. With Mongo, we tend to think of replication as a
way to gain reliability/failover rather than scalability. Mongo uses (auto) sharding as our path to scalabity (sharding is GA as of 1.6). In this sense
MongoDB is more like Google BigTable. (We hear that Couch might one day add partitioning too.)

Query Expression

Couch uses a clever index building scheme to generate indexes which support particular queries. There is an elegance to the approach, although
one must predeclare these structures for each query one wants to execute. One can think of them as materialized views.

Mongo uses traditional dynamic queries. As with, say, MySQL, we can do queries where an index does not exist, or where an index is helpful but
only partially so. Mongo includes a query optimizer which makes these determinations. We find this is very nice for inspecting the data
administratively, and this method is also good when we don't want an index: such as insert-intensive collections. When an index corresponds

perfectly to the query, the Couch and Mongo approaches are then conceptually similar. We find expressing queries as JSON-style objects in
MongoDB to be quick and painless though

Atomicity

Both MongoDB and CouchDB support concurrent modifications of single documents. Both forego complex transactions involving large numbers
of objects.

Durability
The products take different approaches to durability. CouchDB is a "crash-only" design where the db can terminate at any time and remain
consistent. MongoDB take a different approach to durability. On a machine crash, one then would run a repairDatabase() operation when

starting up again (similar to MyISAM). MongoDB recommends using replication -- either LAN or WAN -- for true durability as a given server could
permanently be dead. To summarize: CouchDB is better at durability when using a single server with no replication.

Map Reduce

Both CouchDB and MongoDB support map/reduce operations. For CouchDB map/reduce is inherent to the building of all views. With MongoDB,
map/reduce is only for data processing jobs but not for traditional queries.

Javascript

Both CouchDB and MongoDB make use of Javascript. CouchDB uses Javascript extensively including in the building of views .

MongoDB supports the use of Javascript but more as an adjunct. In MongoDB, query expressions are typically expressed as JSON-style query
objects; however one may also specify a javascript expression as part of the query. MongoDB also supports running arbitrary javascript functions

http://blog.mongodb.org/post/475279604/on-distributed-consistency-part-1
http://blog.mongodb.org/post/475279604/on-distributed-consistency-part-1
http://blog.mongodb.org/post/475279604/on-distributed-consistency-part-1
http://groups.google.com/group/mongodb-user/browse_thread/thread/757d7f1e5f1765e8
http://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://wiki.apache.org/couchdb/Introduction_to_CouchDB_views

server-side and uses javascript for map/reduce operations.

REST

Couch uses REST as its interface to the database. With its focus on performance, MongoDB relies on language-specific database drivers for
access to the database over a proprietary binary protocol. Of course, one could add a REST interface atop an existing MongoDB driver at any
time -- that would be a very nice community project. Some early stage REST implementations exist for MongoDB.

Performance

Philosophically, Mongo is very oriented toward performance, at the expense of features that would impede performance. We see Mongo DB
being useful for many problems where databases have not been used in the past because databases are too "heavy". Features that give
MongoDB good performance are:

client driver per language: native socket protocol for client/server interface (not REST)
use of memory mapped files for data storage

collection-oriented storage (objects from the same collection are stored contiguously)
update-in-place (not MVCC)

written in C++

Use Cases

It may be helpful to look at some particular problems and consider how we could solve them.

* if we were building Lotus Notes, we would use Couch as its programmer versioning reconciliation/MVCC model fits perfectly. Any
problem where data is offline for hours then back online would fit this. In general, if we need several eventually consistent master-master
replica databases, geographically distributed, often offline, we would use Couch.

® if we had very high performance requirements we would use Mongo. For example, web site user profile object storage and caching of
data from other sources.

® for a problem with very high update rates, we would use Mongo as it is good at that. For example, updating real time analytics counters
for a web sites (pages views, visits, etc.)

Generally, we find MongoDB to be a very good fit for building web infrastructure.
Licensing

If you are using a vanilla MongoDB server from either source or binary packages you have NO obligations. You can ignore the
rest of this page.

* MongoDB Database

® Free Software Foundation's GNU AGPL v3.0.

® Commercial licenses are also available from 10gen.
® Drivers:

* mongodb.org "Supported Drivers": Apache License v2.0.

® Third parties have created drivers too; licenses will vary there.
® Documentation: Creative Commons.

From our blog post on the AGPL:

Our goal with using AGPL is to preserve the concept of copyleft with MongoDB. With traditional GPL, copyleft was associated
with the concept of distribution of software. The problem is that nowadays, distribution of software is rare: things tend to run in
the cloud. AGPL fixes this “loophole” in GPL by saying that if you use the software over a network, you are bound by the
copyleft. Other than that, the license is virtually the same as GPL v3.

Note however that it is never required that applications using mongo be published. The copyleft applies only to the mongod and
mongos database programs. This is why Mongo DB drivers are all licensed under an Apache license. Your application, even
though it talks to the database, is a separate program and “work”.

If you intend to modify the server and distribute or provide access to your modified version you are required to release the full source code for the
modified MongoDB server. To reiterate, you only need to provide the source for the MongoDB server and not your application (assuming you use
the provided interfaces rather than linking directly against the server).

A few example cases of when you'd be required to provide your changes to MongoDB to external users:

Case Required
Hosting company providing access MongoDB servers = yes

Public-facing website using MongoDB for content yes

http://blog.mongodb.org/post/171353301/using-mongodb-for-real-time-analytics
http://www.fsf.org/licensing/licenses/agpl-3.0.html
http://www.apache.org/licenses/LICENSE-2.0
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://blog.mongodb.org/post/103832439/the-agpl

Internal use website using MongoDB no

Internal analysis of log files from a web site no

Regardless of whether you are required to release your changes we request that you do. The preferred way to do this is via a github fork. Then
we are likely to include your changes so everyone can benefit.

Windows

Windows Quick Links and Reference Center

Running MongoDB on Windows

See the Quickstart page for info on how to install and run the database for the first time.

Running as a Service

See the Windows Service page.

The MongoDB Server

Get pre-built binaries on the Downloads page. Binaries are available for both 32 bit and 64 bit Windows. MongoDB uses memory-mapped files for
data storage, so for servers managing more than 2GB of data you will definitely need the 64 bit version (and a 64 bit version of Windows).

Writing Apps
You can write apps in almost any programming language — see the Drivers page. In particular C#, .NET, PHP, C and C++ work just fine.

® C Sharp Language Center

Building

We recommend using the pre-built binaries, but Mongo builds fine with Visual Studio 2008 and 2010. See the Building for Windows page.

Versions of Windows

We have successfully ran MongoDB (mongod etc.) on:

® Windows Server 2008 R2 64 bit
® Windows 7 (32 bit and 64 bit)

® Windows XP

® Vista

International Docs

1, Most documentation for MongoDB is currently written in English. We are looking for volunteers to contribute documentation in
other languages. If you're interested in contributing to documentation in another language please email roger at 10gen dot
com.

Language Homepages

™ Deutsch
| Espafiol
| Francais
['hu.png! Magyar]
[B italiano

]
Portugués
|

http://github.com/mongodb/mongo
http://www.mongodb.org/display/DOCSCN
http://www.mongodb.org/display/DOCSDE
http://www.mongodb.org/display/DOCSES
http://www.mongodb.org/display/DOCSFR
http://www.mongodb.org/display/DOCSIT
http://www.mongodb.org/display/DOCSJP
http://www.mongodb.org/display/DOCSPT
http://www.mongodb.org/display/DOCSRU

Books

Now Available

MongoDB: The Definitive Guide
By Kristina Chodorow and Mike Dirolf

Available for Pre-Order

The Definitive Guide to MongoDB: The NoSQL Database for Cloud and Desktop Computing

By Peter Membrey

MongoDB for Web Development
By Mitch Pirtle

MongoDB in Action
by Kyle Banker

Doc Index

Space Index

0-9..5 A..13
F..7 G..9
L..8 M..31
R..27 S..28

.0 Y..0
0-9

=] 1.0 Changelist
Wrote MongoDB. See documentation

=]11 Development Cycle
|=] 1.2.x Release Notes

N 4 2 IT @

New Features More indexes per collection Faster index creation Map/Reduce Stored
JavaScript functions Configurable fsync time Several small features and fixes DB Upgrade
Required There are some changes that will require doing an upgrade ...

IJ 1.4 Release Notes

We're pleased to announce the 1.4 release of MongoDB. 1.4 is a drop in replacement for 1.2.

To upgrade you just need to shutdown mongod, then restart with the new binaries. (Users
upgrading from release 1.0 should review the 1.2 release notes 1.2.x ...

IJ 1.6 Release Notes

0..13
U..13
'@#$...0

A

1PN Sample Configuration Session
following example uses two shar
test server. In addition to the scri
machine ...

|=] About

I_'I About the local database
mongod}} reserves the database
Using the database for enduser ¢
replicate to other servers. Put ...

1 Adding a New Set Member
Adding a new node to an existing
recent copy of the data from ano

http://www.mongodb.org/display/DOCSRS
http://www.amazon.com/gp/product/1449381561?ie=UTF8&tag=wwwmongodborg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1449381561
http://www.amazon.com/gp/product/1430230517?ie=UTF8&tag=wwwmongodborg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=1430230517
http://www.amazon.com/gp/product/0321705335?ie=UTF8&tag=wwwmongodborg-20&linkCode=as2&camp=1789&creative=9325&creativeASIN=0321705335
http://manning.com/banker/

MongoDB 1.6 is a dropin replacement for 1.4. To upgrade, simply shutdown {{mongod}} then
restart with the new binaries. \ Please note that you should upgrade to the latest version of
whichever driver you're using. Certain drivers, including the Ruby driver, will require the
upgrade ...

B

[=| Backups
Several strategies exist for backing up MongoDB databases. A word of warning: it's not
safe to back up the mongod data files (by default in /data/db/) while the database is running
and writes are occurring; such a backup may turn out to be corrupt. ...

L= Benchmarks
you've done a benchmark, we'd love to hear about it\! Let us know at kristina at 10gen
dot com. March 9, 2010 Speed test between djangomongokit and postgresqlpsycopg2
http://www.peterbe.com/plog/speedtestbetweendjangomongokitandpostgresqlpsycopg2
benchmarks creating, editing, and deleting ...

|=] Books
Now Available By Kristina Chodorow and Mike Dirolf Available for PreOrder By Peter Membrey
By Mitch Pirtle !bankercover.jpg! MongoDB in Action http://manning.com/banker/ by Kyle
Banker

[=| Boost 1.41.0 Visual Studio 2010 Binary
OLD and was for the VS2010 BETA. See the new Boost and Windows page instead. The
following is a prebuilt boost http://www.boost.org/ binary (libraries) for Visual Studio 2010 beta
2. The MongoDB vcxproj files assume this package is unzipped under c:\Program ...

[=| Boost and Windows
Visual Studio 2010 Prebuilt from mongodb.org Click here
http://www.mongodb.org/pages/viewpageattachments.action?pageld=12157032 for a prebuilt
boost library for Visual Studio 2010. 7zip http://www.7zip.org/ format. Building Yourself
Download the boost source ...

|=] BsoN
bsonspec.org http://www.bsonspec.org/ BSON is a bin-aryen-coded seri-al-iz-a-tion of JSONlike
doc-u-ments. BSON is designed to be lightweight, traversable, and efficient. BSON, like JSON,
supports the embedding of objects and arrays within other objects ...

1 bsonspec.org

[=| Adding an Arbiter
Arbiters are nodes in a replica se
become the primary node (or eve
(e.g. if a set only has two membe

(=] Admin Uls
Several administrative user intert
http://blog.timgourley.com/post/4
of Mongo Futon4Mongo http://git
#MongoVUE Mongui ...

(=] Admin Zone
Community AdminRelated Article
http://blog.boxedice.com/2010/0Z
http://blog.timgourley.com/post/4
http://taglconsulting.com/blog/mi

[=| Advanced Queries
Introduction MongoDB offers a ris
Queries in MongoDB are represe
database. For example: //

(=] Aggregation
Mongo includes utility functions v
advanced aggregate functions ce
Count {{count()}} returns the nunmr

(=] Amazon EC2
MongoDB runs well on Amazon |
regard. Instance Types MongoDlI
use a 64 ...

(=] Architecture and Components
MongoDB has two primary comp
core database server. Inr
use mysqgld on a server ...

(=] Articles
See also the User Feedback DO
the MongoDB Blog What is the R
(for nonrelational databases) Wh

[=| Atomic Operations
MongoDB supports atomic opera
complex transactions for a numb
slow. Mongo DB's goal is

C

[=] ¢ Language Center
C Driver {}The MongoDB C Drive
super strict for ultimate portability
README http://github.com/mong

=lc Sharp Language Center
C# Drivers mongodbcsharp drive
http://code.google.com/p/simpler
http://gist.github.com/218388 Col

=] ¢ Tutorial
document is an introduction to us
Quickstart for details. Next, you r
guide for a language independen

[=| c++ BSON Library
Overview The MongoDB C drivel
http://www.bsonspec.org/). This |
one is not using MongoDB at all.

[=| c++ Language Center
C\ driver is available for commun
uses some core MongoDB code
been compiled successfully on Li

(=] c++ Tutorial
document is an introduction to us
Quickstart for details. Next, you r
guide for a language independen

|_|_ Caching
Memory Mapped Storage Engine
all disk I1/0. Using this stre

(=] Building
section provides instructions on setting up your environment to write Mongo drivers or other
infrastructure code. For specific instructions, go to the document that corresponds to your
setup. Note: see the Downloads DOCS:Downloads page for prebuilt binaries\! Subsections of
this section ...

[=| Building Boost
MongoDB uses the www.boost.org Boost C\ libraries. Windows See also the prebuilt libraries
http://www.mongodb.org/pages/viewpageattachments.action?pageld=12157032 page. By
default c:\boost\ is checked for the boost files. Include files should be under \boost\boost ...

[=| Building for FreeBSD
FreeBSD 8.0 and later, there is a mongodb port you can use. For FreeBSD <= 7.2: # Get the
database source: http://www.github.com/mongodb/mongo. # Update your ports tree: $ sudo
portsnap fetch && portsnap extract The packages that come by defaulton 7.2 ...

[="| Building for Linux
General Instructions # Install Dependencies see platform specific below # get source git clone
git://github.com/mongodb/mongo.git # pick a stable version unless doing true dev git tag | #
Switch to a stable branch (unless ...

(=] Building for OS X
set up your OS X computer for MongoDB development: Upgrading to Snow Leopard If you
have installed Snow Leopard, the builds will be 64 bit \\ so if moving from a previous OS
release, a bit more setup may be required ...

[=| Building for Solaris
MongoDB server currently supports little endian Solaris operation. (Although most
drivers not the database server work on both.) Community: Help us make this rough page
better please\! (And help us add support for big ...

[=1 Building for Windows
MongoDB can be compiled for Windows (32 and 64 bit) using Visual C. SCons
http://www.scons.org/ is the make mechanism, although a .vcproj/.sin is also included in the
project for convenience when using the Visual Studio IDE. There are several dependencies ...

[=| Building Spider Monkey
MongoDB uses SpiderMonkey http://www.mozilla.org/js/spidermonkey/ for serverside
Javascript execution. The mongod project requires a file js.lib when linking. This page details
how to build js.lib. Note: V8 http://code.google.com/p/v8/ Javascript support is under ...

(=] Building SpiderMonkey

[=| Building the Mongo Shell on Windows
You can build the mongo shell with either scons or a Visual Studio 2010 project file. Scons
scons mongo Visual Studio 2010 Project File A VS2010 vexproj file is availabe for building the
shell. From the mongo directory open ...

[=1 Building with Visual Studio 2008
MongoDB can be compiled for Windows (32 and 64 bit) using Visual C. SCons
http://www.scons.org/ is the make mechanism, although a solution file is also included in the
project for convenience when using the Visual Studio IDE. There are several dependencies
exist ...

[=| Building with Visual Studio 2010
MongoDB can be compiled for Windows (32 and 64 bit) using Visual C. SCons
http://www.scons.org/ is the make mechanism, although a solution file is also included in the
project for convenience when using the Visual Studio IDE. There are several dependencies
exist ...

This has several implications: Th

[=| capped Collections
Capped collections are fixed size
based on insertion order). In add
for the objects in the collection; tt

[=| centOS and Fedora Packages
10gen now publishes yuminstalle
only for the moment). For each re
mongostableserver, mongostable

[=| Checking Server Memory Usage
Checking using DB Commands 1
{}add: how to interpret. wt
memorymapped files; thus the m

[= Clone Database
MongoDB includes commands fc
name on one server to another //
on the same ...

(=] Collections
MongoDB collections are essenti
relational database tables. Detall
are usually have the same struct

=] command Line Parameters
MongoDB can be configured via
currently supported set of comm:
./mongod help Information on usi

(=] commands
Introduction The Mongo databas:
database to perform special oper
Commands A command is sent t

(=] community
General Community Resources |
general questions about using, ¢
to everyone IRC chat irc://irc.free

(] Community Info

[=| comparing Mongo DB and Couch D
We are getting a lot of questions
documentoriented databases wit|
we are big believers that databas

[=| Configuring Sharding
Introduction This document desc
requires, at minimum, three com|
process. For testing ...

[=| connecting
C\ driver includes several classe:
will want to instantiate either a DI
our normal connection class for ¢

[=| Connecting Drivers to Replica Sets
Ideally a MongoDB driver can co
automatically find the right set m«
general steps are: # The user ...

=l Connecting to Replica Sets from Clie
Most drivers have been updated
drivers support connecting to a re
comma separated list of host ...

[=| connections
MongoDB is a database server: i
when you start MongoDB, you wi
waiting ...

1 Contributing to the Documentation
Qualified volunteers are welcome

|=] contributing to the Perl Driver
easiest way to contribute is to file
like to help code the driver, read

|=] contributors
10gen Contributor Agreement htt

|_|_ Conventions for Mongo Drivers

D

[=| Data Center Awareness
1.6.0 build of replica sets does not support much in terms of data center awareness. However
additional functionality will be added in the future. Below are some suggestions configurations
which work today. Primary plus DR site Use one site ...

|="| pata Processing Manual
DRAFT TO BE COMPLETED. This guide provides instructions for using MongoDB batch data
processing oriented features including map/reduce DOCS:MapReduce. By "data processing",
we generally mean operations performed on large sets of data, rather than small ...

|=| Data Types and Conventions
MongoDB (BSON) Data Types Mongo uses special data types in addition to the basic JSON
types of string, integer, boolean, double, null, array, and object. These types include date,
object id Object IDs, binary data, regular ...

|=| Database Internals
section provides information for developers who want to write drivers or tools for MongoDB, \
contribute code to the MongoDB codebase itself, and for those who are just curious how it
works internally. Subsections of this section

|=] patabase Profiler
Mongo includes a profiling tool to analyze the performance of database operations. See also

the currentOp DOCS:Viewing and Terminating Current Operation command. Enabling Profiling

To enable profiling, from the {{mongo}} shell invoke: > db.setProfilingLevel(2); >
db.getProfilingLevel() 2 Profiling ...

|=] Database References
MongoDB is nonrelational (no joins), references ("foreign keys") between documents are

generally resolved clientside by additional queries to the server. Two conventions are common

for references in MongoDB: first simple manual references, and second, the DBRef standard,
which many drivers support ...

|=] Databases
Each MongoDB server can support multiple databases. Each database is independent, and
the data for each database is stored separately, for security and ease of management. A

database consists of one or more collections, the documents (objects) in those collections, and

an optional set ...

|=| DBA Operations from the Shell
page lists common DBAclass operations that one might perform from the MongoDB shell
DOCS:mongo The Interactive Shell. Note one may also create .js scripts to run in the shell for
administrative purposes. help show help show ...

[=| dbshell Reference
Command Line {{\help}} Show command line options {{\nodb}} Start without a db, you can
connect later with {{new Mongo()}} or {{connect()}} {{\shell}} After running a .js file from the
command line, stay in the shell rather than ...

|=] pesign overview

1 Developer FAQ
Also check out Markus Gattol's excellent FAQ on his website
http://sunoano.name/ws/publicxhtml/mongodb.html. What's a "namespace"? MongoDB stores

BSON objects in collections. The concatenation of the database name and the collection name

(with a period in between) is called a namespace ...

[=| Developer Zone
Tutorial Shell mongo The Interactive Shell Manual Databases Collections Indexes Data Types
and Conventions GridFS Inserting Updating Querying Removing Optimization Developer FAQ
Cookbook http://cookbook.mongodb.org If you have a comment or question about anything,
please ...

(=] Diagnostic Tools
|=| Django and MongoDB

[="| Do I Have to Worry About SQL Injection
Generally, with MongoDB we are not building queries from strings, so traditional SQL Injection
http://en.wikipedia.org/wiki/SQLinjection attacks are not a problem. More details and some
nuances are covered below. MongoDB queries are represented as BSON objects. Typically
the programming ...

Interface Conventions It is desira
language, and when they do ada
consistent across drivers is desir

(] cookbook.mongodb.org
[=| Creating and Deleting Indexes
|=I cursors

E

[=| Emacs tips for MongoDB work
You can edit confluence directly
http://code.google.com/p/conflue
http://mongodb.onconfluence.cor

|=] Error codes
Error Code \\ Description \\ Comr
values must be unique in a collec

|_|_ Error Handling in Mongo Drivers
an error occurs on a query (or ge
has a first field guaranteed to hay

[=| Events
Follow us on Facebook http://ww
http://www.twitter.com/mongodb
Submit a proposal http://www.10:

[=| Excessive Disk Space
You may notice that for a given s
the database. There are s
size. (This is done to prev

|=1 Doc Index

|=] Document-Oriented Datastore
|=] bocumentation

|=] Dot Notation

|=] Dot Notation

[=| Dot Notation (Reaching into Objects)
MongoDB is designed for store JSONSstyle objects. The database understands the
structure of these objects and can reach into them to evaluate query expressions. Let's
suppose we have some objects of the form: > db.persons.findOne() { name: "Joe", address: ,
likes: 'scuba’, 'math ...

|=] pownloads
See also #Packages. Version OS X 32 bit OS X 64 bit Linux 32 bit Linux 64 bit Windows 32 bit
Windows 64bit Solaris i86pc Solaris 64 Source Date Change ...

|=] priver and Integration Center

[=| Driver Syntax Table
wiki generally gives examples in JavaScript, so this chart can be used to convert those
examples to any language. JavaScript Python PHP Ruby Java C\ Perl \\ \\ {{array()}} \\
{{BasicDBList}} BSONODbj\\ {} {} {{new stdClass}} {} {{BasicDBObject}} BSONODbj {} \ \

{{array(x ...

|=] Driver Testing Tools
Object IDs driverOIDTest for testing toString > db.runCommand

[=| Drivers
MongoDB currently has client support for the following programming languages: mongodb.org
Supported C C Language Center C\ C Language Center Java Java Language Center
Javascript Javascript Language Center Perl Perl Language Center ...

[=| Durability and Repair
Single Server Durability The v1.8 release of MongoDB will have single server durability. You
can follow the Jira here : http://jira.mongodb.org/browse/SERVER980. We recommend using
replication to keep copies of data for now and likely forever as a single server ...

F G

(=] FAQ 1 Geospatial Indexing
FAQ answers basic questions for new evaluators of MongoDB. See also: Developer FAQ v1.3.3\ MongoDB supports twodi
DOCS:Sharding FAQ MongoDB Intro FAQ What kind of database is the Mongo database? as "find me the closest N items tc
MongoDB is an documentoriented DBMS. Think of it as MySQL but JSON (actually ... closest N museums to my locatic

[="| Feature Checklist for Mongo Drivers [=| getLastError
Functionality Checklist This section lists tasks the driver author might handle. Essential BSON Most drivers, and the db shell, st
serialization/deserialization Basic operations: {{query}}, {{save}}, {{update}}, {{remove}}, operation. Database commands
{{ensurelndex}}, {{findOne}}, {{limit}}, {{sort}} Fetch more data from a cursor when necessary ... primarily useful for write ...

[=| File Based Configuration [=| Getting Started

addition to accepting command line parameters, MongoDB can also be configured using a
configuration file. A configuration file to use can be specified using the {{\f}} or {{\\config}}
command line options. On some packaged installs of MongoDB (for example Ubuntu & Debian

=] Getting the Software
Placeholder $$$ TODO

|=] Git commit Rules
commit messages should have tt

= findandmodify Command that a glance can tell the basics ¢

Find and Modify (or Remove) v1.3.0 and higher MongoDB 1.3\ supports a "find, modify, and B
return” command. This command can be used to atomically modify a document (at most =] GridFs

one) and return it. Note that, by default, the document returned will not include the GridFS is a specification for storil

modifications made on the update ... spec DOCS:GridFS Specificatior
[=| Frequently Asked Questions - Ruby . DOCS:BSON objects. Ho

list of frequently asked questions about using Ruby with MongoDB. If you have a question (=] GridFS in Ruby

you'd like to have answered here, please add it in the comments. Can | run \insert command GridFS, which stands for "Grid Fi

name here\ from the Ruby driver? Yes ... into manageable chunks and stol

(=] fsync Command achieve this: one collection store

Version 1.3.1 and higher The fsync command allows us to flush all pending writes to [=| GridFS Specification

datafiles. More importantly, it also provides a lock option that makes backups easier. Introduction GridFS is a storage !

fsync Command The fsync command forces the database to flush all ... chunks, usually 256k in size. Eac
|_|' Full Text Search in Mongo the file, including the filename, cc

Introduction Mongo provides some functionality that is useful for text search and tagging. [=| GridFS Tools

Multikeys (Indexing Values in an Array) The Mongo multikey feature can automatically index File Tools {{mongofiles}} is a tool

arrays of values. Tagging is a good example of where this feature is useful. Suppose you ... /mongofiles list connected to: 12

/mongofiles list connected to: 12

|=T] Halted Replication

instructions are for master/slave replication. For replica sets, see DOCS:Resyncing a Very
Stale Replica Set Member instead. If you're running mongod with masterslave replication
DOCS:Master Slave, there are certain scenarios where the slave will halt replication because

@ Home

Events Follow us on Facebook http://www.facebook.com/#!/pages/MongoDB/397955415556
and Twitter http://www.twitter.com/mongodb to get all of the latest updates\! MongoDB
Conferences: Mongo Chicago http://bit.ly/mongochicago \ October 20 Mongo DC

http://bit.ly/mongodc2010 ...

|=] Hosting Center

CloudStyle provides cloudstyle hosted MongoDB instances is currently in private beta
Dedicated Servers offers preconfigured, dedicated MongoDB servers supports MongoDB on
its private cloud. VPS 's is an excellent choice for . offers instant configuration and deployment

of MongoDB ...

(=] How does concurrency work

[="] How to do Snapshotted Queries in the Mongo Database

document refers to query snapshots. For backup snapshots of the database's datafiles, see the
fsync lock page fsync Command. MongoDB does not support full pointintime snapshotting.
However, some functionality is available which is detailed below. Cursors A MongoDB query ...

mongos For sharded DOCS:Sharding environments, mongos can perform any number of
operations concurrently. This results in downstream operations to mongod instances.
Execution of operations at each mongod is independent; that is, one mongod does not block

another. mongod The original mongod ...

|_|_ HowTo
(=1 Http Interface

J

REST Interfaces Sleepy Mongoose (Python) Sleepy Mongoose
http://www.snailinaturtleneck.com/blog/2010/02/22/sleepymongooseamongodbrestinterface/ is
a full featured REST interface for MongoDB which is available as a separate project. MongoDB
Rest (Node.js) MongoDB Rest http://github.com/tdegrunt/mongodbrest is an alpha ...

|=] Java - Saving Objects Using DBObject

Java driver provides a DBObject interface to save custom objects to the database. For
example, suppose one had a class called Tweet that they wanted to save: public class Tweet
implements DBObject Then you can say: Tweet myTweet = new Tweet ...

[=| Java Driver Concurrency

Java MongoDB driver is thread safe. If you are using in a web serving environment, for
example, you should create a single Mongo instance, and you can use it in every
request. The Mongo object maintains an internal pool of connections ...

|=] Java Language Center

Basics Tutorial Java Tutorial AP Documentation http://api.mongodb.org/java/index.html
Downloads http://github.com/mongodb/mongojavadriver/downloads Specific Topics
Concurrency Java Driver Concurrency Saving Objects Java Saving Objects Using DBObject

Data ...

[="| Implementing Authentication in a Dri
current version of Mongo suppor
in the context of a particular data
database in question. The {{admi

[=| Import Export Tools
you just want to do DOCS:Clone
with the raw data (the documents
(capped ...

[=] Index-Related Commands
Create Index {{ensurelndex()}} is
the {{system.indexes}} table. > dI
Note: Once you've inserted the ir

=] Indexes
Indexes enhance query performe
application will need so that you
MongoDB is relatively easy. Inde

(] Indexes in Mongo

[= Indexing Advice and FAQ
We get a lot of questions about it
to keep in mind, though. First, inc
techniques for building efficient ir

=] Indexing as a Background Operation
Slaves and replica secondaries k
when using background:true on t
builds there. By default the {{ensI

(=] Inserting
When we insert data into Mongol
to JSON, Python dictionaries, an
documentorientation and describ

(=] Installing the PHP Driver

[=| Internal Commands
Most commands Commands hav
primarily internal and administrat
, "ok" : 1} > admindb.$cmd.findC

= Internals
Cursors Tailable Cursors See p/c
OptionCursorTailable = 2 in the {
results when ...

[=| International Docs
Most documentation for MongoD
documentation in other language
email roger at 10gen dot com. Le

[= International Documentation

[=| Internationalized Strings
MongoDB supports UTF8 for strii
UTF8.) Generally, drivers for eac
when serializing and deserializin

(=] Interop Demo (Product Comparisons
Interop 2009 MongoDB Demo C

(=] Introduction - How Mongo Works
K

[=| Kernel class rules
new classes By default, use {{ex|
constructor and assignment. non
when the compiler insists otherw

[=| Kernel code style
case Use camelCase for most {{
If your inline function is a single i
performance ...

[=| Kernel concurrency rules
All concurrency code must be ple
rules are listed below. Don't brea
concensus ...

|=] kernel exception architecture

(=] Java Tutorial
Introduction This page is a brief overview of working with the MongoDB Java Driver. For more
information about the Java API, please refer to the online APl Documentation for Java Driver
http://api.mongodb.org/java/index.html A Quick Tour Using the Java driver is very ...

(=] Java Types
Object Ids {{com.mongodb.Objectld}}
http://api.mongodb.org/java/0.11/com/mongodb/Objectld.html is used to autogenerate unique
ids. Objectld id = new Objectld(); Objectld copy = new Objectld(id); Regular Expressions The
Java driver uses {{java.util.regex.Pattern}} http://java.sun.com ...

=] Javascript Language Center
MongoDB can be Used by clients written in Javascript; Uses Javascript internally serverside
for certain options such as map/reduce; Has a shell DOCS:mongo The Interactive Shell that is
based on Javascript for administrative purposes. node.JS and V8 See the node.JS page.
node.JS ...

|=] Job Board
Redirecting

1 Joyent
prebuilt DOCS:Downloads MongoDB Solaris 64 binaries work with Joyent accelerators.
Some newer gcc libraries are required to run \\ see sample setup session below. $ # assuming
a 64 bit accelerator $ /usr/bin/isainfo kv ...

[=] 35 Benchmarking Harness
CODE: db.foo.drop(); db.foo.insert() ops = { op : "findOne" , ns : "test.foo" , query : } for (x = 1;
x<=128; x=2){ res = benchRun() print("threads: " x "\t queries/sec: " res.query) } More info:
http://github.com/mongodb/mongo/commit/3db3cb13dc1c522db8b59745d6¢c74b0967f1611c¢

|_|_ JVM Languages
moved to Java Language Center

L

(=] Language Support

[=| Last Error Commands
Since MongoDB doesn't wait for a response by default when writing to the database, a couple
commands exist for ensuring that these operations have succeeded. These commands can be
invoked automatically with many of the drivers when saving and updating in "safe" mode. But
what's really happening ...

[=| Legal Key Names
Key names in inserted documents are limited as follows: The '$' character must not be the first
character in the key name. The ".' character must not appear anywhere in the key name

(= Licensing
you are using a vanilla MongoDB server from either source or binary packages you have NO
obligations. You can ignore the rest of this page. MongoDB Database Free Software
Foundation's GNU AGPL v3.0 http://lwww.fsf.org/licensing/licenses/agpl3.0 ...

L= List of Database Commands
iframe src ="http://api.mongodb.org/internal/current/commands.html* width="100%"
height="1000px" frameborder="0"> List of MongoDB
Commands </iframe> See the Commands page for details on how to invoke a command

(=] Locking
(=] Locking in Mongo
(=] Logging
MongoDB outputs some important information to stdout while its running. There are a number

of things you can do to control this Command Line Options \quiet less verbose output \v more
verbose output. use more Vv's (such as vwwwwy ...

several different types of assertic
assertions. However, massert is
user error {{wassert}} warn (log)

[=| Kernel Logging
Basic Rules cout/cerr should nev
informational warning() warnings
GEODEBUG, eftc ...

[=| Kernel string manipulation
string manipulation, use the {{util
has these basic properties: # are
headers, but not libs ...

M

(=] Manual
MongoDB manual. Excep
mongo The Interactive Shell.&nb
of the drivers

(=] MapReduce
Map/reduce in MongoDB is useft
using something like Hadoop witl
where you would have used ...

[=| Master Master Replication
Mongo does not support full mas
can be used. Generally st
Mastermaster usages is eventua

[=| Master Slave
Configuration and Setup To confi
you'll need to start two instances
examples explicitly specify the lo

(=] min and max Query Specifiers
min()}} and {{max()}} functions m
index keys between the min and
conjunction. The index to be use:

= mongo - The Interactive Shell
Introduction The MongoDB distril
a JavaScript shell that allows you
SpiderMonkey https://developer.|

| Mongo Administration Guide

(=] Mongo Concepts and Terminology
| Mongo Database Administration
(=] Mongo Developers' Guide

[=] Mongo Documentation Style Guide
page provides information for eve
on Writing Style Guide to Conflue
Notes on Writing Style Voice Acti

[=| Mongo Driver Requirements
highlevel list of features that a dri
list should be taken with a grain ¢
great way to learn about ...

1 Mongo Extended JSON

N

|=] node.Js
Node.js is used to write eventdriven, scalable network programs in serverside JavaScript. It is

Mongo's REST interface support
BSON types that do not have ob
The REST interface supports thr

=] Mongo Metadata
dbname>.system. namespaces il
collections include: {{system.nan
namespace / index metadata exi:

[=] Mongo Query Language
Queries in MongoDB are expres:
"WHERE" clause: > db.users.finc
MongoDB server ...

(] Mongo Usage Basics

(= Mongo Wire Protocol
Introduction The Mongo Wire Prc
with the database server through
vary. Clients should connect to tt

[=] Mongo-Based Applications
Please list applications that lever
here\!l Email meghan@10
Hosting Center Applications ...

=] MongoDB - A Developer's Tour

=] MongoDB Commercial Services Pro'
Note: if you provide consultative
10gen began the MongoDB proje
See the MongoDB ...

[=] MongoDB Data Modeling and Rails
tutorial discusses the developme
object mapper. The goal it
MongoDB. To that end, w

(=] MongoDB kernel code development
Cading conventions for the Monc

=] MongoDB Language Support

(=] MongoDB, CouchDB, MySQL Comp
pending... CouchDB \\ MongoDB
DocumentOriented (BSON http:/i
string,number,boolean,array,obje

(=] mongosniff
Unix releases of MongoDB incluc
is, fairly low level and for comple:
Usage: mongosniff help forward

=] mongostat
Use the mongostat utility to quick
align=center,width=700!
http://www.mongodb.org/downlo:
Run mongostat help for help. Fie

| Monitoring

[=] Monitoring and Diagnostics
Admin Uls Query Profiler Use the
includes a simple diagnostic scre
db.serverStatus() from mongo ...

1 Moving Chunks
inc version try to set on from if se
for a shard is MAX(chunks on st

(=] Multikeys
MongoDB provides an interesting
example is tagging. Suppose you
db.articles.find() We can ...

[=] Munin configuration examples
QOverview Munin http://muninmon
a mini tutorial to help you setup &
agent and plugins ...

(0]

|=] object IDs
Documents in MongoDB are reqt

similar in purpose to Twisted, EventMachine, etc. It runs on Google's V8. Web Frameworks
ExpressJS http://expressjs.com Mature web framework with MongoDB session support. 3rd
Party ...

L= Notes on Pooling for Mongo Drivers
Note that with the db write operations can be sent asynchronously or synchronously (the latter
indicating a getlasterror request after the write). When asynchronous, one must be careful to
continue using the same connection (socket). This ensures that the next operation will not
begin until after ...

P

L= Pairing Internals
Policy for reconciling divergent oplogs In a paired environment, a situation may arise in which
each member of a pair has logged operations as master that have not been applied to the
other server. In such a situation, the following procedure will be used to ensure consistency
between the two ...

=] per Language Center
Installing Start a MongoDB server instance ({{mongod}}) before installing so that the tests will
pass. The {{mongod}} cannot be running as a slave for the tests to pass. Some tests may be
skipped, depending on the version of the database you are running. CPAN $ sudo cpan
MongoDB ...

|=1 perl Tutorial

=] Philosophy
Design Philosophy !featuresPerformace.png align=right! Databases are specializing the "one
size fits all" approach no longer applies. By reducing transactional semantics the db provides,
one can still solve an interesting set of problems where performance is very ...

|=] pHP - Storing Files and Big Data

[=| PHP Language Center
Using MongoDB in PHP To access MongoDB from PHP you will need: The MongoDB server
running the server is the "mongo{}d" file, not the "mongo" client (note the "d" at the end) The
MongoDB PHP driver installed Installing the PHP Driver \NIX Run ...

|=1 PHP Libraries, Frameworks, and Tools

PHP community has created a huge number of libraries to make working with MongoDB easier

and integrate it with existing frameworks. CakePHP MongoDB datasource
http://github.com/ichikaway/mongoDBDatasource/downloads for CakePHP. There's also an

MongoDB document has an \id fi

[=| Object Mappers for Ruby and Mongc
Although it's possible to use the |
other conveniences provided by .
working with Ruby and MongoDE

=] oid Pages
[=| older Downloads

L=| One Slave Two Masters
mms.png align=center! This doct
masters. Despite the example sh
slave}} processes on a single ...

[=_| Online API Documentation
MongoDB API and driver documt
http://api.mongodb.org/java C Dr
Documentation http://api.mongoc

[=| Optimization
Additional Articles DOCS:Optimi:
Example This section describes |
Suppose our task is to display th

(=] Optimizing Mongo Performance

(=] Optimizing Object IDs
id field in MongoDB objects is ve
collections 'natural primary key" il

[=| Optimizing Storage of Small Objects
MongoDB records have a certain
This overhead is normally insigni
not be. Below ...

[=] OR operations in query expressions
Query objects in Mongo by defat
operator for such queries, howev
value in ..." expression. F

[=| Overview - The MongoDB Interactive
Starting the Shell The interactive
root directory of the distribution a
{{PATH]}} so you can just type {{n

[="| Overview - Writing Drivers and Tools
section contains information for ¢
writing drivers and higherlevel to
BSON binary document format. F

Q

[=| Queries and Cursors
Queries to MongoDB return a cul
language driver. Details below fo
{{mongo}} process). The shell ...

(=] Query Optimizer
MongoDB query optimizer gener:
to return results. Thus, MongoDE
approach ...

1 Querying
One of MongoDB's best capabilit
don't require any special indexing

1 Quickstart
Quickstart OS X Quickstart Unix
DOCS:SQL to Mongo Mapping C

[=| Quickstart OS X
Install MongoDB The easiest wa)
managers If you use the Homebr
If you use MacPorts http://www.n

(= Quickstart Unix
Install MongoDB Note: If you are
exception, try the "legacy static""
managers Ubuntu and Debian ...

|=] Quickstart Windows
Download The easiest (and recol

introductory blog post http://markstory.com ...
|=] Product Comparisons

[="| Production Deployments
you're using MongoDB in production, we'd love to list you here\!l Please complete this
web form https://10gen.wufoo.com/forms/productiondeploymentdetails/ or email
meghan@10gen.com and we will add you. <DIV mcestyle="textalign:center;margin:0" style ...

[=| Production Notes
Architecture Production Options Master Slave 1 master, N slaves failover is handled manually
Version 1.6: Replica Sets N servers, 1 is always primary, autofailover, autorecovery Backups
Import Export Tools Recommended Unix System ...

[=| Project Ideas
you're interested in getting involved in the MongoDB community (or the open source
community in general) a great way to do so is by starting or contributing to a MongoDB related
project. Here we've listed some project ideas for you to get started on. For some of these ideas

(=] PyMongo and mod_wsgi
(=] Python Language Center
[=| Python Tutorial

R

|=| Rails - Getting Started
Using Rails 3? See Rails 3 Getting Started This tutorial describes how to set up a simple Rails
application with MongoDB, using MongoMapper as an object mapper. We assume you're using
Rails versions prior to 3.0 ...

[=] Rails 3 - Getting Started
difficult to use MongoDB with Rails 3. Most of it comes down to making sure that you're not
loading ActiveRecord and understanding how to use Bundler
http://github.com/carlhuda/bundler/blob/master/README.markdown, the new Ruby
dependency manager. Install the Rails ...

|_|_ Recommended Production Architectures

[=| Reconfiguring a replica set when members are down
One may modify a set when some members are down as long as a majority is
established. In that case, simply send the reconfig command to the current primary.
DOCS:Reconfiguring when Members are Up If there is no primary (and this condition is not
transient), no majority is available. Reconfiguring ...

=l Reconfiguring when Members are Up
Use the rs.reconfig() helper in the shell. You can also do this from other languages/drivers
using the replSetReconfig command directly. (Run "rs.reconfig” in the shell with no parenthesis
to see what it does.) $ mongo > // example : give 1st set member 2 ...

=] Removing
Removing Objects from a Collection To remove objects from a collection, use the {{remove()}}
function in the mongo shell mongo The Interactive Shell. (Other drivers offer a similar function,
but may call the function "delete". Please check your driver's documentation ...

[=| Replica Pairs
Setup of Replica Pairs Replica Sets will soon replace replica pairs. If you are just now
setting up an instance, you may want to wait for that and use master/slave replication in the
meantime. Mongo supports a concept of replica ...

|=| Replica Pairs in Ruby
Replica Sets will replace replica pairs in MongoDB 1.6. If you are just now setting up an
instance, you may want to wait for that and use master/slave replication in the meantime. Here
follow a few considerations for those using ...

[=| Replica Set Admin Ul
mongod}} process includes a simple administrative Ul for checking the status of a replica set.
To use, first enable {{\rest}} from the {{mongod}} command line. The rest port is the db port
plus 1000 (thus, the default is 28017). Be sure this port is secure ...

[=] Replica Set Commands
Shell Helpers rs.help() show help rs.status() rs.initiate() initiate with default settings
rs.initiate(cfg) rs.add(hostportstr) add a new member to the set rs.add(membercfgobj) add a
new member to the set rs.addArb(hostportstr) add a new member which ...

=] Replica Set Configuration
Command Line Each {{mongod}} participating in the set should have a {{\replSet}} parameter
on its command line. The syntax is mongod replSet setname {}setname is the logical name of
the set. The rest command line parameter is also recommended when using replica ...

|=] Replica Set Design Concepts
1. A write is only truly committed once it has replicated to a majority of members of the set. For

Download Downloads and extrac
Downloads and extract the 64bit

S

[=| schema Design
Introduction With Mongo, you do
there are no serverside "joins". C
do not want ...

[=] scons
Use scons to build MongoDB, an
\help}} to see all options. Targets
{{scons ...

| Searching and Retrieving

[=| security and Authentication
Running Without Security (Truste
the Mongo database is in a truste
say, memcached). Of cou

[=| server-side Code Execution
Mongo supports the execution of
addition to the regular document:
as a string containing a SQLstyle

|_|_ Server-Side Processing

[=| Shard Ownership
shard ownership we mean which
master copy of the ownership infi
owns a shard ...

[=| sharding
MongoDB scales horizontally via
addition of new machines Autom
Automatic failover Sharding ...

[=| sSharding Administration
Here we present a list of useful ¢
cluster, see the docs on shardinc
speaking to a mongos process ..

[=| sharding and Failover
properlyconfigured MongoDB shi
potential failure scenarios of com
of a {{mongos}} routing process.

[=| sharding Config Schema
Sharding configuration schema. -
current metadata version numbe
options (chunkSize) > db.settings

[=| sharding Design
concepts config database \ the tc
this can be either a single server
or not chunk \ a region ...

1 Sharding FAQ
How does sharding work with reg
of a single server or a cluster of r

important writes, the client should request acknowledgement of this with a {{getLastError(\)}}
DOCS:Verifying Propagation of Writes with getLastError call. 2. Writes which are committed at
the primary of the set ...

=] Replica Set FAQ
How long does failover take? Failover thresholds are configurable. With the defaults, it may
take 2030 seconds for the primary to be declared down by the other members and a new
primary elected. During this window of time, the cluster is down for "primary" operations that is,
writes and strong ...

[=| Replica Set Internals
Design Concepts Check out the Replica Set Design Concepts for some of the core concepts
underlying MongoDB Replica Sets. Configuration Command Line We specify \replSet
setname/seedhostnamelist on the command line. seedhostnamelist is a (partial) list of some
members ...

|=| Replica Set Tutorial
tutorial will guide you through the basic configuration of a replica set on a single machine. If
you're attempting to deploy replica sets in production, be sure to read the comprehensive
replica set documentation Replica Sets. Also, do keep in mind that replica sets ...

[=| Replica Sets
v1.6.0 and higher. Replica sets are an elaboration on the existing master/slave replication
DOCS:Replication, adding automatic failover and automatic recovery of member nodes.
Replica Sets are "Replica Pairs version 2" and are available in MongoDB version 1.6. ...

[=| Replica Sets in Ruby
Here follow a few considerations for those using the Ruby driver Ruby Tutorial with MongoDB
and replica sets DOCS:Replica Sets. Setup First, make sure that you've configured and
initialized a replica set. Connecting to a replica set from the Ruby ...

=] Replica Sets Limits
v1.6 Authentication mode not supported. JIRA http://jira.mongodb.org/browse/SERVER1567
Limits on config changes to sets at first. Especially when a lot of set members are down.
Map/reduce writes new collections to the server. Because of this, for now it may only ...

|="| Replica Sets Troubleshooting
can't get local.system.replset config from self or any seed (EMPTYCONFIG) Set needs to be
initiated. Run {{rs.initiate()}} from the shell. If the set is already initiated and this is a new node,
verify it is present in the replica set's configuration and there are no typos in the host names: >
/I send ...

=] Replication
MongoDB supports asynchronous replication of data between servers for failover and
redundancy. Only one server (in the set/shard) is active for writes (the primary, or master) at a
given time. With a single active master at any point in time, strong consistency semantics are
available ...

[=| Replication Internals
master mongod instance, the {{local}} database will contain a collection, {{oplog.$main}}, which
stores a highlevel transaction log. The transaction log essentially describes all actions
performed by the user, such as "insert this object into this collection." Note that the oplog is not
a lowlevel redo log ...

|=| Replication Oplog Length
Replication uses an operation log ("oplog") to store write operations. These operations replay
asynchronously on other nodes. The length of the oplog is important if a secondary is down.
The larger the log, the longer the secondary can be down and still recover. Once the oplog has

[="| Resyncing a Very Stale Replica Set Member
Error RS102 MongoDB writes operations to an oplog. For replica sets this data is stored
in collection local.oplog.rs. This is a capped collection and wraps when full
"RRD"style. Thus, it is important that the oplog collection is large enough to buffer ...

|=| Retrieving a Subset of Fields
default on a find operation, the entire object is returned. However we may also request that
only certain fields be returned. This is somewhat analogous to the list of column specifiers in a
SQL SELECT statement (projection). Regardless of what field specifiers are included ...

=l Ruby External Resources
number of good resources appearing all over the web for learning about MongoDB and Ruby.
A useful selection is listed below. If you know of others, do let us know. Screencasts
Introduction to MongoDB Part | http://www.teachmetocode.com/screencasts ...

|=| Ruby Language Center
an overview of the available tools and suggested practices for using Ruby with MongoDB.
Those wishing to skip to more detailed discussion should check out the Ruby Driver Tutorial
Ruby Tutorial, Getting started with Rails Rails Getting Started Rails ...

(=] Ruby Tutorial
tutorial gives many common examples of using MongoDB with the Ruby driver. If you're
looking for information on data modeling, see MongoDB Data Modeling and Rails. Links to the

Where ...

1 Sharding Internals
section includes internal impleme
documentation. DOCS:Sharding

[=| sharding Introduction
MongoDB supports an automate:
applications that outgrow the res:
automatically managing failover ¢

[=| sharding Limits
Sharding Release 1 (MongoDB v
security mode, without explicit se
version. All (nonmulti)updates, uj

[=| sharding Use Cases
What specific use cases do we w
List here for discussion. video sit
related videos ...

L= slide Gallery
Click here http://www.mongodb.c
from recent events and presental
style="width:422px;margin:auto;"

[=] Smoke Tests
smoke.py lets you run a subsets
the tests, and then shuts it down
mongo Ssource ...

[=| sorting and Natural Order
Natural order" is defined as the d
parameters, the database returns
useful because, although the ord

[=] Source Code
All source for MongoDB, it's drive
Database http://github.com/monc
http://github.com/mongodb/mong

(=] Spec, Notes and Suggestions for Mc
Assume that the BSON DOCS:B
over time but for now the limit is -

[=| splitting Chunks
Normally, splitting chunks is done
are transparent). In the future, thi
be moved immediately to a new :

[=] SQL to Mongo Mapping Chart
page not done. Please help us fit
{{mongo}} \\ MongoDB queries ai
chart shows examples as both St

|=| starting and Stopping Mongo
MongoDB is run as a standard pi
information on those options. The
is, and the Mongo executable is «

(] Storing Data
[=| storing Files
[=1| structuring Data for Mongo

various object mappers are listed on our object mappers page http://www.mongodb.org ...

T

[=| Tailable Cursors
Tailable cursors are only allowed on capped collections and can only return objects in natural
order http://www.mongodb.org/display/DOCS/SortingandNaturalOrder. If the field you wish to
"tail" is indexed, simply requerying for \{ field : \ } is already quite efficient. Tailable ...

[=| Too Many Open Files
you receive the error "too many open files" or "too many open connections" in the mongod log,
there are a couple of possible reasons for this. First, to check what file descriptors are in use,
run Isof (some variations shown below): Isof grep ...

|=] TreeNavigation

[=| Trees in MongoDB
best way to store a tree usually depends on the operations you want to perform; see below for
some different options. In practice, most developers find that one of the "Full Tree in
Single Document", "Parent Links", and "Array of Ancestors" patterns ...

[=| Troubleshooting
mongod process "disappeared" Scenario here is the log ending suddenly with no error or
shutdown messages logged. On Unix, check /var/log/messages: $ grep mongod
Ivar/log/messages $ grep score /var/log/messages See Also Diagnostic ...

(=] Troubleshooting the PHP Driver

=] Tutorial
Getting the Database First, run through the Quickstart guide for your platform to get up and
running. Getting A Database Connection Let's nhow try manipulating the database with the
database shell DOCS:mongo The Interactive Shell . (We could perform similar ...

\Y

(=] v0.8 Details
Existing Core Functionality Basic Mongo database functionality: inserts, deletes, queries,
indexing. Master / Slave Replication Replica Pairs Serverside javascript code execution New to
v0.8 Drivers for Java, C, Python, Ruby. db shell utility ...

[=| validate Command
Use this command to check that a collection is valid (not corrupt) and to get various statistics.
This command scans the entire collection and its indexes and will be very slow on large
datasets. From the {{mongo}} shell: > db.foo.validate() From a driver one might invoke the
driver's equivalent ...

(=] Verifying Propagation of Writes with getLastError
v1.5. A client can block until a write operation has been replicated to N servers. Use the
getlasterror command with a new parameter {{w}}: db.runCommand() If {{w}} is not set, or

U

[=| Ubuntu and Debian packages
Please read the notes on the Do
find you can't download the pack
10gen ...

=lul
Spec/requirements for a future M
indexsize, clone/copy indexes qu
master ...

|_|_ Updates

[=| Updating
MongoDB supports atomic, inpla
update() {{update()}} replaces the
fields, you should use ...

[=| Updating Data in Mongo
Updating a Document in the mon
be used to save a new documeni
collection. Continuing with the ex

[=| Upgrading from a Non-Sharded Syst
mongod}} process can become p
done so yet, feel free to have a Ic
http://mwww.mongodb.org/display/

[=| Upgrading to Replica Sets
Upgrading From a Single Server
good idea\l). First, we'll initiate a
we're ...

[=] Use Case - Session Objects
MongoDB is a good tool for storit
and store the session object's \id
make updates fast, the database

[=| Use Cases
See also the Production Deployn
Shutterfly, foursquare, bit.ly, Etsy
Analytics http://blog.mongodb.or¢

[=| User Feedback
| just have to get my head arounc
should get a long course from yo
\kunthar@gmail.com, mongodbu

[=| Using a Large Number of Collections
technigue one can use with Mon
single collection. By doing
on that key may be eliminated ...

|_|_ Using Mongoid
Mongoid is a mature ODM for Mc

and excellent documentation. Th
production. This page is an atten

[=] Using Multikeys to Simulate a Large
One way to work with data that h
indexing feature where the keys
>..,> .., >0 >) > db.foo.in

w

[=| What is the Compare Order for BSO
MongoDB allows objects in the s
values from different types, a cor
arbitary but well ...

|=] when to use GridFs
page is under construction When
of files better than many file syste

(] Why are my datafiles so large?
| Why so many "Connection Accepted

|_|_ Windows
Windows Quick Links and Refere

equals 1, the command returns immediately, implying the data is on 1 server ... DOCS:Quickstart Windows for in

|=] version Numbers . the Windows Service page. The |
MongoDB uses the oddnumbered versions for development releases [=| windows Service
http://en.wikipedia.org/wiki/Softwareversioning#Oddnumberedversionsfordevelopmentreleases. windows mongod.exe has native
There are 3 numbers in a MongoDB version: A.B.C A is the major version. This will rarely The service related commands a
change and signify very large changes B is the release number. This will include many option pass the following to \inste
changes ...

(=] Working with Mongo Objects and Cli

(=] Writing Drivers and Tools
See Also DOCS:Mongo Query Li
Parameters

[=| Video & Slides from Recent Events and Presentations
Table of Contents: MongoDB Conferences Oneday conferences hosted by 10gen
http://www.10gen.com/. 10gen develops and supports MongoDB. MongoUK Video (June 2010)
http://skillsmatter.com/event/cloudgrid/mongouk MongoFR Video (June 2010) B
http://lacantine.ubicast.eu/categories ... (=] writing Tests
We have three general flavors of
make a test that runs at program
minimal ...

=] Viewing and Terminating Current Operation
View Current Operation(s) in Progress > db.currentOp(); > // same as:
db.$cmd.sys.inprog.findOne() { inprog: { "opid" : 18 , "op" : "query", "ns" : "mydb.votes" ,
"query” :"", "inLock" : 1} } Fields: opid an incrementing operation number. Use with
killOp(). op the operation type ...

4 |@#$

	.bookmarks
	1.1 Development Cycle
	Creating and Deleting Indexes
	Diagnostic Tools
	Django and MongoDB
	Getting Started
	International Documentation
	Monitoring
	Older Downloads
	PyMongo and mod_wsgi
	Python Tutorial
	Recommended Production Architectures
	v0.8 Details
	Building SpiderMonkey
	Documentation
	Dot Notation
	Dot Notation
	Getting the Software
	Language Support
	Mongo Administration Guide
	Working with Mongo Objects and Classes in Ruby
	MongoDB Language Support
	Community Info
	Internals
	TreeNavigation
	Old Pages
	Storing Data
	Indexes in Mongo
	HowTo
	Searching and Retrieving
	Locking

	Mongo Developers' Guide
	Locking in Mongo
	Mongo Database Administration
	Mongo Concepts and Terminology
	MongoDB - A Developer's Tour
	Updates
	Structuring Data for Mongo
	Design Overview
	Document-Oriented Datastore
	Why so many "Connection Accepted" messages logged?
	Why are my datafiles so large?
	Storing Files
	Introduction - How Mongo Works
	Optimizing Mongo Performance
	Mongo Usage Basics
	Server-Side Processing

	Home
	Quickstart
	Quickstart OS X
	Quickstart Unix
	Quickstart Windows

	Downloads
	1.0 Changelist
	1.2.x Release Notes
	1.4 Release Notes
	1.6 Release Notes
	CentOS and Fedora Packages
	Ubuntu and Debian packages
	Version Numbers

	Drivers
	C Language Center
	C Tutorial

	C Sharp Language Center
	Driver Syntax Table
	Javascript Language Center
	node.JS

	JVM Languages
	Python Language Center
	PHP Language Center
	Installing the PHP Driver
	PHP Libraries, Frameworks, and Tools
	PHP - Storing Files and Big Data
	Troubleshooting the PHP Driver

	Ruby Language Center
	Ruby Tutorial
	Replica Pairs in Ruby
	Replica Sets in Ruby

	GridFS in Ruby
	Rails - Getting Started
	Rails 3 - Getting Started
	MongoDB Data Modeling and Rails
	Object Mappers for Ruby and MongoDB
	Using Mongoid

	Ruby External Resources
	Frequently Asked Questions - Ruby

	Java Language Center
	Java Driver Concurrency
	Java - Saving Objects Using DBObject
	Java Tutorial
	Java Types

	C++ Language Center
	C++ BSON Library
	C++ Tutorial
	Connecting

	Perl Language Center
	Contributing to the Perl Driver
	Perl Tutorial

	Online API Documentation
	Writing Drivers and Tools
	Overview - Writing Drivers and Tools
	bsonspec.org
	Mongo Driver Requirements
	Spec, Notes and Suggestions for Mongo Drivers
	Feature Checklist for Mongo Drivers
	Conventions for Mongo Drivers

	Driver Testing Tools
	Mongo Wire Protocol
	BSON
	Mongo Extended JSON
	GridFS Specification
	Implementing Authentication in a Driver
	Notes on Pooling for Mongo Drivers
	Driver and Integration Center

	Connecting Drivers to Replica Sets
	Error Handling in Mongo Drivers

	Developer Zone
	cookbook.mongodb.org
	Tutorial
	Manual
	Connections
	Databases
	Commands
	Clone Database
	fsync Command
	Index-Related Commands
	Last Error Commands
	Windows Service
	Viewing and Terminating Current Operation
	Validate Command
	getLastError
	List of Database Commands

	Mongo Metadata

	Collections
	Capped Collections
	Using a Large Number of Collections

	Data Types and Conventions
	Internationalized Strings
	Object IDs
	Database References

	GridFS
	When to use GridFS

	Indexes
	Using Multikeys to Simulate a Large Number of Indexes
	Geospatial Indexing
	Indexing as a Background Operation
	Multikeys
	Indexing Advice and FAQ

	Inserting
	Legal Key Names
	Schema Design
	Trees in MongoDB

	Optimization
	Optimizing Object IDs
	Optimizing Storage of Small Objects
	Query Optimizer

	Querying
	Mongo Query Language
	Retrieving a Subset of Fields
	Advanced Queries
	Dot Notation (Reaching into Objects)
	Full Text Search in Mongo
	min and max Query Specifiers
	OR operations in query expressions
	Queries and Cursors
	Tailable Cursors

	Server-side Code Execution
	Sorting and Natural Order
	Aggregation

	Removing
	Updating
	Atomic Operations
	findandmodify Command
	Updating Data in Mongo

	MapReduce
	Data Processing Manual

	mongo - The Interactive Shell
	Overview - The MongoDB Interactive Shell
	dbshell Reference

	Developer FAQ
	Do I Have to Worry About SQL Injection
	How does concurrency work
	SQL to Mongo Mapping Chart
	What is the Compare Order for BSON Types

	Admin Zone
	Production Notes
	Replication
	Verifying Propagation of Writes with getLastError
	Replica Sets
	About the local database
	Data Center Awareness
	Reconfiguring a replica set when members are down
	Reconfiguring when Members are Up
	Replica Set Design Concepts
	Replica Sets Troubleshooting
	Replica Set Tutorial
	Replica Set Configuration
	Adding a New Set Member
	Adding an Arbiter

	Upgrading to Replica Sets
	Replica Set Admin UI
	Replica Set Commands
	Replica Set FAQ
	Connecting to Replica Sets from Clients
	Replica Sets Limits
	Resyncing a Very Stale Replica Set Member
	Replica Set Internals

	Master Slave
	One Slave Two Masters

	Replica Pairs
	Master Master Replication
	Replication Oplog Length
	Halted Replication

	Sharding
	Sharding Introduction
	Configuring Sharding
	A Sample Configuration Session

	Upgrading from a Non-Sharded System
	Sharding Administration
	Sharding and Failover
	Sharding Limits
	Sharding Internals
	Moving Chunks
	Sharding Config Schema
	Sharding Design
	Sharding Use Cases
	Shard Ownership
	Splitting Chunks

	Sharding FAQ

	Hosting Center
	Amazon EC2
	Joyent

	Monitoring and Diagnostics
	Checking Server Memory Usage
	Database Profiler
	Munin configuration examples
	Http Interface
	mongostat
	mongosniff

	Backups
	How to do Snapshotted Queries in the Mongo Database
	Import Export Tools

	Durability and Repair
	Security and Authentication
	Admin UIs
	Starting and Stopping Mongo
	Logging
	Command Line Parameters
	File Based Configuration

	GridFS Tools
	DBA Operations from the Shell
	Architecture and Components
	Troubleshooting
	Excessive Disk Space
	Too Many Open Files

	Contributors
	JS Benchmarking Harness
	MongoDB kernel code development rules
	Git Commit Rules
	Kernel class rules
	Kernel code style
	Kernel concurrency rules
	Kernel exception architecture
	Kernel Logging
	Kernel string manipulation
	Writing Tests

	Project Ideas
	UI
	Source Code
	Building
	Building Boost
	Building for FreeBSD
	Building for Linux
	Building for OS X
	Building for Solaris
	Building for Windows
	Boost 1.41.0 Visual Studio 2010 Binary
	Boost and Windows
	Building the Mongo Shell on Windows
	Building with Visual Studio 2008
	Building with Visual Studio 2010

	Building Spider Monkey
	scons

	Database Internals
	Caching
	Cursors
	Error Codes
	Internal Commands
	Replication Internals
	Smoke Tests
	Pairing Internals

	Contributing to the Documentation
	Emacs tips for MongoDB work
	Mongo Documentation Style Guide

	Community
	MongoDB Commercial Services Providers
	User Feedback
	Job Board

	About
	Philosophy
	Use Cases
	Use Case - Session Objects

	Production Deployments
	Mongo-Based Applications
	Events
	Video & Slides from Recent Events and Presentations

	Slide Gallery
	Articles
	Benchmarks
	FAQ
	Product Comparisons
	Interop Demo (Product Comparisons)
	MongoDB, CouchDB, MySQL Compare Grid
	Comparing Mongo DB and Couch DB

	Licensing

	Windows
	International Docs
	Books
	Doc Index

